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Abstract

Purpose To determine whether there are

differences in retinal vascular oxygen

saturation measurements, estimated using a

hyperspectral fundus camera, between

normal eyes and treated eyes of subjects with

asymmetrical primary open-angle glaucoma

(POAG).

Methods A noninvasive hyperspectral

fundus camera was used to acquire spectral

images of the retina at wavelengths between

556 and 650 nm in 2-nm increments. In total,

14 normal eyes and both eyes of 11 treated

POAG subjects were imaged and analyzed

using algorithms that use the spectral

variation of the optical densities of blood

vessels to estimate the oxygen saturation of

blood within the retinal vasculature. In the

treated POAG group, each of the eyes were

categorized, based on the mean deviation of

the Humphrey visual-field analyzer result, as

either more-advanced or less-advanced,

glaucomatous eyes. Unpaired t-tests (two-

tailed) with Welch’s correction were used to

compare the mean oxygen saturation between

the normal subjects and the treated POAG

subgroups.

Results In less-advanced and more-

advanced-treated POAG eyes, mean retinal

venular oxygen saturations (48.2±21.6% and

42.6±18.8%, respectively) were significantly

higher than in normal eyes (27.9±9.9%;

P¼ 0.03 and 0.01, respectively). Arteriolar

oxygen saturation was not significantly

different between normal eyes and treated

POAG eyes.

Conclusions The increased oxygen

saturation of the retinal venules in advanced-

treated POAG eyes may indicate reduced

metabolic consumption of oxygen in the

inner retinal tissues.
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Introduction

It is currently acknowledged that in glaucoma,

the inner retinal layer is the site of primary

damage manifested by retinal ganglion cell

(RGC) death.1 Raised intraocular pressure is the

most important risk factor for glaucomatous

RGC loss, but hypoxic stress, possibly as a result

of blood-flow abnormalities, in the tissues of the

optic nerve head and retina may also have a role

in the pathogenesis of glaucoma.2–4 Regardless

of the underlying mechanism of damage,

measurements of tissue or, indirectly, intra-

vascular oxygenation could be an informative

method of determining the metabolic function

of optic nerve and retina in glaucoma.

Measurements of oxygen tension overlying

the optic nerve and retina have been reported in

numerous animal studies;5–9 however, the

technique involves the intraocular insertion of

microelectrodes which is technically demanding

and invasive. Phosphorescence imaging has

been performed in experimental glaucoma in

animals,10,11 but requires the injection of a bolus

of an oxygen chemical probe whose safety in

humans has yet to be determined.
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Spectrophotometric techniques are currently the

commonest noninvasive means of measuring the oxygen

content of the retinal vasculature, retina, and optic nerve

head. Studies using various retinal oximetry devices to

measure the oxygen saturation of the retinal vasculature

in glaucoma have been reported.12–20

Hyperspectral imaging combines spectroscopy with

digital imaging whereby spectral data (using numerous

contiguous wavelengths of light) are obtained in every

pixel of an image plane. An oximetry study of the retinal

vascular network using a hyperspectral imaging system

(images acquired using more than three contiguous

wavelengths) in glaucoma has not yet been reported. We

have previously reported the validation of our

hyperspectral oximetry technique using a model eye21

and its application in normal subjects.22 The purpose of

this study was to determine whether any differences in

the oxygen saturation of the retinal vasculature between

normal eyes and glaucomatous eyes could be detected

using a hyperspectral imaging device.

Materials and methods

This study was conducted in accordance with the ethical

standards of the Declaration of Helsinki, and was

approved by the local Research and Ethics Committees at

Gloucestershire Hospitals NHS Foundation Trust (REC

reference number: 06/Q2005/132).

The hyperspectral fundus camera has been described

previously.21,22 Briefly, it is a fundus camera incorporated

with a liquid-crystal tunable filter in the optical path of

the camera’s light source, enabling the selection of

wavelengths of illuminating light between 400 and

700 nm using a personal computer.

In total, 14 healthy subjects (some of whose data were

published previously22) and 11 subjects with a diagnosis

of asymmetrical POAG were recruited prospectively

from the eye departments in Cheltenham and Gloucester

General Hospitals between 2007 and 2010.

