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Abstract

Our conceptual model demonstrates our goal to investigate the impact of clinical decision support

(CDS) utilization on cancer screening improvement strategies in the community health care

(CHC) setting. We employed a dual modeling technique using both statistical and computational

modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the

strength of relationship between our proximal outcome measures (CDS utilization) against our

distal outcome measure (provider self-reported cancer screening improvement). Our
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computational model relied on network evolution theory and made use of a tool called Construct-

TM to model the use of CDS measured by the rate of organizational learning. We employed the

use of previously collected survey data from community health centers Cancer Health Disparities

Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a

computational modeling tool in conjunction with a statistical analysis when evaluating the impact

a health information technology, in the form of CDS, on health care quality process outcomes such

as facility-level screening improvement. Significant simulated disparities in organizational

learning over time were observed between community health centers beginning the simulation

with high and low clinical decision support capability.
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1. Introduction

According to the National Cancer Institute (NCI), an estimated 1,660,290 people in the

United States were diagnosed with cancer in 2013, and, of these, 580,350 are expected to die

of cancer [1]. Current estimates as to the number of these deaths that could have been

avoided through screening vary from 3% to 35% depending upon assumptions regarding

disease progression, prognosis, and environmental and lifestyle factors [2]. Three types of

cancer screening—(1) the Pap test for cervical, (2) the mammography for breast, and (3) a

battery of tests for colorectal cancer screening—have been found to detect cancer in its early

stages and improve survival rates [3–11]. In spite of increased screening rates, Rutten et al.

report that colorectal cancer screening rates found in their research lagged behind both Pap

tests and mammography screenings [12]. Colorectal cancer screening performance rates are

based on national guidelines and evidence-based best practices [3, 5, 13]. The American

Cancer Society and the U.S. Preventive Services Task Force recommend that people over

Age 50 be screened for colorectal cancer, that women over Age 40 receive annual

mammograms, and that women be administered a Pap test at two-year intervals beginning

either at the onset of sexual activity or at Age 21 [4, 14]. Although guidelines for the Pap

test have been available since 1997, barriers to screening remain [12].

Several strategies to improve systems-level cancer screening rates employ evidenced-based

practices (EBP) [15]. Clinical decision support (CDS) has been particularly effective in

achieving greater levels of health care EBP. In randomized controlled trials, 90% of

clinician-directed CDS interventions display significantly improved patient care [15, 16].

However, few studies exist that show the impact of clinical decision support and information

system (IS) applications—designed specifically to aid in meeting EBP guidelines and

performance benchmarks—on community health center (CHC) colorectal, breast, and

cervical cancer screening practices [17].

According to the February 2010 Patient Protection and the Affordable Care Act, CHC’s play

a critical role in providing quality care in underserved areas and to vulnerable populations

[18]. About 1,250 CHC’s currently provide care to 20 million people at more than 7,900
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service-delivery sites, with an emphasis on preventive and primary care [18, 19]. At least

one CHC is located in every U.S. state, the District of Columbia, Puerto Rico, the U.S.

Virgin Islands, and the Pacific Basin [19]. Slightly more than half, or 52%, of these centers

serve rural America, with the remainder serving urban communities [19]. Over 45% of CHC

patients participate in Medicaid, Medicare, CHIP (Child Health Insurance Protection), or

some other form of public insurance, and nearly 40% are uninsured [19].

The Health Disparities Cancer Collaborative (HDCC) was a quality-improvement program

designed to increase the cancer control activities of screening and follow-up among

underserved populations. It operated from 2003 to 2005 among CHC’s supported by the

Health Resources and Services Administration (HRSA) and National Cancer Institute (NCI)

to serve financially, functionally, and culturally vulnerable populations [20, 21].

A sampling of 44 CHC’s were chosen to examine organizational structure, level of

implementation of Chronic Care Model components, and contextual factors (e.g., teamwork

and leadership) [22, 23]. The 2006 HDCC survey administered to community health centers

captured organizational factors, patient characteristics, and provider characteristics that

affected cancer screening quality outcomes. The survey respondent categories included (1)

director (CEO) role, (2) chief financial officer (CFO) role, (3) provider (physicians, nurses)

role, (4) general staff (e.g., lab, pharmacy, etc.) role, and (5) informatics officer (CIO) role.

