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Abstract

Electronic health record (EHR) data show promise for deriving new ways of modeling human

disease states. Although EHR researchers often use numerical values of laboratory tests as features

in disease models, a great deal of information is contained in the context within which a laboratory

test is taken. For example, the same numerical value of a creatinine test has different interpretation

for a chronic kidney disease patient and a patient with acute kidney injury. We study whether EHR

research studies are subject to biased results and interpretations if laboratory measurements taken

in different contexts are not explicitly separated. We show that the context of a laboratory test

measurement can often be captured by the way the test is measured through time.

We perform three tasks to study the properties of these temporal measurement patterns. In the first

task, we confirm that laboratory test measurement patterns provide additional information to the

stand-alone numerical value. The second task identifies three measurement pattern motifs across a

set of 70 laboratory tests performed for over 14,000 patients. Of these, one motif exhibits

properties that can lead to biased research results. In the third task, we demonstrate the potential

for biased results on a specific example. We conduct an association study of lipase test values to

acute pancreatitis. We observe a diluted signal when using only a lipase value threshold, whereas

the full association is recovered when properly accounting for lipase measurements in different

contexts (leveraging the lipase measurement patterns to separate the contexts).

Aggregating EHR data without separating distinct laboratory test measurement patterns can

intermix patients with different diseases, leading to the confounding of signals in large-scale EHR

analyses. This paper presents a methodology for leveraging measurement frequency to identify

and reduce laboratory test biases.
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1. Introduction

Millions of patients across the United States have extensive medical histories stored in

electronic form. This immense amount of electronic health record (EHR) data provides a

unique platform to perform large-scale research studies of human health. Through careful

analysis of the variables in this vast dataset, researchers can conduct a variety of

multifaceted studies such as prediction of future patient health state, evaluation of

intervention effectiveness, computational disease modeling, and identification of dangerous

drug-drug interactions [1, 2, 3]. Automating feature selection from EHR variables is a

difficult task, as the EHR is an inherently biased data source: EHR data are collected with

the primary goal of delivering and documenting patient care, not with the primary goal of

creating a curated research dataset [4, 5]. Identifying and then mitigating such biases will

result in not only the development of more accurate methods for deriving computational

models of disease but also in learning better prediction models from EHR data. Currently,

laboratory tests are one of the most widely-used features in EHR disease-modeling research

and are therefore the focus of this paper.

In this work, we hypothesize that (i) the specific context of a laboratory test order can be

derived from EHR-observed measurement patterns, and (ii) that this context can be

leveraged for better disease modeling. While a laboratory test’s numerical values can help

distinguish healthy from sick patients, test values themselves cannot separate sick patients

by their ailment when the test is associated with multiple diseases. For instance, while the

numerical results may be comparable, the rate of measurement for a gestational diabetes

screening glucose test and a chronic diabetes monitoring glucose test will differ greatly. We

predict that how often a laboratory test is ordered within a particular time window can help

correctly separate one disease state from another. We further hypothesize that laboratory test

measurement patterns provide complementary and independent information from the

numerical values indicated by the laboratory tests. We formally explore the relationship

between both laboratory test measurement gaps and laboratory test values to determine

whether the context in which a laboratory test is ordered alters the way its value should be

interpreted, and is therefore a critical feature for disease modeling. While analyses of

laboratory measurement patterns have been conducted [6, 7, 8, 9], the analyses and

interpretations have focused on resource overutilization and informing clinical practice

rather than on EHR-driven research.

Before describing our methods and findings, we provide background on laboratory testing

from an informatics standpoint and report on previous work in the emerging research area of

EHR bias identification and mitigation.
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1.1. Capturing The Context of Laboratory Testing: Reasons for Ordering and Relationship
to Numerical Values

At the point of patient care, different laboratory tests are ordered at different rates, often

dictated by what physiologic process the test is measuring, and very often there exist

multiple reasons for ordering a particular laboratory test. The three most common reasons

for ordering a test are (i) diagnosing a condition, (ii) screening for a condition, or (iii)

monitoring a pre-existing condition. Some laboratory tests are ordered for one specific,

clinical reason: for instance, the prostate-specific antigen (PSA) test is ordered exclusively

to screen patients for prostate cancer. Others serve multiple clinical purposes: TSH, for

instance, is used both to diagnose and monitor patients with disorders associated with the

thyroid hormone. Finally, some tests, such as creatinine, are ordered both for clinical

purposes like monitoring chronic disease progression and diagnosing acute conditions, and

for healthcare process purposes like following guidelines as part of a routine panel for

preventive testing [10]. When hospital protocol dictates measurement times, as is the case

with routine preventative panels, creatinine’s measurement patterns arguably reflect

healthcare processes more than they reflect the health status of a patient. Thus, the context in

which a laboratory test is ordered depends both on its clinical purpose and the surrounding

healthcare processes.

Deriving the context of a laboratory measurement is a challenge, however. EHR data lack an

explicit indication for why each laboratory test was ordered, and using other dimensions of

EHR data for derivation of such information (such as ICD-9 codes and clinical notes) is

equally problematic. ICD-9 codes are notoriously non-specific to patient disease state and

are often not recorded for all patient ailments[11, 12]. Clinical notes rarely explicitly state

the exact reason a test has been ordered.

The specific description of the context in which a laboratory test is measured, therefore, is

not included in most computational models of disease. In fact, most often models include

only a laboratory test’s numerical value, a range of values[13, 14], or the presence or

absence of a laboratory test[15] as features, but no contextual information about the situation

surrounding the order. In this paper, we investigate whether aggregating numerical values of

laboratory tests taken in multiple separate contexts without explicitly separating the contexts

can lead to the confounding of resarch conclusions.