All subjects underwent full clinical ophthalmic

evaluation, Snellen visual acuity testing, intraocular

pressure measurement (IOP) using Goldmann applanation

tonometry. The pupils were dilated with 1% tropicamide

(Minims; Chauvin Pharmaceuticals, Romford, UK), and

slit-lamp stereo biomicroscopy was performed to examine

optic nerve head (at high magnification with a fundus

þ 78 D lens) yielding the cup-to-disc ratio estimation, and

detection of the qualitative indicators of glaucomatous

damage. All POAG subjects had been tested with SITA

Standard 24-2 perimetry (HFA II 740; Carl Zeiss Meditec,

Jena, Germany).

Inclusion criteria for normal subjects were best-

corrected visual acuity (BCVA) of 6/9 or better, open

anterior-chamber angle, absence of any ocular pathology,

IOP o21 mm Hg, and normal optic disc appearance.

Exclusion criteria included history of intraocular surgery,

ocular pathology, diabetes mellitus, stroke, hypertension,

and a family history of glaucoma. Inclusion criteria for

POAG subjects included previously diagnosed open

angles on gonioscopy and the presence of ocular

hypertension (untreated IOP 422 mm Hg), glauco-

matous optic neuropathy (GON), and characteristic

glaucomatous visual-field loss. Exclusion criteria

included other previous or current ocular pathology and

previous ocular surgery (except uncomplicated cataract

surgery and trabeculectomy). Two subjects were current

smokers and seven POAG subjects were treated with

ocular anti-hypertensive therapy.

For the normal subjects, only one eye was selected

randomly for analysis and for POAG subjects both eyes

were analyzed. Each eye of the POAG subjects were

divided into two categories, based on the mean deviation

(MD) of the Humphrey visual-field analysis, with the

more advanced having a more negative MD value than

the less-advanced glaucomatous eye.

For each subject, a sequence of spectral retinal images

between 556 and 650 nm in 2-nm increments were

recorded. The processing and analysis of the spectral

images have also been previously described in detail

elsewhere.21,22 In brief, the optical density spectra

(wavelengths from 556 to 650 nm) of the tracked

centreline points along the retinal vessels were calculated

from the spectral images and applied to a non-linear

oximetry model to yield an oxygen saturation estimate at

each point. Wavelength-dependent optical scattering

values published by Meinke et al23 were used in this

oximetry model. In essence, this algorithm estimates the

free parameters based on the Levenberg–Marquardt non-

linear fit to OD (l) to yield an estimate of cOS.

For each eye, points along the 1st degree

superotemporal and infero-temporal vessels at the disc

margin and ½ disc diameter (dd) from the disc margin

were located. The mean oxygen saturation at each of

these points was calculated from 21 contiguous adjacent

oxygen saturation measurements along each of the blood

vessels.

The mean oxygen saturation at each location of the

selected vessels was averaged to derive a single mean

arteriolar and venular oxygen saturation of the normal

eyes, POAG eyes with less-advanced glaucoma, and

POAG eyes with more-advanced glaucoma.

Statistical analysis

The normality of the data distributions was tested using

the D’Agostino and Pearson omnibus normality test,24

with the cut-off for non-normality set at Po0.05. All the

data were confirmed to be normally distributed.
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Unpaired t-tests (two-tailed) with Welch’s correction

were used to compare the mean oxygen saturation of the

temporal vessels between the normal subjects and the

POAG subgroups. Paired t-tests (two-tailed) assuming

unequal variance were used to compare the oxygen

saturation of the temporal vessels between the eyes with

more-advanced POAG and the respective contralateral

eye with less-advanced POAG.

A post hoc power analysis using the mean oxygen

saturation in each group, the average observed SD, and a

0.05 significance level were performed using a software

program developed by Faul et al25 (Gpower program ver.

3.1).

All statistical analyses, unless otherwise indicated,

were performed using statistical software (SPSS 19 for

Windows; SPSS, Chicago, IL, USA); Po0.05 was

considered statistically significant.