Topics such as clinic processes, management strategies, community outreach, information

systems, leadership, and teams were explored. In an earlier study [24], we identified 99

unique questions and grouped them into 37 summary measures based on internal advisory

team and subject matter expert recommendations. We calculated a consensus score for each

of the 44 community health centers on each summary measure. The conceptual model—a

modified Zapka framework henceforth referred to as the Zapka et al. framework [25–27]—

outlines the complete list of summary measures, their respective categories (e.g.,

organizational, patient, or provider), and the overall study design (see Figure 1).

We employed two types of modeling in this secondary analysis of the NCI/HRSA HDCC

survey data. Through empirical statistical modeling, the impact of clinical decision support

use on cancer screening quality outcomes was examined reflected in the relationship

between our proximal and distal outcomes. Then, computational modeling was used to

examine the same phenomenon over a ten-year simulated period and generate hypotheses

about CHC cancer screening behaviors in presence of CDS.

2. Rationale for a Dual Modeling Approach

Since the American health care system is layered, “build[ing] a research foundation that

acknowledges this multilayer world” [28] is essential, and traditional modeling methods

may fail to adequately capture its complexity. Further, practices inconsistent with evidence

persist since evidence-based innovations are not readily accepted, and new technologies

require 17 years on average to become widely adopted [28].

Recognizing these limitations, the National Cancer Institute and the Institute of Medicine are

now encouraging a systems-thinking approach, which the NIH’s Office of Behavioral and

Social Sciences Research (OBSSR) defines as follows:
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Systems-thinking (systems-science) is an analytical approach that addresses a

system and its associated external context as a whole that cannot be analyzed solely

through reduction of the system to its component parts. Systems science

methodologies provide a way to address complex problems, while taking into

account the big picture and context of such problems. These methods enable

investigators to examine the dynamic interrelationships of variables at multiple

levels of analysis (e.g., from cells to society) simultaneously (often through causal

feedback processes), while also studying the impact on the behavior of the system

as a whole over time [29].

One methodology available for investigating and analyzing complex systems is

computational modeling, which employs computer-based simulations, probabilistic models

of systems or processes that emulate and so predict real-world behavior under varying

assumptions and conditions. Simulation analyses provide a basis for developing hypotheses

which can then be tested in actual intervention studies and/or technology implementations

[30]. Computational modeling is becoming an increasingly trusted tool for analyzing

complex, dynamic, adaptive, and nonlinear processes. By permitting investigation of their

functioning, it addresses questions that traditional statistical methods alone cannot.

Groups, teams, organizations, and organizational command and control architectures [30]

comprise one type of system to which computational modeling is being applied in order to

discover new concepts, theories, and knowledge about them. Group or team behavior

emerges from interactions within and between the agents or entities which comprise it. Not

only humans but also objects, locations, methods, knowledge, and motivations may be

considered as agents or entities making up such a system. Identifying key factors that

contribute in varying degrees toward both individual and group-level actions is an important

objective of such exploration [30].

In this study, a single point-in-time HDCC survey of CHC cancer screening practices was

considered insufficient evidence to demonstrate the extent to which (1) the utilization of

CDS impacts facility-level cancer screening improvement and (2) the 37 summary measures

(i.e., organizational and/or practice factors, patient characteristics, and provider

characteristics), singly and/or in interaction, contribute to continued CDS utilization over

time. Therefore, we selected computational modeling to incorporate systems-thinking into

this study.

The computational model’s main performance measures are the rates at which knowledge is

acquired and at which learning subsequent to the acquisition of knowledge occurs. These

learning rates are evidenced by (1) by the level of efficiency the model’s agents

(organizations, roles, or objects) demonstrate in performing cancer-screening-specific tasks

following the introduction of CDS and (2) the extent to which these agents utilize a set of

defined knowledge resources designated as critical to overall community health center

(CHC) cancer screening performance. Within the computational analysis portion of this

study, CHC cancer-screening performance can be viewed as a function of task performance

and knowledge absorption over time and will be referred to as delta k (Δk).
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3. Methodology

3.1. Statistical Model: Assessing the Impact of CDS on Cancer Screening in Community
Health Centers

Each community health center received a composite score on each of the 37 summary

measures describing the community health center cancer screening practices (e.g.,

organizational and/or practice setting, provider characteristics, and patient characteristics).