In research with clinical data, there is an implicit assumption that a laboratory test’s

numerical value and the rate at which the test is ordered are highly correlated features. This

assumption about value and measurement rate correlation likely stems from the existence of

value-based guidelines and the widespread expectation that laboratory test values which fall

outside of normal ranges prompt intervention and retesting. Value-based guidelines for

laboratory test ordering dictate measurement frequency based on a test’s numerical value.

For instance, the guideline for performing a diagnostic PSA test states that if a patient’s PSA

is slightly over 4.0 ng/mL in the initial measurement, the PSA test should be remeasured

within 48 hours to confirm the need for a biopsy. Our work formally investigates the linear

and nonlinear relationship between numerical value and measurement patterns in EHR-

recorded data.
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1.2. EHR biases

EHR data are biased because they are gathered in an uncontrolled environment and are not

carefully curated for research purposes. EHR data are noisy, sometimes erroneous, and often

sparse[14]. At the same time EHR data contain sometimes conflicting (e.g., notes and coded

data provide differing medication lists) and redundant information (e.g., clinicians often

copy-and-paste from previous notes). From a temporal standpoint, the EHR contains data

about elements that evolve at different time scales and often evolve over time, as treatment

affects patient state. Because of these complexities, assessing the impact of EHR biases and

correcting for their impact on data-driven methods is an emerging research topic.

Recent research has shown that naïve EHR statistical analyses can lead to the reversals of

cause and effect [16], induction of spurious signals [17], large errors when predicting

optimal drug dosage [18], cancellation of temporal signals when aggregating different

cohorts[19, 20, 21], and model distortion when not accounting for redundancy in the

narrative part of the EHR [22].

One particularly problematic bias inherent to the EHR is the prevalence of data points that

are missing not at random[23] (e.g., patients are seen and measured more often when they

are sick, and measured less often when they are healthy). Inferring missing information,

such as values when the patient is not seen, is a challenging research area. While there have

been different approaches to mitigating this type of missingness[24, 14], mostly researchers

ignore missing values or interpolate them[25, 26, 27], with some recent work on classifying

which variables should be interpolated and which should be ignored[28]. Lin and Haug

demonstrated that some missing values are themselves informative by creating Bayesian

networks that explicitly model the absence of clinical variables; these models were able to

predict medical problems better than those that ignored or interpolated missing values[15].

Our work builds upon Lin and Haug’s findings and focuses on leveraging the temporal

missingness within laboratory measurement data. We see the patterns of laboratory test

measurement as patterns of missing data. As a way to mitigate the EHR biases, we explore

the use of different missing-not-at-random patterns to classify different patient health states

and stratify heterogeneous populations into homogenous patient groups.

2. Material and Methods

Our study is carried out in three consecutive tasks, as described below:

Task 1 We explored the correlation of laboratory values to the laboratory test’s time to

repeat, examining whether the value and time between consecutive measurements

(measurement gap) encode separate information or overlap in information content.

Task 2 To understand the overall dynamics of laboratory tests recorded in the EHR, we

categorized types of laboratory measurement patterns, identifying those more likely to

cause biases in EHR-based research.

Task 3 We used lipase as a case study for how rates of measurement can be used to

account for biases in laboratory test measurement data.
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2.1. Ethics statement

This work was approved by the Columbia University Institutional Review Board (IRB

#AAAK7201). As it is impractical to collect consent for such a large-scale study and the

data is already available through the in-house data warehouse, informed consent was waived

by the Institutional Review Board for this retrospective research.

2.2. Clinical Data

We extracted patient records from the NewYork-Presbyterian Hospital (NYPH) clinical data

warehouse. We narrowed our population to patients that have visited the NYPH Ambulatory

Internal Medicine clinic at least 3 times. The full longitudinal records (i.e., all inpatient and

outpatient data points) for these patients were gathered.

Three physicians reviewed and edited a list of frequently measured laboratory tests. They

constructed a set of 70 laboratory tests of interest to primary care and internal medicine. We

extracted the time series for these tests between September 1990 and September 2010 for all

of the patients in the population.

2.3. Task 1: Correlation between Measurement Gap and Numerical Value

We quantified the relationship between value and measurement gap, asking: in the patient

population, is there added information in looking at how a patient was measured, not only at

the measurement value? Given a particular laboratory test and all patients’ time series for

that test, we constructed a joint probability density function (PDF) using a kernel density

estimate in Matlab. The PDF consisted of laboratory values and time between consecutive

lab measurements (or gaps between measurements) in days.

To assess the degree of correlation between a laboratory test’s numerical values and its

measurement gaps, we experimented with (i) linear correlation (estimated at the 95%

confidence interval) and an associated p-value and (ii) a non-linear measure of correlation,

mutual information (MI) between laboratory test values and gaps between measurements.

Mutual information attains a value of zero when the random variables underlying the

distributions (values and measurement patterns) are completely independent. Mutual

information attains a maximum when the two distributions are deterministic functions of

each other. In the latter case, the mutual information is equal to the entropy of the single

equivalent distribution. Using the PDF, both the linear correlation and mutual information

were calculated for the entire dataset (the full time scale) and separately for measurements

with long and short measurement gaps to capture distinct temporal dynamics at different

time scales. The confidence interval estimates on the MI were made using a previously

described method[29]. By examining many measurement gap histograms, we chose a

heuristic cutoff of 3 days for what constitutes a long gap and what constitutes a short gap:

the short time scale calculations only look at gaps and values where consecutive

measurements are taken no more than 3 days apart and long time scale calculations look at

gaps and values for measurement gaps that are longer than 3 days.
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2.4. Task 2: Finding Laboratory Test Measurement Motifs

We explored the different types of laboratory test measurement dynamics that exist in the

EHR data by creating measurement gap histograms for 70 different laboratory tests. We

computed the following quantity: for each laboratory test taken on each patient, we

calculated the days between two consecutive measurements of that laboratory test on that

patient. A histogram was created for each test, mapping the day gap between consecutive

measurements and number of such gaps, when aggregated across the entire patient dataset.

