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Abstract
Gastric cancer (GC) is a major public health issue as the 
fourth most common cancer and the second leading 
cause of cancer-related death. Recent advances have 
improved our understanding of its molecular pathogen-
esis, as best exemplified by elucidating the fundamen-
tal role of several major signaling pathways and related 
molecular derangements. Central to these mechanisms 
are the genetic and epigenetic alterations in these sig-
naling pathways, such as gene mutations, copy number 
variants, aberrant gene methylation and histone modi-
fication, nucleosome positioning, and microRNAs. Some 
of these genetic/epigenetic alterations represent effec-
tive diagnostic and prognostic biomarkers and thera-
peutic targets for GC. This information has now opened 
unprecedented opportunities for better understanding 
of the molecular mechanisms of gastric carcinogenesis 
and the development of novel therapeutic strategies for 
this cancer. The pathogenetic mechanisms of GC are 
the focus of this review.
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Core tip: Gastric cancer (GC) is a complex, multistep 
process involving environmental factors and deregula-
tion of canonical oncogenic pathways. Central to these 
mechanisms are the genetic and epigenetic alterations 
in these oncogenic signaling pathways. We discuss the 
recent remarkable progress in understanding the mo-
lecular mechanisms and the opening of unprecedented 
opportunities for the development of novel therapeutic 
strategies for GC.
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INTRODUCTION
Gastric cancer (GC) is one of  the most common cancers 
in the world, particularly in developing countries, and the 
mortality of  GC is the second leading cause of  cancer-
related deaths[1-3]. It is often not detected until an ad-
vanced stage; consequently, the 5-year survival rate is low 
(10%-20%)[4]. About 95% of  gastric tumors are adenocar-
cinomas, which can be classified into well-differentiated 
(intestinal), undifferentiated (diffuse), and ‘mixed’ types[5]. 
Although the incidence is declining, its prognosis remains 
poor. Epidemiological evidence indicates that environ-
mental factors play a major role in the carcinogenesis. 
Among the environmental factors, diet and infection with 
Helicobacter pylori (H. pylori) are the most common suspects 
in gastric tumorigenesis[6,7]. In addition to environmental 
factors, GC is a complex, multistep process involving 
deregulation of  canonical oncogenic pathways. These on-
cogenic signaling pathways can be overactivated by some 
genetic and epigenetic alterations[8,9]. Genetic alterations, 



such as gene mutations, gene amplification, deletions or 
allelic loss and chromosomal translocations, can cause 
gain-of-function in oncogenes and loss-of-function in 
tumor suppressor genes, ultimately contributing to gastric 
carcinogenesis[9,10]. Moreover, like other human cancers, 
gastric tumorigenesis can also be profoundly influenced 
by epigenetic abnormalities, such as aberrant gene meth-
ylation, histone modification and microRNAs[10,11]. For 
example, promoter hypermethylation as an important 
hallmark of  cancer cells is one of  the major mechanisms 
to inactivate tumor suppressor genes in gastric tumori-
genesis[11,12]. Increasing evidence indicates that most can-
cer phenotypes are largely governed by complex interac-
tions between multiple pro- and anti-oncogenic signaling 
circuits[13]. This review discusses the recent remarkable 
progress in understanding the molecular pathogenesis 
and mechanisms of  GC.

ENVIRONMENTAL RISK FACTORS
GC, like other cancers, is the end result of  the interplay 
of  many risk factors as well as protective factors. Envi-
ronmental and genetic factors are also likely to play a role 
in the etiology of  this disease. Among the environmen-
tal factors, it is clear that H. pylori infection and diet are 
strong and established risk factors of  GC[6,7]. 

H. pylori infection is an important and established risk 
factor of  GC. About 50% of  the world’s population are 
infected by H. pylori; most of  the infected individuals re-
main asymptomatic and fewer than 0.5% of  infected in-
dividuals will develop GC. Although H. pylori infection is 
thus not a sufficient cause for the development of  GC[14], 
H. pylori infection has been associated with high preva-
lence of  GC and can also be found in the gastric mucosa 
of  patients with chronic gastric inflammation[15,16]. The 
connection between H. pylori and GC is not only based 
on epidemiologic data and animal models[17-19], but data 
from clinical trials have also suggested that H. pylori eradi-
cation therapy can effectively reduce the development of  
precancerous lesions and GC[20]. H. pylori infection causes 
chronic inflammation, accumulation of  reactive oxygen 
species (ROS) and oxidative DNA damage in the gastric 
mucosa, and promotes the sequential progression of  nor-
mal gastric epithelium through atrophic gastritis, intesti-
nal metaplasia, and dysplasia to carcinoma[21]. Intestinal 
metaplasia is a preneoplastic lesion and confers increased 
risk for GC development. However, the molecular net-
works connecting infection to lesion formation and the 
cellular origin of  this lesion remain largely unknown[22]. 
Although the intestinal-type GC are more related to atro-
phic gastritis, intestinal metaplasia and dysplasia, H. pylori 
infection also can increase the risk of  diffuse-type GC. 
Moreover, H. pylori infection enhances aberrant promot-
er methylation in gastric mucosa, contributing to gastric 
tumorigenesis by silencing tumor suppressor genes[23-25]. 
However, H. pylori infection cannot affect mRNA and 
protein expression of  DNA methyltransferases (DN-
MTs)[23,26]. Until now, the molecular mechanism of  H. 

pylori-induced aberrant gene methylation in GC remains 
poorly understood.