All of these 37 measures were used to describe overall CHC organizational behavior and

also informed the construction of our “virtual” CHC used in the computational modeling

section. The two outcome measures were used to determine the health center relative

performance rankings ranging from high to low on each measure. Each health center was

ranked based on the number of CDS components the facility had in use at the time of the

survey, ranging from 0 to 4 for having none, one, two, three, or all four of the CDS

components, respectively (e.g., (1) capacity of information systems to measure cancer

screening, (2) use of provider prompts at point-of-care, (3) use of clinical reminders, and (4)

ability to generate electronic correspondence to patients). In our model CDS “performance”

was directly related to the CDS score. The facilities were also be ranked based on their

performance for the 12-month provider self-reported cancer screening improvement scores

from 0 to 3, where “0” represented self-reported improvement in none of the areas of breast,

cervical, and colorectal cancer; “1” represented self-reported improvement in only one of

those areas; on up to having provider self-reported improvement in all three areas. In our

model cancer screening “performance” was also directly related to this score. The

computational modeling exercise made use of these same two rankings to form a

performance matrix and grouped the 44 CHC’s into categories of high performers vs. low

performers. This portion of the study will be discussed in detail in the computational

modeling methods section below.

3.1.1. Independent Measures—Four separate types of CDS were used in the study in

the design a single composite construct to represent community health center activity. The

first variable was labeled as the Capacity for Measuring Cancer Screening through CDS.

Respondents indicated (yes/no) whether their health center’s computer system had the

capacity to measure cancer-screening activities. Cancer Screening Activity was

operationally defined in the survey to include providing timely notification of screening

results, timely completion of additional diagnostic testing after abnormal screening results, a

timely beginning of treatment, and documenting discussions about cancer screening [31]. A

second and third independent variable measured (yes/no) whether provider prompts were

used at the point-of-care and whether (yes/no) computerized patient reminders were in use at

their health center, respectively. A fourth independent variable measured (yes/no) whether

their facility could generate correspondence through the information system that reports

cancer screening results to patients.

Consistent with the Chronic Care Model, the first three of the four components of the

composite independent variable were labeled as clinical decision support (CDS) activity,

and the fourth of these dependent variables was considered information systems (IS)

activity. We used CDS to represent the composite construct of CDS/IS as defined by the
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Chronic Care Model. A score of “0” or “1” was assigned to each of the four CDS

component independent variables for each facility. Each community health center was then

given a composite score for overall CDS level of use ranging from 0 to 4 for having none,

one, two, three, or all four CDS present in their health center.

3.1.2. Dependent Measures—Each community health center responded to the survey

item asking providers if their facility had achieved cancer screening improvement over the

preceding 12-month period in their facility-level colorectal, breast, and/or cervical cancer

screening. The 12-month cancer screening improvement composite score/ranking (0 to 3)

represents improvement in no area, only one area (breast, cervical, or colorectal cancer

screening), two areas, or all three areas targeted in the Community Health Center Health

Disparities Cancer Collaborative.

3.1.3. Modeling Approach—Spearman’s Rho Coefficient was employed to test

association for CDS intensity-of-use and 12-month cancer screening improvement scores.

This correlation is designed to test the strength of relationship between CDS use and cancer

screening self-reported improvement. This measures the relative unit increase in CDS use

ranking/scores and that of cancer screening improvement ranking/scores. Spearman’s Rho

Correlation Coefficient reveals direction and strength of the relationship. Assuming a 0.05

significance level and 44 observations, a bivariate correlation of .41 will result in a power

of .80 for testing the bivariate association between CDS intensity-of-use on cancer screening

performance within health centers.

3.1.4. Statistical Model Results—At ρ = −0.103, the calculated Spearman’s rank

correlation coefficient between ranked facility-level number of CDS components and self-

reported 12-month cancer screening improvement scores for colorectal, breast, and/or

cervical cancer screenings was not statistically significant (p = 0.513) as seen in Table 1.

Therefore, no measurable association between CDS level of use and cancer screening

improvement within the CHC setting was assumed.

3.2. Computational Model: Assessing the Impact of CDS on Cancer Screening in
Community Health Centers as a function of learning rates by performance levels

3.2.1. Rationale for Using Construct-TM to Model Community Health Center
Cancer Screening Performance—The phase of the study presented herein was a

further exploratory analysis designed to discover hidden relationships and generate

hypotheses concerning the contributions of model antecedents—defined in the context of

this phase of the study as agents, tasks, knowledge, or beliefs—on community health center

CDS intensity–of–use and cancer screening practices. It employed a series of probabilistic

simulations.