For example, if a patient had a creatine test taken on February 3rd and another creatinine test

taken on February 5th, the count of creatinine tests with a measurement gap of 2 days would

be incremented by one.

We visualized the measurement gap histograms in different coordinate systems to explore

the measurement dynamics across laboratory tests. We uncovered differences when

examining the histograms in the logarithmic coordinate system. Using log-log coordinates,

we visually looked for modes present in the histograms. If there is linearity in a

measurement gap histogram when presented in log-log coordinates (i.e., a power-law) that

implies scale-free measurement dynamics and that all time scales represent a single context

or reason for ordering the laboratory test. If no approximately linear relationship between

the frequency of measurement gaps exists, we visually looked for changes (e.g., peaks) that

separate the different dynamics patterns; these different patterns may qualitatively imply

different contexts of measurement based on either a change in health state or based on the

healthcare documentation process. We catalogued the measurement gap histograms based on

observed approximate linearity and the presence of peaks in the histograms, as determined

by a manual review of the curves.

2.5. Task 3: Studying the Potential Effect of Measurement Motifs on Research

In this task, we focus on a specific laboratory test as a use case for studying the effect of

measurement motifs on EHR-driven research.

For the use case, we chose to study lipase and acute pancreatitis. Acute pancreatitis is a

well-understood condition and because its diagnosis is largely laboratory-based it is a good

test case to validate our hypotheses. Both amylase and lipase tests have been used for acute

pancreatitis diagnosis but they are not specific for this condition: both tests are also used for

monitoring of chronic pancreatitis and diagnosing pancreatic cancer. We conducted all

experiments on both laboratory tests; in this paper, we focus on lipase as recent literature has

shown it to have higher diagnostic sensitivity and specificity.[30]. Our results for amylase

were similar to those for lipase.

We asked the question: can the known association between an abnormal lipase value and

acute pancreatitis be recovered from EHR data? To verify our hypothesis that laboratory

measurement dynamics can impact the accuracy of identifying patients with acute

pancreatitis, we considered three views of the data, based on the dynamics of lipase

measurements within each patient’s record: (i) only visits with short lipase measurement

gaps, (ii) only visits with long lipase measurement gaps, and (iii) all visits independent of

the length between lipase measurements. In each of these settings, we assessed the

Pivovarov et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



association between acute pancreatitis and lipase and studied the properties of visits that

belong in the setting using ICD-9 codes and clinical notes. We hypothesize that as acute

pancreatitis is an acute disease, visits with short lipase measurement gaps will be more

highly associated and relevant to acute pancreatitis.

2.5.1. Settings—We divided each patient record into individual visits (defining a full in-

patient admission as one visit). Each record (represented as a set of visits) was divided into

bins of visits with short lipase measurement gaps and visits with long lipase measurement

gaps. Figure 1 shows a schematic diagram of an individual’s longitudinal record: visits 1 and

5 belong to the short-gap bin because the lipase measurements were taken in rapid

succession, the other visits belong in the long-gap bin because they show a long time

between consecutive lipase measurements.

To determine the threshold for how many days define a short-gap and long-gap, we used the

laboratory test’s measurement pattern histogram. Under the hypothesis that peaks in the

histogram are indicative of the context within which a laboratory test is ordered we use the

location of peaks and trends around them as thresholds for separating visits into short- and

long-gap bins. This visit-separation method is generally insensitive to the exact threshold

and is heuristically defined for each laboratory test as a function of the location and number

of peaks in the measurement histogram. The measurement histogram of lipase (Figure 2)

had one peak at one day and showed a change in measurement pattern at 3 days (the lipase

histogram is only nearly linear after the 3 day gap).

As there is only a measurement gap when a patient has two or more tests, only patients with

at least two lipase measurements were included in the analysis. Similarly, no visits after the

last recorded lipase test were added to either bin. Our visit-binning method is not limited to

two (short- and long-gap) bins and there can be more granular bins such as bins of regular

weekly visits. In the case of lipase, the measurement pattern histogram illustrated two

distinct measurement patterns.

To analyze the differences between bins of short-gap measurements and long-gap

measurements, we separated all ICD-9 codes and clinical notes created during short-gap

lipase measurements from those collected during long-gap bins. We conducted association

studies for lipase and acute pancreatitis in all three settings: (i) only short-gap visits, (ii) only

long-gap visits, (iii) all visits.

2.5.2. Analyses—To assess in what ways the visits with short lipase measurement gaps

differ from visits with long lipase measurement gaps, we ran three analyses using ICD-9

codes and clinical notes. For all of the following analyses, we used patients who exist in

both the short-gap and the long-gap bins. This filtration reduced the confounders and

ensured that differences we uncovered were from genuine separate health states. All p-

values were Bonferroni-corrected.

Note Types: We looked at note types across the short and long measurement gap bins. Note

types can inform the status of the patient. For example, a high frequency of admission and

discharge notes indicate many inpatient visits, while primary provider notes are indicative of
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outpatient doctor visits. We performed a chi-squared test to assess the strength of association

between the frequency of each note type and the gap bin; this test was chosen because we

are comparing counts across different bins.

Note Content: We analyzed the frequency and coverage of all words across the notes in

each bin. Differences in note content indicate differences in topics and hint at different

contexts of measurement across gap bins. To correct for the redundancy within notes, we

calculated word coverage. Redundancy across notes within a patient was implicitly handled,

as individual patient records were divided into both bins. We look at the note content, both

frequency and coverage, to check the separation created by long and short lipase gaps. The

presence of certain words that relate to specific health states can hint at the level of

separation across the gap bins and provide clues as to whether relevant parts of the patient’s

record are indeed being separated out.

For each word we calculated:

We performed a chi-squared test to assess the strength of association between the coverage

of each word and the gap bin.