In addition to H. pylori infection, dietary and lifestyle 
factors also increase the risk of  gastric carcinogenesis. An 
excessive intake of  starch, fat, meat, salt and N-nitroso 
compounds poor in protein quality increases the risk of  
GC, especially preserved food rich in salt, salt per se and 
N-nitroso compounds; whereas a diet rich in fresh fruits, 
vegetables and dietary fiber can decrease the risk of  
GC[14,27]. N-methyl-N-nitro-N-nitrosoguanidine (MNNG) 
is one of  the known gastric carcinogens, which enhance 
the carcinogenic effects[28,29]. N-nitroso compounds can 
be formed by the reaction of  nitrate or nitrite during the 
process of  preservation and during digestion in the stom-
ach, and they may be present in some foods including 
cured meats, dried milk, instant soups, and coffee dried 
on direct flame[30-32]. Ingestion of  salt-preserved food can 
induce direct damage to the gastric mucosa resulting in 
gastritis and can increase the risk of  persistent H. pylori 
infection; examples are salted fish, soy sauce, pickled 
vegetables, cured meat[33,34]. Moreover, high starch and 
low protein diets may favor acid-catalyzed nitrosation in 
the stomach and cause mechanical damage to the gastric 
mucosa[14,35]. Fruits and vegetables are rich sources of  
carotenoids, vitamin C, folate and phytochemicals, and 
may modestly reduce risk in the process of  carcinogen-
esis[14,34,35]. It has been reported that epigallocatechin gal-
late (EGCG) is the most abundant polyphenol in green 
tea and it possesses a significant protective effect against 
H. pylori-induced cytotoxicity in gastric epithelial cells[36].

Other established lifestyle factors, including cigarette 
smoking and alcohol consumption, may affect the risk of  
GC[37,38]. Alcohol, a gastric irritant, is an important risk 
factor for GC. Tobacco has been reported to induce the 
development of  precursor gastric lesions and increase the 
incidence of  H. pylori infection. Accumulated evidence 
has shown an association between gastroesophageal reflux 
disease (GE reflux) and elevated risk for diffuse-type 
GC[39-41]. In addition, Epstein-Barr virus (EBV) infection 
is also closely associated with gastric carcinogenesis[38].

ALTERED SIGNALING PATHWAYS IN GC
GC is a complex and molecularly heterogeneous disease 
involving deregulation of  canonical oncogenic pathways, 
such as p53[42], wnt/β-catenin[43], nuclear factor (NF)-κB[44] 
and PI3K/Akt[45] pathways. Central to these mechanisms 
are the genetic and epigenetic alterations in these onco-
genic signaling pathways[8,9]. Of  them, some molecular al-
terations are closely associated with poor clinical outcomes 
of  GC patients and are summarized in Tables 1 and 2.

p53 pathway
Gene mutations play a key role in transforming normal 
cells into cancerous cells; they directly or indirectly sup-
press the normal function of  tumor suppressor genes, 
or enhance transforming activity of  oncogenes. So far, 
numerous gene mutations have been identified in GCs. 

Shi J et al . Molecular mechanisms in gastric carcinogenesis

13805 October 14, 2014|Volume 20|Issue 38|WJG|www.wjgnet.com



One of  the most commonly mutated genes is TP53 in 
GC, which encodes p53 protein[46]. Tumor suppressor 
p53 plays a fundamental role in the regulation of  the cell 
cycle and apoptosis, and its inactivation is central to the 
pathogenesis of  many human cancers, including GC[46]. 
Numerous reports have demonstrated that the function 
of  TP53 is more frequently inactivated in GCs by muta-
tions and loss of  heterozygosity (LOH) than by DNA 
methylation. TP53 mutation pattern is characterized by 
frequent G:C→A:T mutations at CpG sites. There are 
about 30%-70% of  GCs containing TP53 point muta-
tions. TP53 mutations are an early event in GC and show 
a different pattern in diffuse- or intestinal-type GC. Mu-
tations of  TP53 seem to be an early event and not related 
to tumor stage in intestinal-type GC, but their frequency 
increases with stage progression and they are common 
in diffuse-type GC[42,46-48]. It has been reported that there 
is significant correlation between LOH of  TP53 with 
gastric precancerous lesions, suggesting that loss of  TP53 
may be an early event in gastric carcinogenesis[49]. Cyclin-
dependent kinase (CDK) inhibitor p21 gene is directly 
involved in human carcinogenesis through directly inhib-
iting DNA replication[50]. It has been reported that the 
expression of  p21 is usually assessed in combination with 
TP53 status, and GC patients with loss of  p21 have worse 
survival[51]. Thus, aberrant p53 pathway may play an im-
portant role in gastric carcinogenesis.

