

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.3748/wjg.v20.i38.14040 World J Gastroenterol 2014 October 14; 20(38): 14040-14050 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2014 Baishideng Publishing Group Inc. All rights reserved.

META-ANALYSIS

Accuracy of early detection of colorectal tumours by stool methylation markers: A meta-analysis

Hu Zhang, Jian Qi, Ya-Qiong Wu, Ping Zhang, Jun Jiang, Qi-Xian Wang, You-Qing Zhu

Hu Zhang, Jian Qi, Qi-Xian Wang, You-Qing Zhu, Department of Gastroenterology and Clinical Centre of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China

Ya-Qiong Wu, Department of Dermatology, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui Province, China Hu Zhang, Ping Zhang, Jun Jiang, Department of Gastroenterology, Hubei Provincial Corps Hospital, Chinese People's Armed Police Force, Wuhan 430061, Hubei Province, China

Author contributions: Zhu YQ and Qi J designed this study and critically revised the article; Zhang H and Qi J were responsible for data acquisition and extracting the data; Zhang H drafted the manuscript, analysed the data and interpreted the results; Wu YQ, Zhang P, Jiang J and Wang QX were involved in editing the manuscript; all authors read and approved the final manuscript to be published.

Correspondence to: Jian Qi, PhD, Department of Gastroenterology and Clinical Centre of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, Hubei Province, China. qiqidelizi@aliyun.com

Telephone: +86-27-87336141 Fax: +86-27-87336141 Received: January 24, 2014 Revised: April 24, 2014 Accepted: June 26, 2014 Published online: October 14, 2014

Abstract

AIM: To evaluate the accuracy of methylation of genes in stool samples for diagnosing colorectal tumours.

METHODS: Electronic databases including PubMed, Web of Science, Chinese Journals Full-Text Database and Wanfang Journals Full-Text Database were searched to find relevant original articles about methylated genes to be used in diagnosing colorectal tumours. A quality assessment of diagnostic accuracy studies tool (QADAS) was used to evaluate the quality of the included articles, and the Meta-disc 1.4 and SPSS 13.0 software programs were used for data analysis.

RESULTS: Thirty-seven articles met the inclusion

criteria, and 4484 patients were included. The sensitivity and specificity for the detection of colorectal cancer (CRC) were 73% (95%CI: 71%-75%) and 92% (95%CI: 90%-93%), respectively. For adenoma, the sensitivity and specificity were 51% (95%CI: 47%-54%) and 92% (95%CI: 90%-93%), respectively. Pooled diagnostic performance of SFRP2 methylation for CRC provided the following results: the sensitivity was 79% (95%CI: 75%-82%), the specificity was 93% (95%CI: 90%-96%), the diagnostic OR was 47.57 (95%CI: 20.08-112.72), the area under the curve was 0.9565. Additionally, the results of accuracy of SFRP2 methylation for detecting colorectal adenomas were as follows: sensitivity was 43% (95%CI: 38%-49%), specificity was 94% (95%CI: 91%-97%), the diagnostic OR was 11.06 (95%CI: 5.77-21.18), and the area under the curve was 0.9563.

CONCLUSION: Stool-based DNA testing may be useful for noninvasively diagnosing colorectal tumours and *SFRP2* methylation is a promising marker that has great potential in early CRC diagnosis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Colorectal carcinoma; Colorectal adenoma; Stool; Methylation; Meta-analysis

Core tip: The analysis of stool methylation markers as a non-invasive test is important for the early diagnosis of colorectal tumours. However, no consensus has been reached with regard to the role of stool methylation markers in colorectal tumour diagnosis. We performed a meta-analysis of 37 articles, and the pooled results showed that stool methylation markers could be used as a valuable diagnostic and predictive tool for colorectal tumours, and that *SFRP2* methylation serves as a promising marker with great potential in early colorectal cancer diagnosis.

Zhang H, Qi J, Wu YQ, Zhang P, Jiang J, Wang QX, Zhu YQ.