Association Study: To test whether laboratory measurement dynamics affect a typical EHR

association study[31], we conducted a phenome-wide search using the binomial test to find

ICD-9 codes associated with an elevated lipase. For every ICD-9 code, we compared its

frequency of occurrence with high lipase in all three settings. The binomial test was used to

assess the statistical significance of deviations due to high lipase from the expected

distribution of ICD-9 codes. The variables were defined as follows, per ICD-9:

3. Results

Our final dataset consisted of 14,141 patients, their notes, ICD-9 codes, and laboratory test

times and values for 70 tests, spanning 20 years. On average each patient had 150.4 ICD9

codes [95% CI: 147.7–153.1], 825.8 laboratory tests [95% CI:807.7–847.0], and 133.5

clinical notes [95% CI: 130.8–136.3] over the entire study period.

3.1. Task 1: Correlation between Measurement Gap and Numerical Value

Both correlation metrics, linear and non-linear (through mutual information), between

measurement patterns and test values were carried out for the 70 laboratory tests (see

Appendix Tables 1 and 2 for full results). When we did not separate by time scale, there was

little correlation: with the linear measure, all laboratory tests had a correlation very close to
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zero. With the mutual information measure, although also very low, a few laboratory tests

demonstrated some level of correlation. The highest mutual information was .15, detected

for the albumin laboratory test and only nine other tests had a mutual information higher

than 0.1 (see Appendix Tables 1 and 2). Overall, these very low correlations indicate that

there is separate information encoded in the laboratory test measurement pattern and the

laboratory test’s numerical value.

Exploring the correlation statistics separately for different time scales (short and long gaps),

some laboratory tests such as LDL displayed no correlation(Figure 3(a)), using either metric,

on any time scale, while other laboratory tests such as HbA1c and creatinine, showed some

degree of correlation. For LDL, the numerical value does not affect its testing rate. We

interpret the absence of correlation in measurement patterns and value as a result of

healthcare process, such as adherence to guidelines for testing[32]. HbA1c displays a clear

negative linear correlation of −0.193 only on the slow time scale, a higher HbA1c value is

correlated to a shorter time until next measurement (Figure 3(b)). Creatinine also displays a

clear negative linear correlation of −0.208, but on the short time scale.

The results from the linear correlation calculations were consistent with earlier work on the

relationship between laboratory value and measurement frequency[8]. Weber and Kohane

assigned categories to laboratory tests based on how numerical values were perceived (e.g.:

“Bad-Good” represented a laboratory test where a low value was bad, and a high value was

good). In our work, a positive linear correlation indicates a “Bad-Good” test where a low

value prompts rapid retesting and a high value has a longer measurement gap, similarly a

negative linear correlation represents a “Good-Bad” test.

The interplay between correlations on the full time scale and separately on the short and

long time scales revealed interesting findings about measurement dynamics. For example,

bicarbonate showed a positive linear correlation on both long and short time scales (the

higher the value, the longer the gap between measurements), but when aggregating the time

scales together and computing the total linear correlation, the correlation disappeared

(Figure 3(c)). By contrast, the PSA screening test had very similar mutual informations on

the full and long time scales. The differences between tests such as bicarbonate and the PSA

screening test hint at differences in the contexts in which laboratory tests are ordered (Figure

3(d)). As PSA is measured in a single context, it is not subject to signal dilution due to

timescale aggregation. Alternatively, the correlation results for laboratory tests such as

bicarbonate, which are measured for multiple reasons and in various contexts, indicate that it

is sometimes necessary to separate laboratory measurements by underlying context of

measurement.

3.2. Task 2: Laboratory Test Measurement Motifs

Manual cataloguing of the measurement gap histograms for 70 laboratory tests uncovered a

set of three motifs that were most common. The three motifs of laboratory test ordering are

influenced by two factors: patient health state and the healthcare process (Figure 4). These

two factors contribute to create the shape of the laboratory test’s histogram. Certain

histogram motifs highlight the presence of multiple contexts in which the test is being

ordered. The histogram shape can determine whether further population stratification is
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necessary for conducting analyses or whether the laboratory measurements already represent

a mostly homogenous patient set. The contributions of the patient health state and the

healthcare process is dependent on the laboratory test itself and define the three motifs of

test ordering: (i) primarily inpatient, (ii) primarily outpatient, (iii) a mixture of in- and

outpatient. Figure 5 shows typical graphs from each of these three categories.

In general, laboratory tests that show peaks at very short time gaps in their measurement

histograms are representative of tests taken during inpatient stays; laboratory tests with

measurement graphs that peak at longer gaps of a few months are representative of

measurements obtained during an outpatient visit. For some tests, the documentation

(outpatient vs. inpatient) reason is aligned with the clinical reason; related to the fact that the

numerical value obtained from a particular test is valid for a specific time period only. For

example, troponin levels are representative of a patient state at the hour level, and thus their

measurements are on the timescale of days. Because troponin is measured for patients

suspected of suffering a myocardial infarction, and such a diagnosis has a high rate of

inpatient admission, the troponin measurement dynamics are representative of an inpatient

stay. Troponin’s measurement dynamics represent a primarily inpatient laboratory test,

motif (i).

Other laboratory tests such as microalbumin and HbA1c change at a slower time scale and

are ordered primarily in outpatient settings; as the values change slowly, there is no need to

repeat their measurement during a short-term hospital admission. Therefore, HbA1c and

microalbumin measurement dynamics represent primarily outpatient visits, motif (ii).