Results

Quantitative oximetry maps of the retinal vasculature

and optical density spectra in a normal eye and an eye

with advanced POAG

Pseudo-color images of the oxygen saturation values

along the retinal vasculature in a normal eye and an eye

with advanced glaucoma are illustrated in Figures 1 and

2, respectively. The mean optical density spectra at

selected segments (n¼ 10 spectra) of the 1st degree

supero- and infero-temporal vessels are also illustrated to

the right of each of the pseudo-color images. In both the

normal and glaucomatous eye, the mean optical density

spectra (red filled circles) and non-linear fit (red line) of

selected locations along the first-degree supero- and

infero-temporal arterioles show a plot with a trough and

peak within the wavelength range of 560–590 nm

(Figures 1a and 2c). This feature is consistent with the

extinction coefficient of fully oxygenated hemoglobin

(Figure 1c).23 The calculated oxygen saturations (derived

from the mean optical density spectra) of the first-degree

supero- and infero-temporal arterioles were 82.3 and

98.2% in the normal eye and 101.0 and 134.9% in the

glaucomatous eye. In contrast, the mean optical density

spectra (red filled circles) and non-linear fitting

algorithms (red line) of selected locations along the first-

degree supero- and infero-temporal venules were

different between the normal and glaucomatous eye

(Figures 1b and 2d). In the normal eye, the optical density

spectra of the selected venules show a plot with a single

peak at approximately 560 nm (Figure 1b). This feature is

consistent with the extinction coefficient of de-

oxygenated hemoglobin (Figure 1c).23 The oxygen

saturation calculations (from the mean optical density

profile) were 26.1% and 27.8%, respectively. In the

glaucomatous eye, the mean optical density spectra of

selected locations along the first-degree supero- and

infero-temporal venules show a plot with a subtle trough

between 570 and 580 nm (Figure 2d). The calculated

oxygen saturations (from the mean optical density

profile) were 39.2% and 41.7%, respectively—higher than

in the normal eye.

Comparison of the oxygen saturation between normal

subjects and patients with asymmetrical POAG

The baseline characteristics of the study population are

presented in Table 1. Compared with the normal subjects,

treated POAG subjects had significantly worse BCVA,

higher cup-to-disc ratio (vertical and horizontal), and

higher systolic blood pressure.

The mean oxygen saturation of the temporal retinal

arterioles and venules in normal subjects, and the treated

POAG subgroups are summarized in Figure 3. In normal

subjects, the mean oxygen saturation (±SD) of the

temporal retinal arterioles and venules were 104.82%

(±18.67%) and 27.88% (±9.89%), respectively. In the

less-advanced and more-advanced glaucomatous eyes,

the mean (±SD) oxygen saturation of the temporal

retinal arterioles were 98.10% (±13.66%) and 106.00%

(±22.00%), respectively. The mean (±SD) oxygen

saturation of the retinal venules were 48.19% (±21.62%)

and 42.60% (±18.78%) in the less-advanced and more-

advanced glaucomatous eyes, respectively.

The mean oxygen saturation of the arterioles in normal

subjects was not significantly different to that of the

arterioles in the less- and more-advanced glaucomatous

eyes (P¼ 0.31 and 0.89, respectively, unpaired t-test with

Welch’s correction). The mean oxygen saturation of the

temporal retinal venules were significantly higher in both

treated POAG subgroups compared with normal subjects

(P¼ 0.03 in eyes with less-advanced POAG and P¼ 0.01

in eyes with more-advanced POAG, unpaired t-test with

Welch’s correction; post hoc power analysis: 0.82 and 0.65,

respectively).

Analysis of the two treated POAG subgroups (less- vs

more-advanced visual-field loss) showed no significant

difference in the mean arteriolar and venular oxygen

saturation between the two groups (P¼ 0.33 and 0.53,

respectively, paired t-test assuming unequal variance).