To conduct the simulations comprising the second phase of our study, we selected

Construct-TM, a multi-agent computational model designed to simulate the co-evolution of

agents and socio-cultural environments [32]. It was developed by Computational Analysis of

Social and Organizational Systems (CASOS), and, like other CASOS applications,

Construct-TM incorporates network theory [30, 33–36].
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The TM in Construct-TM’s name references the model’s inclusion of transactive memory,

the ability of model entities “to know and learn about other members of the group” [36].

Simulated “individuals and groups” within Construct-TM “interact to communicate, learn,

and make decisions in a continuous cycle” as they do in real-world organizational structures.

“Social, knowledge and belief networks co-evolve” through this process. Reflecting the

transactive nature of real-world constructs, Construct-TM can therefore be described as “a

multi-agent model of network evolution” [36].

Construct-TM is specifically designed “to capture dynamic behaviors in organizations with

different cultural and technological configurations, as well as model groups and

organizations as complex systems” [32]. Carley et al. explains that Construct-TM is useful

in this kind of analysis “due to its ability to manipulate heterogeneity in information

processing, capabilities, knowledge, and resources revealed organizational settings,” and in

doing so Construct-TM is better able to capture “the variability in human, technological, and

organizational factors” [32]. The CHC data obtained in the NCI/HRSA HDCC

organizational survey results fit this description [31]. Further suiting it to the modeling of

this data, Construct-TM employs as agents decision-making units representing several levels

of analysis—individuals, tasks, groups, and firm–level [32]. This study employed a specified

subset of Construct-TM capabilities and is intended as a demonstration or proof-of-concept

in the eventual use of network evolution methodology in the areas of technology use and/or

adoption, cancer-related outcomes research, and health information technology applications

development.

According to Carley, Construct-TM can employ any or all of three models—(1) the standard

interaction model, (2) the standard influence model, and (3) the standard belief model [37,

38]. This study relied heavily on the standard interaction model because summary measures

such as senior leadership, clinical leadership, and team activities are assumed responsible for

the CHC values, beliefs, and attitudes that modify agent behavior and contribute to the

within-CHC exchange of knowledge on health center cancer screening performance,

strategies, and priority areas. This study also extensively employed Construct-TM’s standard

influence model because summary measures related to provider perceptions, cancer

screening reporting behaviors, delivery system design, outside collaboration, and quality-

improvement strategies are assumed to shape the extent to which an agent can be influenced

by others within the health center environment. Since the summary measures provided

limited knowledge of the derivation of belief weights and their respective alterations, use of

the standard belief model was minimal.

In the model formulation, two principles were assumed to govern behavior of CHC agents.

One was homophily, the degree to which they were drawn together by particular domains of

expertise, activity, or set of organizational practices; this was viewed as a critically

important driver of interaction in the simulated network. The principle of influenceability,

the degree to which agents are influenced by others, was also seen as critical in shaping

agents’ behavior over time within the simulated CHC environment.

Carney et al. describe the staging of the data for input into Construct-TM, as well as details

on the modeling methods, task definitions, knowledge definitions, and performance level
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descriptive statistics [39]. The focus of this manuscript will be on the comparative results of

the two types of modeling used in this dual modeling experimental design.

Each HDCC survey summary measure was converted into one of four representative

Construct-TM categories (i.e., agent, task, knowledge, or belief) in a process not unlike that

Effken et al. employed in their analysis using another CASOS tool developed by Carley et

al. and called OrgAhead to map nursing quality categories (i.e., organizational

characteristics, patient characteristics, patient outcomes, and patient unit characteristics) into

the simulation tool [40, 41]. As such, each of the 37 HDCC survey summary measures in

this study would be assigned an identity from among one of the following: a representation

of knowledge, a task, an agent, or a belief. We used a subset of the 37 measures to more

specifically represent the cancer screening test agent used in our simulation (as see in Table

3 below). This corresponding identity would consist of a set of formalized definitions and

parameters governing its behavior throughout the simulation. These mappings were guided

by the internal advisory team and subject matter experts.