PI3 kinase/Akt pathway
The PI3 kinase (PI3K)/Akt signaling pathway regulates 
cellular metabolism and growth by acting as a cellular 
sensor for nutrients and growth factors and plays an im-
portant role in tumorigenesis[52-54]. PI3K is a lipid kinase, 
which is mainly activated by tyrosine kinases. PIK3CA is 
a catalytic 110-kDa subunit of  PI3 kinase and an activa-
tor of  the PI3K/Akt pathway. It is frequently activated 
by genomic amplification[55] or mutation[56-58]. Gene ampli-
fication is one of  the most frequent genomic alterations 
found in human cancers[59-62]. Increased gene dosage by 
this genetic event is a common mechanism for oncogene 
overexpression during tumorigenesis[63], and also reflects 
the genetic instability of  the tumor cells like other types 
of  genetic alterations[64]. Our recent study has demon-
strated that PIK3CA mutations are not common, but its 
amplification is very common in GC[55]. Notably, PIK3CA 
amplification is associated with elevated p-Akt, suggest-
ing that this genetic alteration may be a major mechanism 
in activating the PI3K/Akt signaling pathway, further 
contributing to gastric tumorigenesis[55]. 

PTEN encodes a multifunctional phosphatase that 
negatively regulates cell growth, migration and survival 
via the PI3K/Akt signaling pathway. Mutations, LOH 
and promoter methylation in the PTEN gene have been 
frequently identified in GC[48,65,66]. These genetic/epigen-
etic alterations ultimately contribute to overactivation of  
the PI3K/Akt signaling pathway during gastric tumori-
genesis.

 ERBB3 is a member of  the epidermal growth fac-

tor receptor (EGFR) family or ERBB tyrosine kinase 
(TK) receptor family, and plays important roles in animal 
development; deregulation has been linked to several 
pathologies, including cancer. This receptor family me-
diates cell proliferation and survival by the MAPK and 
PI3K/Akt signaling pathways[67]. ERBB3 overexpression 
is frequently found in GC, particularly in the diffuse-type 
tumors, contributing to the overactivation of  the PI3K/
Akt pathway[68]. Thus, aberrations of  the ErbB3/PI3 
kinase pathway may play an important role in diffuse-
type GC. Collectively, specific genotype-based targeting 
against the PI3K/Akt signaling pathway may be an effec-
tive therapeutic strategy for GC. 

MAPK pathway
The MAPK (Ras/Raf/Mek/Erk) signaling pathway regu-
lates a series of  cell activities such as angiogenesis, pro-
liferation, differentiation, apoptosis and migration. The 
MAPK pathway consists of  several kinases, including 
Ras, Raf, and Mek, and is often deregulated in GC[69]. Ras 
(H-, K-, N-isotypes), which encode small G proteins, be-
long to a commonly mutated oncogene family and func-
tion as molecular switches of  numerous signaling cas-
cades, including MAPK pathway[70]. Mutations of  KRAS 
and BRAF are common in GC[71-73]. ERK1/2, the final 
effectors of  this pathway, are also found to be activated 
in GC[74]. In addition, tumor suppressor gene RASSF1A 
(ras-association domain family 1A), RASSF2, and 
HRASLS are usually silenced by promoter hypermeth-
ylation in various human cancers, including GC[12,75-78]. 
Especially, RASSF1A contains a ras-association (RA) and 
a Sav/RASSF/Hpo (SARAH) domain. Its inactivation by 
promoter methylation can activate the MAPK signaling 
pathway, and effectively block cancer cell apoptosis, ulti-
mately contributing to tumorigenesis, including GC[48,79].

EGFR is a member of  the EGFR family, and works 
as a cell surface receptor of  extracellular ligands, includ-
ing epidermal growth factor (EGF) and transforming 
growth factor alpha. Ligand binding to EGFR extracel-
lular domain leads to the phosphorylation of  its intracel-
lular tyrosine kinase domain. This will initiate a series 
of  intracellular signals, such as activation of  the MAPK 
signaling pathway[80]. EGFR overexpression is frequently 
found in GC and is associated with the depth of  invasion 
and poor survival of  GC patients[81]. ERBB2, a member 
of  the EGFR family, does not have any specific ligands 
that it binds directly and may be regulated by ligands in 
the same way as EGFR. Amplification or overexpression 
of  ERBB2 is very common in intestinal-type GC, but not 
in diffuse-type GC[68,82,83]. Activated ERBB2 oncogenic 
pathway may play an important role in intestinal-type 
GC. ERBB2 mutations occasionally occur in metastatic 
gastric carcinoma, suggesting that these mutations play a 
role in the metastatic process of  some GCs[82]. However, 
as compared with mutations, overexpression of  ERBB2 
caused by copy number gain is more commonly found 
in human cancers, including GC[84]. Strikingly, ERBB2 
amplification may serve as a prognostic marker for tu-
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been identified with two functional classes: the secreted 
frizzled-related protein (sFRP) class and the dickkopf  
(Dkk) class[107]. Recent studies on GC have described ab-
errant methylation for several regulators of  the wnt path-
way, including SFRP1, SFRP2, SFRP4, SFRP5, Dkk-3 
genes[107-109], further implicating the role of  the wnt path-
way in gastric tumorigenesis. 