Discussion

The application of hyperspectral imaging to determine

oxygen saturation differences in the retinal vasculature

between normal and treated POAG subjects has been

presented in this study. We have provided an illustration

of the oxygen saturation calculations in detail at sample

points along the retinal arterioles and venules in a
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Figure 1 Pseudo-color images of the oxygen saturation values along the retinal arterioles (a, left) and venules (b, left) in a normal eye.
Mean optical density spectra (red filled circles and whiskers), non-linear fitting oximetry algorithm (red line), and oxygen saturation
calculations of respective selected vessel segments are shown in the plots to the right. For comparison, the published extinction
coefficient spectra of oxyhemoglobin, deoxyhemoglobin, and hemoglobin at 50% oxygenation interpolated from van Assendelft’s data
are shown (c).23 CI, confidence interval; OS, oxygen saturation.
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Figure 2 An eye with advanced glaucomatous optic neuropathy. A color fundus photograph showing advanced glaucomatous optic
neuropathy (a) and Humphrey visual-field analysis showing a dense superior arcuate scotoma (b). Pseudo-color images of the oxygen
saturation values along the retinal arterioles (c, left) and venules (d, left) in an eye with advanced POAG. Mean optical density spectra
(red filled circles and whiskers), non-linear fitting oximetry algorithm (red line), and oxygen saturation calculations of respective
selected vessel segments are shown in the plots to the right. CI, confidence interval; OS, oxygen saturation.
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representative normal and glaucomatous eye. We have

demonstrated differences in the mean optical density

spectra at the sample points along the venules between

the normal and glaucomatous eye which corresponds

with detectable differences in the oxygen saturations.

Our analysis of a cohort of normal and treated POAG

subjects show significantly higher mean oxygen

saturation of the temporal venules in POAG eyes

compared with normal eyes. Arteriolar oxygen

saturation was not significantly different between normal

eyes and eyes with less- and more-advanced

glaucomatous visual-field loss.

The higher mean oxygen saturation of the temporal

retinal venules in glaucomatous eyes compared with

normal eyes are contrary to a similar oximetry study,

using a multi-wavelength imaging spectrometer,

reported by Michelson and Scibor.17 In this study, no

significant differences were observed in the oxygen

saturation of the retinal venules between normal and

glaucomatous eyes (normal-tension glaucoma and

POAG). Arteriolar oxygen saturation was significantly

lower in the normal-tension glaucoma cohort compared

with normal subjects but not in the POAG cohort.

However, combining previous studies reported by

Hardarson et al16,26 and Traustason et al,14 which used the

same dual-wavelength retinal oximeter, the mean (±SD)

oxygen saturation of the retinal venules in glaucoma

patients on topical medical therapy were 66% (±5%) and

65% (±6%), respectively. In glaucoma patients

undergoing filtration surgery, the mean retinal venular

oxygen saturation was 63% (±5%) before surgery and

64% (±6%) after surgery.16 Olafsdottir et al27 reported

significantly higher retinal venular oxygen saturations

using the same retinal oximeter in glaucomatous eyes

with ‘poor visual fields’ compared with ‘good visual

fields’, 68% (±4%) and 62% (±3%), respectively.

Importantly, an earlier study by Hardarson et al16,27

found comparatively lower retinal mean (±SD) venous

oxygen saturation in normal subjects of 55% (±14%).

A commonly accepted limitation of the two-wavelength

oximetry technique is the tendency to overestimate the

true blood oxygen saturation particularly at lower

oxygen saturations.28 This could explain the higher

venular oxygen saturation measurements in normal and

glaucoma patients reported in these studies compared

with our study. The relative difference in the venular

Table 1 Baseline characteristics of the normal and treated POAG subjects included in the study

Normal subjects (n¼ 14) Treated POAG subjects (n¼ 11) Univariate analysis POAG vs normal (P)

Age (years; range) 45.1 (25–74) 56.0 (37–82) 0.08
Sex (male:female ratio) 7 : 7 9 : 2 0.21 (Mann–Whitney)
Systolic blood pressure (mm Hg) 125.5 (±8.0) 143.7 (±18.7) 0.01
Diastolic blood pressure (mm Hg) 78.5 (±10.0) 81.1 (±14.4) 0.62
Pulse oximeter oxygen saturation (%) 96.6 (±0.8) 96.6 (±0.9) 0.99

Ophthalmic assessment Normal eye
Treated POAG eye with

less visual-field loss
Treated POAG eye

with more visual-field loss

Univariate analysis vs
normal (P)