Laboratory tests that follow motif (iii) represent a set of tests whose measurement dynamics

result from a mixture of both clinical and documentation reasons. For instance, glucose

changes rapidly and is widely used in inpatient settings to monitor short-time scale changes

but is also a regular test performed during outpatient visits to monitor chronic diabetics. The

glucose dynamics are evident by the histogram diagram in Figure 5 where there is a fast

time scale peak at 1 day, and a smaller slow time scale peak at 91 days. The peak at 91 days

shows quarterly patient monitoring. Many other laboratory tests have motif (iii)

measurement dynamics: for example, creatinine displays an almost identical histogram as

glucose because they belong on the same basic metabolic panel and lipase along with

amylase also have a mixture motif because of their use in both inpatient settings for acute

events and outpatient settings for long-term monitoring.

Triglycerides is also a laboratory test with a mixture motif but with very different mixture

weight (iii.b). This type of mixture laboratory test represents a dynamic that is also a result

of mixed documentation and clinical reasons but with much heavier weight on the outpatient

component mixing. Most of the population receives triglycerides at 3-month time scales to

assess heart health but a small subset of patients have their triglycerides monitored on a

much shorter time scale, these are ICU patients with feeding tubes. The large portion of

outpatient testing is seen in the triglycerides measurement gap histogram because the peak at

91 days is at a similar height as the peak at 1 day.
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These three laboratory measurement motifs determine how to use different laboratory tests

in EHR research. The tests for which clinical and documentation reasons align (laboratory

tests used almost exclusively for in-patients or outpatients) represent a homogenous set of

contexts, or patient states. Thus, with laboratory tests in motif (i) or (ii), aggregating across

patient values is a safe approach. In contrast, the laboratory tests with the mixed

measurement motifs, might represent several separate patient states (such as patients

receiving triglyceride measurements as outpatient patients and patients receiving triglyceride

measurements as ICU patients). Aggregating patient’s values without separating the

different patient state contexts in a large-scale study may introduce biases. The next section

shows results of selecting patient cohorts by relying on a laboratory test with mixed

dynamics (lipase) and how it impacts disease modeling (acute pancreatitis).

3.3. Task 3: Measurement Patterns Highlight Clinical State

We considered the histograms of measurement dynamics as plots of missing measurements.

We presumed that for laboratory tests in the mixed motif category (iii), the data are missing

not at random and may be informative of the patient’s health state. Following intuition from

Little’s pattern mixture models[33] we hypothesized that different missing data patterns (or

varying gaps between measurements) define different health states.

We explored this idea using lipase and hypothesized that (i) lipase measurement dynamics

indicate two distinct missing values patterns, each representative of a clinical condition,

rather than a documentation state; and (ii) separating the dataset by missingness patterns

(visits with short gaps between measurements vs. visits with long gaps between

measurements) helps recover the association between elevated lipase and the health state of

acute pancreatitis.

3.3.1. Note Types—The note-type analysis indicated a significant difference between the

common note types used in the short-gap and long-gap bins. The note types in Table 1

showed that lipase measurement dynamics can highlight true clinical differences, rather than

documentation differences between inpatient and outpatient visits.

There are note types that are only written during inpatient stays: an admission note, a

signout note during a hospital shift change, and a discharge note. If separating visits based

on lipase measurement dynamics was separating on a purely documentation basis with

inpatient visits in the short-gap bin and outpatients in the long-gap bin, we would expect

these inpatient-specific notes to be exclusively present in the short-gap bin. Instead, there are

more inpatient notes in the longer gap bin but the coverage of inpatient notes is larger in the

0–3 day bin; the signout, admission, discharge account for 14%, 2%, and 1% of the total

note-types, respectively. The long-gap bin contains a large amount of inpatient data

demonstrating that the laboratory test measurement dynamics are able to to isolate visits

based on health not hospital status in the short-gap bin. The note types present in the short-

gap bin are relevant for diseases associated with lipase measurement as well. Elevated lipase

often leads to testing for inflamed pancreas by ordering Ultrasound scans, CT scans, ERCP

or Chest X-Rays. Common note-types for all 4 procedures were significantly more frequent

in the 0–3 gap bin and ranked in the top 10% of Table 1. The results from the note type
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analysis suggest that lipase measurement dynamics are able to separate by patient health

status and find specific visits that more likely pertained to acute pancreatitis events.

3.3.2. Note Content—The words with the largest difference in coverage between the

short-gap and long-gap bins are very relevant to pancreatitis (Table 2): both lipase and

amylase can be used to diagnose pancreatitis, Librium is an anti-anxiety drug often given to

alcoholic patients with withdrawal symptoms, and alcoholic patients often have pancreatitis.

There are more references to “pancreatitis” in the long-gap bin but the normalized frequency

and coverage of the word is much higher in the short-gap bin. This indicates that the notes

written during shorter gaps in measurement are more focused on the pancreatitis diagnosis.

The word “pancreatic” modified “cancer” with a high prevalence in both gaps. This results

from many patients with long-term pancreatic disorders experiencing acute episodes during

their illness. We found that the word “cancer” has a coverage and frequency about 3 times

higher in the long-gap bin than in the short-gap bin.

3.4. Recommendation for EHR Research with Laboratory Measurements

Knowing that acute pancreatitis is associated with high lipase levels, we used the binomial

test to investigate whether separating visits by lipase measurement gaps highlight this

association more prominently. In each setting, we performed a phenome-wide analysis to

see the association between high lipase and ICD-9 577.0 (Acute Pancreatitis).

In the 0–3 day gap setting, the binomial test found the top association to be acute

pancreatitis with an extremely significant Bonferroni corrected p-value of < 1 × 10−234. In

the other two settings (greater than 3 day gap, and no separation by gaps), acute pancreatitis

was also found to be the top association but with a much smaller p-value (Figure 6). The

long-gap setting had the smallest association and therefore the no separation setting also

showed a much lower p-value. These p-value differences demonstrate that signal dilution is

a consequence of ignoring measurement frequency bias during phenome-wide analyses. The

process of binning laboratory values by their gaps between measurements (Table 3) can

reduce confounding by not mixing different patient health states.