NF-κB pathway
NF-κB is a critical regulator of  genes involved in cell 
survival and proliferation, cellular stress response and 
inflammation[110,111]. It is well documented that chronic 
infections and inflammation serve as major risk factors 
for various types of  cancer, including GC[9]. NF-κB can 
activate the genes in response to certain stimuli, including 
ROS, tumor necrosis factor alpha (TNFα), interleukin 1 
beta (IL-1β), and bacterial lipopolysaccharides (LPS)[112]. 
Activation of  NF-κB is by the canonical/classical and 
non-canonical/alternative pathways. The canonical path-
way can be activated by several stimuli, such as inflam-
mation cytokines and antigens[113]. The non-canonical 
pathway is induced by certain receptor signals like B-cell 
activating factor (BAFF), lymphotoxin β (LTβ), CD40 
ligand, TNF-like weak inducer of  apoptosis (TWEAK) 
and receptor activator of  NF-κB ligand (RANKL)[114]. 
There is evidence that NF-κB is constitutively activated 
in GC tissues, with high levels in GC cell lines as com-
pared with normal adjacent epithelial cells[115]. More im-
portantly, GC patients with high NF-κB levels in cancer 
cells have a lower survival time than those with low NF-
κB activation[116].

Transforming growth factor-β signaling
Transforming growth factor beta (TGF-β) is a multifunc-
tional cytokine that controls differentiation, apoptosis, 
cell growth and immune reactions. The TGF-β fam-
ily mainly includes three isoforms, TGF-β1, TGF-β2, 
TGF-β3, in mammals[117,118]. In early stages of  GC, 
TGF-β signaling is considered to be a tumor suppressor 
pathway, whereas in the late stage it promotes invasion 
and metastasis[119]. The TGF-β signaling pathway is com-
posed of  two distinct receptors with intrinsic serine/
threonine kinase activity, TGF-β receptor type Ⅰ, type Ⅱ 
(TGFBR1 and TGFBR2) and Smad proteins. The loss of  
TGF-β response due to the dysregulation of  TGFBR1, 
TGFBR2 and Smad4 is well known for its contribution to 
oncogenesis. Moreover, methylation of  TGFBR1, TGF-
BR2 and Smad4 may exist in the gastric cardia dysplasia 
stages and plays a key role in these genes silencing with 
subsequent effects on the TGF-β/Smad signaling path-
way[120]. TGF-β induces RUNX3, a transcription factor 
that is an inhibitor of  the wnt signaling pathway and has 
been involved in gastric tumorigenesis. Reduced expres-
sion of  RUNX3 in GC has been attributed to aberrant 
promoter methylation. In addition, MiR-130b is identi-
fied as the top candidate miRNA for RUNX3 binding. Its 
overexpression can downregulate RUNX3 expression[121]. 
Importantly, loss of  RUNX3 expression is closely associ-

mor invasion, lymph node metastasis and poor progno-
sis[68,83,85]. Our recent study has demonstrated frequent 
ERBB4 amplification in GC and is strongly associated 
with poor survival of  GC patients[86]. In addition, MiR-
125a-5p, which targets ERBB2[87], and miR-146a, which 
targets both EGFR and IRAK1[88], are related to survival 
and may be prognostic factors in GC.

Taken together, these findings suggest that the MAPK 
pathway plays an important role in gastric tumorigenesis, 
and may be an effective therapeutic target for GC.

Wnt pathway
Wnt signaling regulates several biological processes, 
such as determination of  cell fate, morphology, polarity, 
adhesion and growth[89,90] and is divided into canonical 
and non-canonical pathways. In the former, wnt signals 
stabilize β-catenin (or CTNNB1), hereby activating gene 
transcription through interaction of  β-catenin with tran-
scriptional factors[89]. Numerous reports have demon-
strated that this pathway plays an important role in the 
invasion and metastasis of  GC and may be a good indica-
tor for evaluating the biological behavior of  GC[91,92]. The 
non-canonical pathway is not related to β-catenin and is 
involved in embryonic development and cell polarity, as 
well as being also linked to the development of  GC[93,94]. 

APC (adenomatous polyposis coli) is involved in 
chromosomal segregation, and its inactivation causes 
aneuploidy and perturbed structure of  the chromo-
somes[95,96]. β -catenin mutations or APC inactivation 
can cause accumulation and high intranuclear levels of  
β-catenin, which regulate the wnt signaling pathway and 
play an important role in early tumor growth, including 
GC[10,48]. Mutation of  the β -catenin gene may function in 
initiation of  invasive processes in intestinal-type GC[97]. 
The APC gene product binds to the multifunctional pro-
tein β-catenin, whose free concentration within the cell 
is strictly regulated and kept at a low level. Inactivation 
of  the APC gene is more frequently caused by mutations 
and LOH than DNA methylation. APC mutations are 
frequently associated with moderately well differentiated 
intestinal-type tumors[98,99]. There are about 30%-40% of  
GCs that show LOH in the APC gene[48]. E-cadherin, 
a calcium dependent cell-to-cell adhesion glycoprotein, 
is encoded by the CDH1 gene and plays a critical role 
in maintaining the normal epithelium architecture[100]. 
The cytoplasmic domain of  this molecule interacts with 
β-catenin, forming strong cohesive nets between the 
actin cytoskeleton[101], essential for processes of  cell-cell 
adhesion and cell shape, polarity, migration and inva-
sion. Inactivation of  CDH1 induced by mutation, LOH 
or aberrant promoter methylation markedly reduces cell 
adhesion, alters morphology and enhances cellular motil-
ity[10,11,48,102], resulting in tumor dedifferentiation, invasive-
ness, metastasis and prognosis[103-105]. It has been reported 
that approximately 50% of  diffuse GC is associated with 
loss of  CDH1 function caused by mutations, LOH and 
promoter methylation[105,106]. 