Univariate analysis vs
normal (P)

Best-corrected visual acuity
(LogMAR equivalent)

� 0.08 (±0.09) 0.09 (±0.11) o0.001 0.18 (±0.11) o0.001

Intraocular pressure (mm Hg) 14.50 (±1.95) 17.73 (±7.75) 0.20 18.82 (±7.72) 0.10

Cup-to-disc ratio
Vertical 0.29 (±0.14) 0.67 (±0.28) o0.001 0.83 (±0.13) o0.001
Horizontal 0.30 (±0.14) 0.63 (±0.25) o0.001 0.73 (±0.15) o0.001
Visual-field global indices
MD (dB) Not applicable � 6.25 (±6.79) � 15.52 (±9.14)
PSD (dB) 5.42 (±4.31) 9.10 (±3.10)

Glaucoma treatment (either single or
combination therapy)

No treatment Xalatan (n¼ 2) Xalatan (n¼ 2)

Lumigan (n¼ 2) Lumigan (n¼ 2)
Timolol (n¼ 2) Timolol (n¼ 2)
Betagan (n¼ 1) Betagan (n¼ 1)
Travatan (n¼ 1) Travatan (n¼ 1)

Trabeculectomy (n¼ 2) Xalacom (n¼ 1)
Trabeculectomy (n¼ 3)

Data are presented as mean (±SD) with univariate comparisons between normal and treated POAG subjects using unpaired t-test with Welch’s

correction unless stated otherwise. Db, decibels; MD, mean deviation; PSD, pattern standard deviation.
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Figure 3 A scatter plot of the oxygen saturation of the temporal retinal arterioles (top) and venules (middle) in the normal subjects
and the POAG subgroups (less-advanced and more-advanced visual-field loss). Horizontal lines are the mean and 95% confidence
intervals. Mean oxygen saturation of the temporal retinal arterioles and venules in normal subjects and POAG subgroups are
summarized in the table (bottom). CI, confidence interval, OS, oxygen saturation.
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oxygen saturation between normal subjects and

glaucoma subjects (higher venular oxygen saturation in

glaucoma patients), however, appears to support the

findings in this study.

The increase in the oxygen saturation of the temporal

retinal venules could indicate reduced metabolic

consumption of oxygen in the retinal tissues in

glaucomatous eyes. However, microcirculatory shunting

of arterial blood into the venous system and

physiological changes within the tissue causing a left-

shift of the hemoglobin oxygen dissociation curve in the

capillaries (increased affinity of hemoglobin for oxygen)

cannot be excluded from our findings. Increased venous

oxygen saturation is thought to be an indicator for

reduced oxygen utilization as well as arteriovenous

shunting.29 In normal human physiological conditions,

the oxygen saturation of the veins draining their

respective organs within the body is highly variable

which is thought to reflect variations in the oxygen

extraction levels or metabolic activity of the tissues.30

This is most evident in the renal venules whose oxygen

saturation is approximately 92% as a result of relatively

low-oxygen extraction in the renal tissues which derives

its energy requirements from non-oxidative

phosphorylation.31 In contrast, the oxygen saturation of

venous drainage from the heart is approximately 37%,

which reflects high-oxygen extraction as a result of

oxidative phosphorylation in the cardiac muscles.31

Rivers et al32 reported venous hyperoxia in patients

following cardiac arrest, which was hypothesized to be a

result of deranged systemic oxygen consumption.

In glaucoma, the reduced metabolic consumption of

the retina could reflect neuronal loss and/or dysfunction.

Numerous studies have reported the loss of ganglion

cells in glaucoma33–40 and the underlying process is

thought to involve apoptosis.41–44 Further, ganglion cell

drop out is thought to be preceded by structural

morphological changes of the dendrites45–47 and reduced

sensitivity to light stimuli48,49 which suggests the

presence of neuronal dysfunction which could be

manifested by reduced oxygen consumption.