Our results also demonstrate the generalizability of this measurement gap separation

method. The measurement bins, created based on lipase measurement dynamics, were able

to differentiate levels of association in other diseases as well. Type II diabetes (which may

reflect clinicians screening type II diabetics with high triglycerides for pancreatitis) and HIV

were differently associated with each setting. Without the lipase measurement-based

separation of visits these disease associations are confounded by the bias of short-term lipase

measurements. Interestingly, the ICD-9 for chronic pancreatitis is similarly associated with

all three settings. The consistency of chronic pancreatitis is from patients having acute

episodes during their chronic illness, conversely, not all acute pancreatitis patients have

chronic pancreatitis. This asymmetry is demonstrated in the association patterns for acute

and chronic pancreatitis.
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4. Discussion

EHR research studies rely heavily on laboratory tests and their numerical values. We studied

how laboratory test’s pattern of measurements may provide additional information to a

laboratory test’s values. We discovered there is very limited correlation between how often a

test is ordered and the value of the test. This lack of correlation implies that the value and

measurement gap are informationally orthogonal to each other and are both important

features to include when looking at laboratory tests, and specifically when using laboratory

tests as features to represent patient disease state. In addition, there is evidence of different

correlation results when examining laboratory test values on different time scales, showing

that temporality plays a crucial role in the use of clinical laboratory test data.

We found evidence that measurement patterns of laboratory tests are dictated by clinical and

physiological knowledge, but often confounded by the healthcare process, such as hospital

documentation practices whether from workflows or guidelines.

One clear artifact of hospital document patterns was revealed by examining the

measurement gap histograms of 70 laboratory tests. Many laboratory test histograms have

peaks at exactly 91 days, although their histogram height is varied. Our hospital serves a

highly captive and sick population of patients in the surrounding neighborhoods. As the

population is sick, 3 month checkups are a common practice and as the population lives

nearby, the general adherence to a strict 3 month (91 day) schedule is high. It is clear that

this 91 day peak is caused by the operations of the hospital and makeup of the population –

not the clinical state of each individual patient. Although this particular healthcare process

bias is specific to our institution, we postulate similar types of biases exist across the country

and should be mitigated before using the EHR-recorded data for research.

Upon cataloguing all 70 laboratory tests we uncovered three types of measurement

dynamics motifs, one which represents “mixed” laboratory tests where clinical factors and

documentation standards are misaligned.

4.1. Separation of Mixed Motif Laboratory Tests by Measurement Pattern Mitigates EHR
Laboratory Bias

Laboratory tests with multiple ordering reasons, such as those used for both diagnosis and

monitoring, present challenges to EHR-based research. When using laboratory values

without accounting for the laboratory test’s frequency of measurement, confounders can

dilute the results of a study. The dynamics of laboratory measurement gaps across a

population can reveal different measurement patterns present in the data; examining the

measurement patterns of a particular test and then performing patient record decomposition

in a strategic manner reduces signal dilution. For example, filtering the full patient cohort by

visits within a particular measurement pattern of missingness will provide a more focused

dataset of patient states.

We demonstrated our method of visit separation through measurement gap analysis on

lipase as a specific use case. Using note types, note content, and ICD-9 codes we showed

that our method could group inpatient visits pertinent to a particular clinical condition (acute
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pancreatitis in our example) away from inpatient visits pertinent to other clinical reasons.

We also performed a secondary analysis to test that separating on hospital status does not

yield the same results as separating by measurement gap. When looking exclusively at

inpatient visits (without accounting for measurement gap), the association between high

lipase and acute pancreatitis was only as high as the “3+ Days” association found using the

measurement gap separation method (Figure 6). Therefore, we infer that the measurement

gap separation method can indeed separate on health status, not simply healthcare process.

The work presented in this paper is highly relevant to researchers working on cohort

identification algorithms, especially with the recent push for more automated ways to

perform high-throughput phenotyping[34, 35, 36]. We present the stratification of an

individual’s medical record by laboratory test measurement frequency as a new conceptual

paradigm for studying EHR data with EHR-recorded laboratory tests.

4.2. Limitations

This study is carried out on a single institution. While the population under study was large,

future work is to replicate these findings on a population from a different institution. We

also acknowledge the limitation of using only one test to demonstrate laboratory test biases,

but we present the lipase and acute pancreatitis association study as a single proof-of-

concept example to exhibit the potential importance of separating laboratory test values by

measurement pattern. Furthermore, the study is limited due to changing hospital

documentation and clinical best practices. These changes may dictate the frequency tests

should be ordered and their purpose (such as the transition from amylase to lipase as the

recommended diagnostic test for acute pancreatitis), leading to variable results across

different time periods. We conducted an informal investigation and found few differences in

dynamics across time periods, although not enough to affect the overall results of the study.

5. Conclusion

For the re-use of clinical data to facilitate novel data-driven informatics research,

understanding salient features and correcting for EHR biases is a necessary step. We show

that surprisingly, there is often little shared information between laboratory test values and

the laboratory test’s rate of measurement in time. Further, measurement patterns are useful

features to use in disease modeling and they can result from a combination of hospital

workflow practices and clinical states. When the clinical and documentation biases are not

in concert (as is often the case with laboratory tests used for multiple purposes), EHR-driven

association studies may produce biased results. We catalogued the measurement dynamics

of laboratory tests into three motifs, one of which which has mixed patterns of measurement

and is prone to biases. Finally, we demonstrate how to control for the biases by

disambiguating patient health states based on laboratory measurement frequency, using the

laboratory test lipase and acute pancreatitis as an illustrative example.
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Refer to Web version on PubMed Central for supplementary material.

Pivovarov et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Acknowledgments

This work is supported by National Science Foundation IGERT #1144854 (RP), National Library of Medicine
award R01 LM06910 (DA), National Library of Medicine award R01 LM010027 (NE), and National Science
Foundation award #1344668 (NE).