In addition, several antagonists of  wnt signaling have 
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ated with the progression, differentiation, metastasis and 
poor prognosis of  GC[122-124].

Cyclooxygenase -2/Prostaglandin E2 pathway
Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme re-
sponsible for the conversion of  arachidonic acid to pros-
taglandins (PGs)[125]. Its overexpression has been reported 
in various human cancers, including GC[126,127]. Moreover, 
several studies have shown that treatment with COX-2 
selective inhibitors suppresses chemically induced tumor 
formation and xenografted tumor growth[128]. These 
findings suggest that the COX-2 pathway plays an essen-
tial role in GC development. COX-2 is responsible for 
catalyzing the biosynthesis of  PG-H2, which is further 
converted to prostaglandin E2 (PGE2) by microsomal 
PGE synthase-1 (mPGES-1)[129]. COX-2-derived PGE2 
can promote cell growth, inhibit apoptosis and enhance 
cellular invasiveness, facilitating cancer progression[130]. 
Up-regulation of  PGE2 is found in most of  the gastro-
intestinal cancers[131], indicating that an increased level of  
PGE2 through induction of  COX-2 and mPGES-1 is 
crucial for gastric tumorigenesis.

Retinoblastoma pathway
The retinoblastoma (Rb) family is involved in cell cycle 
regulation and their function and/or expression is often 
lost in various kinds of  tumors[132]. In normal cells, the 
cell cycle is controlled by a complex series of  signaling 
pathways by which a cell grows, replicates its DNA and 
divides. Dysregulation of  cell cycle components can 
cause tumor formation[133]. Tumor suppressor gene p16 is 
a CDK inhibitor that slows down the progression of  the 
cell cycle by inactivating the cyclin dependent kinase that 
phosphorylates Rb protein[134,135]. Thus, p16 contributes to 
the maintenance of  Rb in an unphosphorylated state and 
inhibits cell cycle progression. Mutations in p16 gene are 
frequently found in human cancers, including GC[10,48,136]. 
Our previous studies have shown that there is close as-
sociation of  hypermethylation of  p16 with poor survival 
of  GC patients[12,75] and methylation status of  p16 can 
predict response to 5-FU[137]. Strikingly, p16 methylation 
can be detected in 19%-51.9% and 25%-57.4% of  serum 
extracted from GC patients[138,139], implicating its signifi-
cance in the diagnosis and prognosis of  GC.

Others
Many other molecular events are also found in gastric car-
cinogenesis (Tables 1 and 2). For example, the majority of  
GC is characterized by genetic instability, which is gener-
ally classified into two major types: microsatellite instabil-
ity (MSI) and chromosomal instability (CIN)[140,141]. MSI 
is characteristic for the hereditary type of  GC and results 
from errors in DNA replication. These replication errors 
are detected and repaired by a complex of  mismatch re-
pair (MMR) proteins[140], including hMLH1 and hMSH2. 
Functional inactivation of  MMR can be caused by gene 
mutations and CpG island methylation. Inactivation or 
deficiency of  MMR genes often leads to inactivation of  

tumor suppressor genes, LOH and mutations in critical 
genes. CIN is characterized by gross chromosomal ab-
normalities[141], resulting in major modifications of  chro-
mosomal quantity or quality, including genomic amplifica-
tions of  oncogenes and/or LOH, deletions or allelic loss, 
chromosomal translocations. Of  them, chromosomal 
translocations lead to the formation of  protein coding 
genes with oncogenic functions and rearrangements of  
chromosomes. A recent study has shown that CD44-
SLC1A2 gene fusions are detected in 1% to 2% of  GCs, 
but not in adjacent matched normal gastric tissues. Fusion 
of  the SLC1A2 gene coding region to CD44 regulatory 
elements likely causes SLC1A2 transcriptional dysregula-
tion[142]. Thus, the genomics of  GC display high instability 
and all these abnormalities may lead to oncogene activa-
tion and/or tumor suppressor gene inactivation. 

In addition to DNA methylation, microRNAs (miR-
NAs) and histone modifications are important epigen-
etic modifications, which play critical roles in gastric 
tumorigenesis[143-145]. MiRNAs can function as either 
tumor suppressors or oncogenes depending upon their 
target genes. Many tumor suppressor miRNAs that target 
growth-promoting genes are downregulated in human 
cancers, whereas oncogenic miRNAs that target growth 
inhibitory pathways are often upregulated in cancer 
cells[146]. For example, miR-9 and miR-433, which target 
tumor-associated genes GRB2 and RAB34 respectively, 
are significantly down-regulated in GC as compared 
with adjacent normal tissues[147]. MiR-146a, which targets 
both EGFR and IRAK1, is related to survival and may 
be a prognostic factor in GC[88]. Histones are structural 
proteins of  chromatin and are composed of  five basic 
proteins: H1, H2A, H2B, H3 and H4. The N-terminal 
tails of  histones are subject to posttranslational covalent 
modifications, including methylation, acetylation, ubiq-
uitination, sumoylation, phosphorylation, proline isom-
erization and ADP ribosylation. These modifications can 
alter chromatin remodeling, and histone acetylation and 
methylation are associated with pathological epigenetic 
disruption in cancer cells[148,149]. High levels of  H3K4me3 
(trimethylation of  lysine 4 on histone H3), H3K36me3, 
H3K79me3, H4K20me1, H3K27ac, H2BK5ac are as-
sociated with actively transcribed genes. In contrast, low 
levels of  acetylation and high levels of  methylation of  
H3K27, H3K9 and H4K20 are associated with transcrip-
tional repression[144]. For example, H3K9me3 is positively 
correlated with tumor stage, lymphovascular invasion, tu-
mor recurrence and poor survival, indicating that histone 
modification may be a useful predictor for poor prog-
nosis of  GC patients[150]. Collectively, these observations 
suggest that miRNAs and histone modification may play 
a key role in gastric carcinogenesis and are closely associ-
ated with worse prognosis of  cancer patients.