This study design allows for multiple scenarios to be tested under varying and virtually

limitless conditions. To generate new hypotheses about a given phenomenon, trial and error

would seem to be an obvious but possibly fruitless approach. However, Carley et al. stress

the value of the more dynamic hypothesis-generating methods made possible by

computational models in building new concepts, theories, and knowledge about complex

systems [30]. They postulate the existence of some simple but nonlinear process underlying

individual, team, group, or organizational behavior [30] that computational modeling can

reveal but that basic tests of statistical associations may not. Thus, applying a computational

model to point-in-time survey data—not originally designed to inform network analysis—

such as that used in this study allows analysis beyond the original intent motivating the

survey and provides almost limitless possibilities for exploratory analysis.

3.2.2. The Computational Modeling Process—Our computational modeling process

included two steps. The first involved grouping the community health centers based on the

conceptual model’s two major outcomes—CDS community health center intensity–of–use

(its chief proximal outcome) and facility-level breast, cervical, and colorectal cancer

screening improvement (its chief distal outcome). The statistical model treated these as two

separate measures and employed their rank correlation to measure the strength of their

relationship. In that analysis, the correlation served as a proxy to measure overall impact of

CDS on cancer screening improvement.

For use in the computational model, we assigned a composite performance level to each

CHC based on its location in the graph shown below. The CDS intensity–of–use measure,

ranging from 0 to 4, forms the matrix x-axis, and the cancer screening improvement score,

which can range from 0 to 3, forms its y-axis. The resulting matrix was divided into high,

medium, and low regions for each measure. A CHC could then be assigned a qualitative,

two-part coordinate based on its position, and this coordinate formed the unit of analysis of

the virtual CHC’s within Construct-TM. Figures 2 and 3 display the distribution and plot

matrix of CHC’s within this qualitative measure, respectively.
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In the second step, Construct-TM’s virtual health centers were parameterized using the

normalized HDCC survey responses to each of the 37 summary measures (i.e.,

organizational, patient, and provider level factors). CHC behavior by performance level was

determined by the survey questions’ possible values and their corresponding observed

frequencies.

As previously mentioned we assigned each of the 37 summary measures to one or more of

Construct-TM’s four categories—agent, task, knowledge element, and/or belief—from the

HDCC survey respondents’ perspective or that of one of the defined agent classifications.

Within the Construct-TM model, an agent is an entity to whom knowledge can be

communicated. The following summary measures from the HDCC survey data were

interpreted as knowledge communications to cancer screening agents: (1) work importance

of cancer screening tests, (2) provider-level cancer screening rate reporting behavior, (3)

facility-level cancer screening rate reporting behavior, (4) patient demographics-patient age,

and (5) patient demographics-patient language. Table 2 lists variables from among our 37

summary measures, along with the key assumptions we used in our simulation to inform the

“cancer screening test (CST) agent” classification. The selection of these variables to

described agent behavior was done in conjunction with the internal research advisory team

and subject matter experts informing the simulation design. The purpose of this study was to

examine CST agent as it was projected to be influenced by CDS exclusively for comparison

with our Spearman’s Rho test. Our companion manuscript highlighted the use of all five our

agent classifications including provider perspective, administrator perspective, collaborator

perspective, health information technology perspective, and CST perspective [39].

The final step was to complete the transformation of the HDCC survey data for input into

Construct-TM. We created an Excel Spreadsheet Code Generator developed by

programmers at CASOS to input our variables, assumptions, and definitions that were then

automatically converted into Construct-TM XML coded input deck. Information input into

the model in mathematical form consisted of (1) a glossary of the simulation’s variables, (2)

agent, knowledge, and task definitions, (3) definitions of model nodes, to which simulation

entities are assigned, and (4) types of networks to be used. For more details on this facet of

the study please see our companion manuscript [39]

3.2.3. Computational Model Results: Ten-Year Performance of Cancer
Screening Agent Simulation—Twenty-five runs were conducted on each of the five

performance level groupings. The two-part performance levels, displayed in Figure 2, were

derived from high, medium, and low levels of the two variables, CDS intensity–of–use and

cancer screening improvement. The simulation’s measure of interest was the group cancer-

screening agent’s rate of knowledge absorption over time, referred to as delta k (Δk). Figure

4a–e shows the results for each individual performance level and Figure 5 displays the group

mean Δks calculated from 25 simulation runs over a 10-year period.
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4. Dual Modeling Discussion