The authors are grateful to Dr. George Hripcsak, Dr. Hojjat Salmasian, and Dr. Adler Perotte for their meaningful
discussions and Dr. Janet Kayfetz for her helpful comments, as well as two anonymous reviewers for their valuable
comments on earlier versions of this paper. The authors would also like to thank Dr. David Sontag for the inspiring
discussions about laboratory measurements in the EHR.

References

1. Prokosch HU, Ganslandt T. Perspectives for medical informatics. Reusing the electronic medical
record for clinical research. Methods of Information in Medicine. 2009; 48(1):38–44. [PubMed:
19151882]

2. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE
Network: a consortium of biorepositories linked to electronic medical records data for conducting
genomic studies. BMC medical genomics. 2011; 4:13. [PubMed: 21269473]

3. Wang, X.; Chused, A.; Elhadad, N.; Friedman, C.; Markatou, M. Automated knowledge acquisition
from clinical narrative reports. AMIA Annual Symposium proceedings / AMIA Symposium AMIA
Symposium; 2008. p. 783-7.

4. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. Journal of the
American Medical Informatics Association : JAMIA. 2013; 20(1):117–21. [PubMed: 22955496]

5. Hersh WR, Weiner MG, Embi PJ, Logan JR. Caveats for the Use of Operational Electronic Health
Record Data in Comparative Effectiveness Research. Medical care. 2013

6. Lyon AW, Higgins T, Wesenberg JC, Tran DV, Cembrowski GS. Variation in the frequency of
hemoglobin A1c (HbA1c) testing: population studies used to assess compliance with clinical
practice guidelines and use of HbA1c to screen for diabetes. Journal of diabetes science and
technology. 2009; 3(3):411–7. [PubMed: 20144276]

7. Saxena S, Anderson DW, Kaufman RL, Hannah JA, Wong ET. Quality assurance study of cardiac
isoenzyme utilization in a large teaching hospital. Archives of pathology & laboratory medicine.
1993; 117(2):180–3. [PubMed: 8427567]

8. Weber GM, Kohane IS. Extracting Physician Group Intelligence from Electronic Health Records to
Support Evidence Based Medicine. PLoS ONE. 2013; 8(5):e64933. [PubMed: 23734227]

9. van Walraven C. Population-based Study of Repeat Laboratory Testing. Clinical Chemistry. 2003;
49(12):1997–2005. [PubMed: 14633870]

10. McPherson, RA.; Pincus, MR. Henry’s Clinical Diagnosis and Management by Laboratory
Methods. Saunders; 2011.

11. Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-
CM codes for identifying cardiovascular and stroke risk factors. Medical care. 2005; 43(5):480–5.
[PubMed: 15838413]

12. Farzandipour M, Sheikhtaheri A, Sadoughi F. Effective factors on accuracy of principal diagnosis
coding based on International Classification of Diseases, the 10th revision (ICD-10). International
Journal of Information Management. 2010

13. Chen DP, Dudley JT, Butte AJ. Latent physiological factors of complex human diseases revealed
by independent component analysis of clinar-rays. BMC Bioinformatics. 2010; 11(Suppl 9):S4.

14. Lasko TA, Denny JC, Levy MA. Computational Phenotype Discovery Using Unsupervised Feature
Learning over Noisy, Sparse, and Irregular Clinical Data. PLoS ONE. 2013; 8(6):e66341.
[PubMed: 23826094]

15. Lin JH, Haug PJ. Exploiting missing clinical data in Bayesian network modeling for predicting
medical problems. Journal of Biomedical Informatics. 2008; 41(1):1–14. [PubMed: 17625974]

16. Hripcsak G, Albers DJ, Perotte A. Exploiting time in electronic health record correlations. Journal
of the American Medical Informatics Association : JAMIA. 2011; 18 (Suppl 1):i109–15.
[PubMed: 22116643]

Pivovarov et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



17. Albers DJ, Hripcsak G. A statistical dynamics approach to the study of human health data:
Resolving population scale diurnal variation in laboratory data. Physics Letters A. 2010; 374(9):
1159–64. [PubMed: 20544004]

18. Sagreiya H, Altman RB. The utility of general purpose versus specialty clinical databases for
research: Warfarin dose estimation from extracted clinical variables. Journal of Biomedical
Informatics. 2010; 43(5):747–51. [PubMed: 20363365]

19. Albers DJ, Hripcsak G, Schmidt M. Population Physiology: Leveraging Electronic Health Record
Data to Understand Human Endocrine Dynamics. PLoS ONE. 2012; 7(12):e48058. [PubMed:
23272040]

20. Albers DJ, Hripcsak G. Using time-delayed mutual information to discover and interpret temporal
correlation structure in complex populations. CHAOS. 2012; 22(1):013111. [PubMed: 22462987]

21. Albers, D.; Hripcsak, G. Estimation of time-delayed mutual information and bias for irregularly
and sparsely sampled time-series. 2011. arXiv

22. Cohen R, Elhadad M, Elhadad N. Redundancy in electronic health record corpora: analysis, impact
on text mining performance and mitigation strategies. BMC Bioinformatics. 2013; 14(1):10.
[PubMed: 23323800]

23. Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581–92.

24. Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychological Methods.
2002; 7(2):147–77. [PubMed: 12090408]

25. Farhangfar A, Kurgan LA, Pedrycz W. A Novel Framework for Imputation of Missing Values in
Databases. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
2007; 37(5):692–709.

26. Abdala OT, Saeed M. Estimation of missing values in clinical laboratory measurements of ICU
patients using a weighted K-nearest neighbors algorithm. Computers in Cardiology. 2004:693–6.