TRANSLATIONAL PROMISES IN GC
GC is a complex disease that involves multiple risk fac-
tors and multiple genetic/epigenetic alterations. Cur-
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rently, surgical resection and chemotherapy are important 
strategies for GC treatment. However, despite recent 
advances in perioperative and adjuvant chemotherapy, 
most patients with advanced GC still have a poor prog-
nosis. Thus, a better understanding of  the pathogenetic 
mechanisms of  GC may lead to new diagnostic, thera-
peutic and preventive approaches to this disease. Screen-
ing and treatment of  H. pylori infection, restriction of  
dietary salt, and a diet rich in fresh fruits and vegetables 
can decrease the risk of  GC and prevent GC[20]. In ad-
dition, identification of  genetic and epigenetic markers 
in GC patients may be an encouraging factor to advance 

individualized and targeted therapies. 
In recent years, in the ToGA study, trastuzumab, 

which is a specific antibody for ERBB2, has been ap-
proved as a current standard of  chemotherapy in 
ERBB2-positive GC patients[151,152]. Given that VEGF 
overexpression is often found in GC, and is related to 
tumor aggressiveness, VEGF may thus become a valid 
target for antiangiogenic therapy[153,154]. Anti-VEGF 
agents have recently been developed, including mAbs 
and TKIs (the tyrosine kinase inhibitors). Bevacizumab, 
the VEGF monoclonal antibody, is currently being inves-
tigated for GC treatment in combination with different 
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Table 1  Genetic alterations in gastric cancer

Genes Alterations Function Pathology Prognosis Ref.

Tumor suppressor genes
   TP53 Mutation/LOH Transcription factor Both Association with poor survival [42,46,48,182]
   APC Mutation/ LOH Signal transduction Intestinal Association with poor survival [48,98,99]
   CDHI Mutations/LOH Adhesion Diffuse Association with poor survival [48,102,106,183,184]
   hMLH1/hMSH2 Mutations DNA mismatch repair Both Association with poor survival and microsatellite 

instability 
[10,140,185]

   p16 Mutations/LOH Cell cycle Both LOH of p16 association with lymph metastasis [48,136,186,187]
   RIZ Mutations/LOH Nuclear 

histone/protein 
methyltransferase

- Association with microsatellite instability [188-190]

   hMSH3 Mutations DNA mismatch repair - Association with microsatellite instability [191,192]
   hMSH6 Mutations DNA mismatch repair - Association with microsatellite instability [191,192]
   PTEN Mutations/LOH protein tyrosine 

phosphatases
Both Association with TNM stage, lymph node 

metastasis and poor survival
[65,66,193,194]

   bcl-2 LOH Apoptosis inhibitor Intestinal Association with invasion depth and lymph node 
metastasis

[182,195]

   DCC LOH Cell adhesion Intestinal Association with poor survival [48,196]
   NM23 LOH Nucleoside 

diphosphate kinase 
Both Association with metastasis and poor survival [197-199]

   p21 Loss Cell cycle Both Association with poor survival [51]
   FHIT LOH Purine metabolism Both Association with invasive depth and  

microsatellite instability
[200]

   BRCA1 LOH Genetic instability Both Association with poor survival [201,202]
Oncogenes
   β-Catenin Mutations Adhesion, Intestinal Association with poor survival and EBV-

associated GC
[10,58,97]

Signal transduction
   BRAF Mutations Signal transduction Both Association with microsatellite instability [71,203]
   K-Ras Mutations Signal transduction Intestinal Association with poor prognosis and 

microsatellite instability 
[57,71-73,204]

   PIK3CA Amplification Signal transduction Both Association with poor survival [55-58]
Mutations

   EGFR Amplification Growth factor receptor Both Association with poor survival [57,81,205]
Tyrosine kinases

   ERBB2 Amplification Growth factor 
Receptor 

Intestinal Association with poor survival [68,81-85,205]

Mutations Tyrosine kinases
   ERBB3 Overexpression Growth factor receptor Diffuse Association with poor survival [68,81,85]

Tyrosine kinases 
   ERBB4 Amplification Growth factor receptor Both Association with poor survival [86]

Tyrosine kinases
   c-Met Amplification Growth factor receptor Diffuse Association with poor survival [86,206]
   KSAM Amplification Growth factor receptor Diffuse Association with poor survival [207]
   VEGF Overexpression Growth factor Intestinal Association with metastasis and poor survival [153,154,208]
   CD44 Amplification Cell adhesion Both Association with metastasis and poor survival [86,209]
   PRL3 Amplification Cell signaling 

molecules
Both Association with metastasis and poor survival [210,211]

   c-Myc Amplification Transcription factor Intestinal Association with poor survival [212,213]
   Cyclin E Amplification Cell cycle regulator Both Association with poor survival [208,214]