At an intracellular level, it has been postulated that

mitochondrial function in the retinal ganglion cells are

compromised by a multitude of insults which results in

reduced energy production (reduced oxygen

consumption) which subsequently induces cellular

apoptosis.50 Ganglion cell loss and/or dysfunction on its

own may not necessarily result in increased venous

oxygen saturation, as other neuronal cells and supportive

cells within the retinal layers require oxygen to fuel their

metabolic demands. There is emerging evidence from

histological, electrophysiological, and OCT studies that

the processes involved in glaucomatous damage could

also involve other neuronal cells such as amacrine cells,51

bipolar cells,50,52 horizontal cells,53 and photoreceptors.52,54–57

Therefore, reduced mass tissue extraction of oxygen

within the retinal layers would support our explanation

of retinal venous hyperoxia.

In this study, further analyses of the treated POAG

subgroups revealed no significant differences in the

oxygen saturation of the temporal retinal arterioles and

venules between POAG eyes with less-advanced and

more-advanced visual-field loss. In contrast, Vandewalle

et al20 reported significantly higher venular oxygen

saturation in patients with ‘severe’ visual-field defects

compared with patients with ‘mild’ visual-field defects

(69±3% vs 65±6%, respectively; P¼ 0.0003).

A major limitation of this study is the small sample

size of patients included in this study and low

statistical power (post hoc power analyses of all group

comparisons, except between normal and less-

advanced POAG venules, were less than 0.8). The

relatively few subjects imaged reflect the prolonged

hyperspectral imaging routine required to yield the

oximetry analysis: this is demanding for the imaged

subject. In addition, the age difference between normal

and POAG subjects approaches significance (P¼ 0.08).

Therefore, caution should be used when interpreting

the results of the study. Further studies would be

useful to fully investigate the relationship between the

oxygen saturation of the retinal vessels and

glaucomatous damage with a larger population of

matched subjects. Furthermore, in this study, our

oxygen saturation calculations were performed on

images captured in a single imaging session and

therefore further studies on multiple measurements

would be required to establish the extent or

significance of short-term variations.

Other limitations from systematic errors such as a

difference in the fundal reflectance between normal and

glaucomatous eyes where there is a loss of neuronal

tissue in the inner retina need to be considered.

However, our previously reported model eye

experiments demonstrated that background reflectance

had no significant influence on the oxygen saturation

measurements and did not affect its accuracy.21 Other

physiological factors that could contribute toward a

systematic error, such as blood flow and vessel diameter

differences between normal subjects and glaucoma

patients, are unlikely as these factors do not

significantly change the characteristic shapes of the

optical density profile that enable the calculation of the

oxygen saturation. These physiological factors were

previously studied by Schweitzer et al58 who

demonstrated that in vitro changes to the blood flow and

blood column thickness resulted in a vertical

displacement of the spectral transmission profile of fully

oxygenated blood without a significant change to the
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shape of the transmission profile. Therefore, the curve

fitting technique used in this study to generate the

oxygen saturation value is unlikely to be affected by

such physiological features, as each oxygen saturation

value is calculated from the specific shape of the

optical density spectra. However, further research

would be necessary to evaluate and confirm these

statements.

In summary, we describe significant increases in the

retinal venular oxygen saturation between normal and

glaucomatous eyes using hyperspectral imaging. These

findings may reflect reduced oxygen consumption by

the impaired inner retina, and may therefore allow

indirect assessments of retinal cell health using an

imaging technology. If these findings are confirmed in a

larger group of glaucoma patients, perhaps using the

more clinically practical ‘snapshot’ hyperspectral

imaging technology (which allows more rapid

hyperspectral image collection),59 this imaging

approach to the assessment of retinal function may

prove useful in the diagnosis of inner retinal damage,

and the monitoring of the response to treatment in

glaucoma.

Summary

What was known before

K Retinal vascular oxygen saturation can be calculated
using a variety of spectral imaging techniques. Most of
these techniques involve dual-wavelength imaging.

K Higher venular oxygen saturation have been reported in
glaucomatous eyes with ‘poor visual fields’ compared
with glaucomatous eyes with ‘good visual fields’.

What this study adds
K Retinal vascular oxygen saturation can be calculated

using a hyperspectral imaging system.

K Venular oxygen saturation is higher in POAG eyes
compared with normal eyes indicating reduced metabolic
demand for oxygen.
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