4.1. Statistical Model: On tests of statistical significance as a means of impact

Our statistical analysis did not demonstrate any significant association between facility-level

rankings for intensity-of-use of CDS and the rankings of facility-level provider self-reported

cancer screening improvement scores within health centers. This study’s finding was

consistent with the mixed results of previous studies that did not always demonstrate a

significant relationship between HIT of any kind and health outcomes in general, and cancer

screening, in particular [42–44]. There may also be additional human, organizational, and/or

socio-technical factors that confound the relationship between CDS and cancer screening

[45] that were not measured in the current study. High-yield targets for future interventions

or studies would include human factors analysis (e.g., computer interface issues), as well as

facility, and/or provider-level incentive programs [46–48]. Our use of the computational

modeling in tandem with this statistical analysis was intended to generate hypotheses and

explore alternative ways of examining the same set of factors in explaining overall

performance.

4.2. Computational Model: Viewing the Community Health Center as a Learning
Organization

The virtual experiments that these simulation runs represented were intended to predict

relative change of a CHC’s performance level of group knowledge absorption over time,

termed its delta k (Δk). In the simulation, the cancer-screening agent’s Δk, evaluated with

respect to the CDS task and its corresponding set of knowledge-exchange opportunities

only, was captured at 520 intervals, representing weeks in a 10-year period. We

hypothesized that the original scores used to designate high-performing CHC’s would be

associated with relatively higher rates of knowledge absorption Δk than the scores

designating low-performing firms over the 10-year period.

Previous studies identified metrics for organizational learning and described them in terms

of clinical “know-how” [49], collective intuition [50], and overall organizational learning

and/or organizational intelligence [51–54]. The findings derived from these simulations

were consistent with previous studies that argued the following: (1) Organizations change

over time; (2) a positive correlation exists between the rate of organizational learning and

some measure of performance/success; (3) health information technology used in support of

cancer outcomes should take into account the learning required to improve organizational

capability; and (4) the health care facility should be viewed as a complex adaptive

environment [51, 52].

4.3. Ten-Year Performance of Cancer-Screening Agent Simulation

The stark contrast in rate of knowledge absorption between high- and medium-CDS groups

on the one hand and low-CDS groups on the other is demonstrated by the relative steepness

in slope of the former’s averages charted over time. Further, the rate of knowledge

absorption with respect to cancer screening improvement within the two clusters showed

greater intra-cluster than inter-group consistency. Figure 5 reveals two clearly distinct
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knowledge-absorption performance subgroups—high-level performers (e.g., HH, MH, and

HL) versus low-level ones (e.g., LL, LH).

Through task knowledge’s impact on performance, this simulation and succeeding analysis

of its results examined the cancer-screening agent’s knowledge absorption when CDS was

in use to support cancer-screening activities over the 10-year or 520-week period. Observing

the 25-run, weekly average Δk of its cancer-screening agent for each of the five CHC

performance levels simulated over a 10-year period revealed two major performance-level

clusters with respect to knowledge absorption over time, or Δk. Specifically, these agents

fell into sets of either high or low performers based solely on Δk over the 10-year period.

This clustering effect was in addition to their original designations at the start of the

simulation. The clustering observed at the simulation’s conclusion was based solely on Δk

and represented a distinct difference in low and high performers with regard to this metric.

Two observations regarding this clustering effect are noteworthy.

First, those firms ranking higher for CDS use at the simulation’s start belonged to the high-

Δk cluster at its end, and firms marked lower at its start belonged to the low-Δk cluster at

simulation end. Specifically, member firms ranked low in CDS utilization at simulation start

and so classified as LL or LH were found to be members of the low-Δk performance cluster

at simulation end. Members of the high-performing levels, rated as medium or high with

respect to CDS utilization, were observed to be members of the high-Δk performance cluster

at simulation end. The finding of a positive correlation between original performance level

rankings with respect to CDS utilization and the 10-year Δk was consistent with previous

findings that differentiated performance levels for HIT use in support of clinical outcomes

into groups of high performing and low performing medical groups [55].

This clustering effect was also observed with regard to the second metric used in our initial

classification by performance level—cancer screening improvement with respect to breast,

cervical, and colorectal cancers. Within this category, opportunities for knowledge sharing,

learning, and exchange also existed, and those CHC’s ranked higher in cancer screening

self-reported improvement at simulation start also showed simulation-end clustering by level

of knowledge-absorption proficiency Δk.