LOH: Loss of heterozygosity.
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chemotherapeutic compounds in a phase Ⅲ (AVAGAST) 
study. Strikingly, adding bevacizumab to chemotherapy is 
associated with significant increases in PFS (progression-
free survival) and overall response rate in the first-line 
treatment of  advanced GC[155]. Apatinib, a TKI that se-
lectively targets VEGFR-2 (a type Ⅲ receptor tyrosine 
kinase), has been investigated in a phase Ⅱ clinical trial 

that shows that apatinib improved PFS and OS (overall 
survival) in heavily pretreated patients with metastatic 
GC[156]. Other anti-VEGF agents, such as ramucirumab, 
sunitinib, sorafenib and cediranib, have also been investi-
gated for GC treatment[157].

Specific inhibitors against molecular target EGFR 
have been developed in GC treatment although not com-
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Table 2  Epigenetic alterations in gastric cancer

Genes Function Prognosis Detected in serum Ref.

DNA methylation
   BRCA1 DNA repair Association with age - [215]
   hMLH1 DNA repair Association with poor survival Yes [75,216]
   MGMT DNA repair Association with poor survival - [75]
   RASSF1A DNA repair/Cell cycle Association with poor survival Yes [74,76,77]
   CDH1 Cell invasion/Metastasis Association with poor survival Yes [105,106,138,139,216,217]
   RASSF2 DNA repair/Cell cycle Association with poor survival - [75]
   P16 Cell cycle Association with poor survival Yes [75,137-139,218]
   IGFBP3 Cell cycle Association with lymph node metastasis - [219]
   CHFR Cell cycle Association with invasion depth, 

differentiation and lymph node metastasis
- [218,220]

   P15 Cell cycle - Yes [139,221]
   ADAM23 Cell invasion/metastasis - - [222,223]
   APC Cell invasion, Metastasis, Association with poor survival Yes [216]

Signal transduction
   LOX Cell invasion and metastasis Association with Helicobacter pylori-positive 

individuals
- [22]

   TIMP3 Cell invasion and metastasis Association with poor survival Yes [74,216]
   HAND1 Cell differentiation Association with poor survival - [22,75]
   MLF1 Cell differentiation Association with lymph node metastasis - [75,223]
   PRDM5 Cell differentiation - - [223,224]
   RORA Cell differentiation - - [223]
   NDRG2 Cell differentiation Association with lymph node metastasis - [225]
   BNIP3 Apoptosis Association with poor survival - [226,227]
   DAPK Apoptosis Association with poor survival Yes [74,139,218,227,228]
   TMS Apoptosis Association with poor survival - [228]
   FHIT Apoptosis Association with lymph node metastasis - [105]
   GSTP1 Apoptosis Association with EBV-related gastric cancer Yes [139,229]
   FLNc Cell morphology Association with poor survival - [75]
   RUNX3 Transcriptional factor, Signal 

transduction
Association with poor survival Yes [120,122,123,218,220]

   ZNF545 Transcriptional factor Association with poor survival - [230]
   RARβ Signal transduction Association with poor survival Yes [74,138]
   HRASLS Signal transduction - - [75]
   SFRP2 Signal transduction - - [108,231]
   SFRP1 Signal transduction Association with lymph node metastasis - [231]
MicroRNAs
   let-7g Tumor suppressor Association with invasion depth, lymph node 

metastasis
- [232]

   miR-433 Tumor suppressor Association with invasion depth, lymph node 
metastasis

GRB2 [147,232]

   miR-1 Tumor suppressor Association with tumor stage - [233]
   miR-20a Tumor suppressor Association with tumor stage - [233]
   miR-27a Tumor suppressor Association with tumor stage - [233]
   miR-34 Tumor suppressor Association with tumor stage Bcl-2, Notch, and HMGA2 [233,234]
   miR-423-5p Tumor suppressor Association with tumor stage - [233]
   miR-125a-5p Tumor suppressor Association with tumor size, invasion, ERBB2 [87]

liver metastasis, and poor survival
   miR-146a Tumor suppressor Association with lymph node metastasis, 

venous invasion, and poor survival
EGFR, IRAK1 [87]

   miR-9 Tumor suppressor - RAB34, CDX2, and NF-kB1 [147,234,235]
   miR-375 Tumor suppressor - PDK1, 14-3-3zeta [236]
   miR-433 Tumor suppressor - GRB2 [147]
   miR-214 Oncogenesis Association with invasion depth and lymph 

node metastasis
- [232]

   miR-130b Oncogenesis - RUNX3 [121]
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pletely effective and they need further investigation. Anti-
EGFR mAbs and TKIs are currently undergoing clinical 
trials for GC patients. Cetuximab has shown some en-
couraging results when combined with other chemothera-
peutic agents in phase Ⅱ trials, whereas the phase Ⅲ trial 
(EXPAND) demonstrates that addition of  cetuximab 
to capecitabine-cisplatin provided no additional benefit 
to chemotherapy alone in the first-line treatment of  ad-
vanced GC[158]. Lapatinib, a TKI, inhibits both EGFR and 
ERBB2 kinases. Although a poor objective response rate 
has been observed in the phase Ⅱ studies[159,160], phase 
Ⅲ studies are evaluating the role of  lapatinib in conjunc-
tion with chemotherapy[161]. Compounds against other 
novel targets, such as mechanistic target of  rapamycin 
mTOR (everolimus)[162,163], hepatocyte growth factor re-
ceptor c-Met (foretinib[163] and rilotumumab[152]), KSAM 
(AZD4547)[152], MMP (marimastat)[164], and protein kinase 
C (bryostatin-1)[165], have also been investigated in GC.