27. Hug, CW. PhD thesis. MIT; 2006. Predicting the risk and trajectory of intensive care patients using
survival models.

28. Cismondi F, Fialho AS, Vieira SM, Reti SR, Sousa JMC, Finkelstein SN. Artificial Intelligence in
Medicine. Artificial intelligence in medicine. 2013; 58(1):63–72. [PubMed: 23428358]

29. Albers DJ, Hripcsak G. Estimation of time-delayed mutual information and bias for irregularly and
sparsely sampled time-series. Chaos, solitons, and fractals. 2012; 45(6):853–60.

30. Banks PA, Freeman ML. the Practice Parameters Committee of the American College of
Gastroenterology. Practice Guidelines in Acute Pancreatitis. The American Journal of
Gastroenterology. 2006; 101(10):2379–400. [PubMed: 17032204]

31. Warner JL, Alterovitz G. Phenome Based Analysis as a Means for Discovering Context Dependent
Clinical Reference Ranges. AMIA Proceedings. 2012; 2012:1441.

32. Grundy SM, Bilheimer D, Chait A, Clark LT. Report of the National Cholesterol Education
Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in
adults (Adult Treatment Panel III). JAMA. 1993

33. Little RJ. Pattern-mixture models for multivariate incomplete data. Journal of the American
Statistical Association. 1993; 88(421):125–34.

34. Chen Y, Carroll RJ, Hinz ERM, Shah A, Eyler AE, Denny JC, et al. Applying active learning to
high-throughput phenotyping algorithms for electronic health records data. Journal of the
American Medical Informatics Association : JAMIA. 2013

35. Wei WQ, MM, TaoPhD C, JiangPhD G MD CGC, DrPH. A High Throughput Semantic Concept
Frequency Based Approach for Patient Identification: A Case Study Using Type 2 Diabetes
Mellitus Clinical Notes. AMIA Proceedings 2010. :1–5.

36. Lussier YA, Liu Y. Computational Approaches to Phenotyping: High-Throughput Phenomics.
Proceedings of the American Thoracic Society. 2007; 4(1):18–25. [PubMed: 17202287]

Pivovarov et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. A schematic of a longitudinal record
A single patient’s longitudinal record is divided up into visits (represented here as a set of

notes written during the visit) and visits are binned into short or long gaps with respect to

lipase measurements. For instance, the first and fifth visit are binned as short-gap visits,

because they contain at least two consecutive laboratory test measurements that occur within

a short time period. Visits 2, 3, and 4 are long-gap visits because they occur between two

consecutive lipase measurements that are taken over a longer period of time.
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Figure 2. The measurement gap histogram curve for the lipase laboratory test
The measurement curve is presented on log-log scale as a histogram of the days between

consecutive lipase test measurements for each patient, aggregated across the full population.

We examined the figure visually and found that the pattern in measurement gap frequency

changes at approximately 3 days; after 3 days the histogram curve is nearly linear. We used

3 days as a threshold for separating measurements on a short time scale (0–3 days) from

measurements on a long time scale (over 3 days).
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Figure 3. Density plots of the PDFs (consisting of laboratory values and time between
consecutive measurements) for four laboratory tests shown on the full time scale
The x axis represents the log time to next measurement in days: log(1 hr)=−1.38, log(1

day)=0, log(1 week)=.85, log(1 month)=1.47, log(1 year)=2.56. Each graph shows different

levels of correlation: LDL has no correlation on any time scale as shown by the mostly

round ball, HbA1c has a negative correlation as shown by the L-shape of the curve,

Bicarbonate separates along two time scales while PSA is almost exclusively measured on

the long time scale of over a year between consecutive measurements.
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Figure 4. A Bayesian network describing the two factors that influence a laboratory tests
measurement pattern
The extent to which each factor contributes, changes which motif the test belongs to, thereby

changing how it can be used in research settings. The “mixed in- and outpatient” motif

represents laboratory tests taken across patients with multiple health states. Laboratory tests

with mixed motifs may contribute to biased results when computing over the multiple health

states as one population of patients.
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Figure 5. Representative examples of the three measurement gap motifs identified
Each laboratory test motif is presented on a log-log scale as a histogram of the days between

consecutive test measurements for each patient, aggregated across the full population. (i)

Troponin represents a primarily inpatient laboratory test, with a peak at 0 days and displays

an approximately linear relationship in the coordinate system; (ii) HbA1c is an example of a

primarily outpatient laboratory test, showing a highly peaked distribution around 91 days;

(iii.a) Glucose represents a mixture of in- and outpatient measurements, evidenced by the

complex histogram: a high peak at on a short time scale (less than 10 days) and another peak

at long time scales (multiple months); (iii.b) Triglycerides is another example of mixed

laboratory test dynamics but with a slightly different mixture type: triglycerides has a high

outpatient component and shows two different time scale peaks with a large quantity of

measurements on the long time scale.
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Figure 6. The results of a binomial association test between high lipase and ICD-9 codes
The binomial test was performed in all three settings (short gaps between measurements of

0–3 days, long gaps of more than 3 days, and all visits regardless of gaps between lipase

measurements). The top 20 most significant associations are shown. For illustration

purposes, the ICD-9 codes are sorted by association to high lipase in the 3+ days gap.
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Table 3

The actionable measurement gap separation method for finding and removing a confounding bias in laboratory

test EHR data.

Measurement Gap Separation Method

Step Action Motivation

1 Plot a histogram of the frequency and measurement gap
in log-log coordinates.

The histogram provides a method to visually examine the laboratory tests
measurement dynamics.

2 Examine the modality of the plot; looking for multi-
modality.

If the histogram is multi-modal, it may imply a difference in patient
health states or a healthcare process bias.

3 If there are multiple peaks, define a measurement gap
threshold to separate the peaks.

This separation defines multiple settings for the EHR experiment, creating
sets of homogenous data points with respect to their measurement gaps.

4 Perform the EHR experiment separately for each setting. Separately performing experiments for different settings may remove
confounding bias.
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