Second, not only was the amount of variation observed between the high- and the low-Δk

clusters itself dramatic in its size, but there existed much more variability between the two

clusters than was observed between the individual members of each cluster. In fact, the Δk’s

of the high/high and high/low CHC’s were almost indistinguishable at the end of Year 10,

and the medium/high CHC’s’ Δk’s were extremely close in size to theirs. In the low-Δk

cluster, the low/low CHC’s presented at the bottom with the lowest 10-year Δk, and the

CHC’s ranked low/high displayed only a slightly higher 10-year Δk. These findings were

consistent with those observed in previous research where a positive correlation between the

rate of organizational learning and some measure of performance/success was asserted [51].

These findings were consistent with studies that measured the concepts of organizational

intelligence, intuition, and clinical “know-how,” all of which represent varying ways of

measuring organizational learning over time [49, 50]. Specifically referencing clinical
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“know-how” and discussing its relationship to quality, efficiency, and safety in clinical care,

Anderson et al. found that clinical decision support contributes to it positively [49]. A

closely related concept is intuition. Salas et al. suggested that “decision-task” and “decision-

environment” are part of an overall understanding of intuition within an organization [50].

This study used Δk as an overall measure of the virtual community health center clinical

know-how and the related concept of intuition and as a metric of overall organizational

learning over time. Defining a concrete measure consistent with clinical know-how and/or

organizational intuition that would serve as their proxy in distinguishing high-learning

organizations from low-learning ones over a 10-year period was this study’s intent. Thus,

study results are consistent with the notion put forth by Feifer et al [51], that a correlation

exists between the rate of learning, as measured in this simulation by Δk or rate of

knowledge absorption, and performance, as measured by its proxies CDS use and cancer

screening self-reported improvement scores for breast, cervical, and colorectal cancer. The

value added-benefit of including a computational model to this study was (1) we were able

to successfully simulate a correlation between the use of CDS and cancer screening

performance where a statistical model showed no such correlation, (2) we successfully built

this model on a point-in-time data source that represented a “snap shot” and project

performance over an extended period of time, and (3) by projecting high vs. low

performance into the future, we were able to identify parameter boundaries for each of these

37 summary measures to inform continued monitoring and tracking of performance meeting

long-term health care quality objectives.

Conclusions

Combining statistical and computational models to create a dual modeling approach can be

essential to defining critical associations with respect to clinical decision support outcomes

and cancer screening improvement. This approach allows associations that can successfully

predict high performance versus low performance over an extended period of time to be

tested in a virtual environment. Riegelman et al. suggest that systems-thinking is understood

by contrasting it with the traditional (i.e., statistical modeling) [56]. Although the

computational modeling portion of the research can be considered as a hypothesis-

generating exercise, it can also be viewed as a hypothesis test in its own right, where the

hypothesis being tested was that measurable change in knowledge absorption Δk over time

by performance level occurs with respect to cancer screening and CDS use. Since the

model’s high-performing CHC’s exhibited a correspondingly higher rate of knowledge

absorption over a simulated 10-year period than did low-performing ones, study results

supported this hypothesis.

Despite varying evidence showing that CDS can have positive impacts on clinical and

process performance measures our study was unable to duplicate this using statistical tests of

correlation. However, in the construction of a “virtual experiment” using computational

modeling methods, network theory, and simulation we were able to take the same data and

examine the relationship in different way. We contextualized the variables of CDS and

cancer screening on the basis of performance and learning as a means to more closely

examine the potential impact of CDS on cancer screening behaviors. Our assumption was
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that the use of CDS should improve performance of the cancer screening task, and that such

performance improvement should be measured in the rate of knowledge absorbed through

the interactions among agents in the network. We successfully demonstrated through our

computational models that the level use of CDS and its correlate cancer screening

improvement score, indicated by performance level at the start of our simulation, were both

highly associated with increased rates of learning. Thus, one critical hypothesis generated

from our study is that impact studies of HIT such as CDS on clinical and organizational

outcomes might be better observed in the context of agent learning (expressed as knowledge

absorption) related to task performance. Our study contributes by providing evidence of the

value of this dual modeling design.