Epigenetic changes in DNA are reversible, differ-
ent from genetic changes, and they represent very at-
tractive targets for new therapeutic approaches. Several 
epigenetic drugs targeting DNA methylation and histone 
deacetylation enzymes have been investigated in clinical 
trials. Treatments targeting cancer are designed to inhibit 
either the function of  DNMTs or histone deacetylase 
(HDAC). DNMT inhibitors are divided into two families: 
the nucleoside analogs and the non-nucleoside inhibi-
tors. The three most commonly used catalytic inhibitors 
of  DNMTs are the nucleoside analogs 5-azacytidine, 
5-aza-2-deoxycytidine, and zebularine. The first DNA 
methylation inhibitor 5-azacytidine (azacitidine) and 
5-aza-2-deoxycytidine (decitabine) have been recently 
approved by the FDA for treatment of  myelodysplastic 
syndromes (MDS) and primary cutaneous T-cell lym-
phoma (CTCL)[166-168]. However, 5-azacytidine and 5-aza-
2-deoxycytidine have a weak response in solid tumors[169]. 
SGI-110, a second generation DNMT inhibitor, is be-
ing investigated in phase Ⅱ clinical trials for the treat-
ment of  MDS and acute myeloid leukemia(AML)[170,171]. 
Zebularine and 5-azacytidine need to be incorporated 
into DNA to trap DNMTs; they may have additional 
nonspecific toxicities, whereas non-nucleoside molecules, 
such as EGCG and genistein, do not rely on DNA in-
corporation. EGCG, the main polyphenol of  green tea, 
and genistein have been characterized as enzymatic and 
cellular DNMT inhibitors[172,173]. Other commonly used 
drugs have been shown to bring about DNA demethyl-
ation, such as procainamide and hydralazine[174]. HDAC 
inhibitors (HDACis) now also are considered as potential 
therapeutics. Trichostatin A (TSA) and suberoylanilide 
hydroxamic acid (SAHA) are the classic HDACis. HDAC 
inhibitors can induce cell differentiation, apoptosis, and 
growth suppression and may be an innovative approach 
in GC treatment[175]. Vorinostat (SAHA), also known as 
suberoylanilide hydroxamic acid, is the first clinically ap-
proved HDACi, which has been recently approved for 
clinical use in CTCL[176]. Preclinical studies have shown 
that vorinostat has potential antitumor activity, including 
in GC, and may improve clinical outcomes for GC pa-

tients[177]. A phase Ⅰ study of  vorinostat combined with 
capecitabine and cisplatin has been performed to assess 
the recommended phase Ⅱ trial dose in patients with 
advanced GC[178]. These findings suggest that a new area 
of  potential interest is the development of  histone meth-
yltransferase (HMTase) inhibitors. HMTase inhibitors 
may be used therapeutically to activate silenced tumor 
suppressor genes. 

CONCLUSION
In addition to environmental factors, gastric carcinogen-
esis involves complex genetic and epigenetic alterations. 
It is now well established that genetic/epigenetic altera-
tions can be driver events in the progression of  normal 
gastric mucosa to cancer. Moreover, these alterations also 
contribute to the molecular heterogeneity of  GC, as illus-
trated by the identification of  molecular subtypes of  GCs 
that can be identified by their unique genetic/epigenetic 
signatures. Given the role of  these molecular events in 
directing the pathogenesis of  GC, studying their signa-
tures and developing them as biomarkers for diagnosis, 
prognosis and direction of  therapy is likely to yield clini-
cally useful assays that will be used to direct patient care. 

In recent years, a large number of  biomarkers have 
been developed for the early detection and prognostic 
evaluation of  GC, as well as for predicting response to 
relevant therapies. However, in many important diagnos-
tic scenarios, DNA from the cancer cells represents only 
a small fraction of  the total DNA in the clinical sample, 
such as plasma, serum, urine, feces, or sputum. An excit-
ing evolution of  the development of  biomarkers is the 
improvement of  the biotechnology, such as next genera-
tion sequencing or deep sequencing, which now allows us 
to profile genetic/epigenetic alterations at a much higher 
sensitivity and genomic scale previously not possible[179,180].

Although recent diagnostic and therapeutic advances 
have provided excellent survival for patients with early 
GC, patients are usually diagnosed at an advanced stage 
and the prognosis is still dismal[181]. Thus, there is a press-
ing need to develop effective therapeutic strategies for 
this disease. Increasing evidence has demonstrated that 
combinations of  various targeted agents with chemother-
apies will be an effective strategy for GC treatment. In 
addition, continued efforts to investigate these molecular 
events will allow for a better understanding of  the patho-
genesis of  GC and will lead to the translation of  these 
insights into the clinical arena.
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