Limitations

In terms of the statistical model we were challenged by the use of the provider self-reported

cancer screening improvement scores as opposed to the actual facility-level cancer screening

rates. Self-reported screening improvement may be subject to reporting bias. Prior research

indicates that patient’s reports of cancer screening may overestimate the receipt of screening

[57]. However, the question was asked here of all community health centers participating in

the organizational survey, and thus, it is unlikely to be biased with respect to any particular

factor tested in the statistical or computational models. Furthermore, primary care practices

are subject to multiple performance measurement and quality improvement programs related

to screening and prevention and so it is quite possible that the community health centers

surveyed here have internal data to inform their answer to these questions. On the other

hand, this organizational survey did not represent a quality improvement tool itself, and no

financial incentives were delivered based upon the performance described in these self-

reports. For this reason, there is no particular motivation for providers to inflate their reports

of screening behavior. Prior studies of clinical vignettes have demonstrated that individual

health care providers self-reported clinical behavior is commonly consistent with clinical

practice as assessed by medical record review [58, 59].

In terms of computational model, limitations revolve around volume, model applicability,

and validation. Any simulation benefits from rich, robust, and exhaustive data. Increases in

data available to support assumptions translate into a more robust simulation model. The

current study’s computational analysis had only 37 summary measures as primary inputs.

Greater availability of data will benefit future research.

Because this study represented a tradeoff between model generalizability and applicability

on the one hand and narrow focus on the cancer screening test agent on the other, choice of

the set of summary measures used to define each agent’s behavior was rigorous and

dramatically limited the number of ways in which the agent learned, interacted, and evolved

within the simulation. Future research may employ less rigid criteria for inclusion of

variables and/or a more sophisticated algorithm capable of testing all or any combination of

variables.
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Finally, the current study did not include external validation of the simulation model. Future

studies designed solely to validate this network evolution model as a methodological

framework that can be deployed on a larger scale are warranted.
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Highlights

• We measure CDS impact on cancer screening using statistical and simulation

models

• Tests of statistical significance alone do not reveal dynamic changes over time

• High performers for CDS use and cancer screening learn faster than low

performers

• Knowledge absorption rate provides a metric to quantify organizational learning

• Computational modeling aids in the assessment of CDS impact on cancer

screening
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Figure 1. Conceptual Model
Phase 1 – Tested Presence & Level of Use of CDS in Community Health Center (Statistical

Model)*

Phase 2 – Tested Impact of CDS on Cancer Screening (Statistical Model)

Phase 3 – Computational Model of Phase 2 and other network factors impacting6 Cancer

Screening Virtual Experience**

*results of Phase 1 published in separate manuscript

**Phase 3 published in two separate manuscripts
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Figure 2.
Basis of performance level assignment to community health centers

*No health centers were assigned to permutations not shown (e.g., HM, MM).

**Since only one health center occupied this level, Medium/Low was not included in the

final analysis.
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Figure 3.
HDCC performance level grid
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Figure 4.
Figure 4a–e: Performance Level Runs to test Knowledge Absorption of Cancer Screening

Test Agents on CDS Tasks Only x 10yrs
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Figure 5.
All CHC performance Level 10-year Comparison of Means
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Table 1

Statistical Model Results of Impact

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

YCDS YCSI

YCDS 1.00000 −0.10347

Community Health Center CDS Use Ranking p=0.5143

Scores (0 to 4) 44 42

YCSI −0.10347 1.00000

“Community Health Center Provider Self-Reported Cancer Screening Improvement p=0.5143

Rankings (0 to 3) 42 42
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Table 2

List of Cancer Screening Test Agent Variables and Assumptions

Agent Categories Task Knowledge Impacting
Performance is Informed by:

Knowledge Absorption (Homophily
Knowledge) is Informed by:

Rationale and/or Assumptions

Cancer Screening
Test (CST)

• Clinic Processes

• Delivery System
Design for Cancer
Screening

• CDS Practices

• Information
Dissemination
Strategies

• Work Importance of Cancer
Screening Tests

• Cancer Screening Rate
Reporting Behavior Provider
Level

• Cancer Screening Rate
Reporting Behavior Facility
Level

• Patient Demographics

– Patient Age

– Patient Language

• Cancer Screening Test
(CST) Represents a Non-
human Agent

• CST Agent is active all the
time

• CST Agent can be
interacted with only by
Patient Care Agents

• CST Agent cannot initiate
interaction
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