WJG www.wjgnet.com

Accuracy of early detection of colorectal tumours by stool methylation markers: A meta-analysis. *World J Gastroenterol* 2014; 20(38): 14040-14050 Available from: URL: http://www.wjgnet. com/1007-9327/full/v20/i38/14040.htm DOI: http://dx.doi. org/10.3748/wjg.v20.i38.14040

INTRODUCTION

Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths in Western countries^[1,2]. A 5-year survival rate for stage I CRC has reached 90%^[3], but less than 10% for CRC cases who have distant metastases^[4]. However, most CRC patients are diagnosed in the middle or late stages because no typical symptoms for the early stage of CRC exist^[5]. Therefore, the diagnosis of CRC in early stages has great importance for reducing CRC mortality.

Early diagnosis of colorectal cancer will help to reduce mortality and the costs for surgery. Currently, the colonoscopy screening test is of high efficacy, but the acceptability of this procedure in the general public is rather low. As an available non-invasive method, faecal testing has a unique advantage when compared to other screening modalities. Although faecal occult blood testing (FOBT) has been confirmed to reduce mortality due to CRC, the test has little or no impact on the incidence of CRC because of its low-level sensitivity to adenoma^[6], *i.e.*, a sensitivity of only 10%-20%^[7]. Compared to FOBT, the most important advantage of a methylation marker test in stool samples is its higher accuracy and sensitivity for the diagnosis of premalignant lesions of CRC^[8].

DNA methylation often occurs in the early stages of CRC, and many studies have been performed on the diagnosis of colorectal tumours by determining the methylation of genes in stool samples. However, the results of these studies are variable although inspiring. Thus, this meta-analysis will be conducted to assess the accuracy of the detection of colorectal tumours by the methylation of genes in stool samples.

MATERIALS AND METHODS

Search strategy

A literature search was performed independently by two investigators (Zhang H and Qi J) using the following databases: Pubmed, Web of Science, Chinese Journals Full-Text Database and Wanfang Journals Full-Text Database. All references that were cited in these studies and all published reviews were also searched. All English and Chinese references for analysis were published before January 2014. The following keywords were used in the search strategy: "colon/rectal/colorectal", "cancer/tumours", "stool", and "methylation". In this meta-analysis, 2×2 tables were constructed from each study for the true-positive, false-negative, and true-negative and falsepositive values.

Inclusion and exclusion criteria

Eligible studies were required to meet all of the following criteria: (1) the data were independent; (2) the CRC was diagnosed using DNA methylation analysis in stool sample; (3) the patients were diagnosed with colorectal cancer or colorectal adenomas by pathology; and (4) the colonoscopy result of the control individuals was normal.

Exclusion criteria for this meta-analysis were as follows: (1) studies on secondary CRC or primary CRC with other organ metastases; and (2) studies on CRC patients receiving chemotherapy or curative surgery.

Data extraction and quality assessment

The following data were extracted from each study: author, year of publication, country or region, sample size, the name of genes, the detection method of methylation and the study design. The data were independently extracted by two investigators (Zhang H and Qi J), and discrepancies were solved by a third investigator (Zhu YQ) and collective discussion. Quality Assessment of Studies of Diagnostic Accuracy (QUADAS)^[9] was used to assess the quality of the primary studies with diagnostic accuracy, and quality scoring was appraised based on the empirical evidence, the experts' opinions and the formal consensus. Score of 1, 0 and -1 were given to the articles that were in compliance with the standards completely, unclear or out of standards, respectively, and the full score was 14.

Statistical analysis

All statistics were calculated and then combined using a random-effects model and 95%CI as effect measurements. The diagnostic odds ratio (DOR) reflects the relationship between the result of the diagnostic test and the disease. The summary receiver operation characteristic (SROC) curve displays the trade-off between sensitivity and specificity and represents a global summary of test performance. We used the Q-value, which is the intersection point of the SROC curve with a diagonal line from the left upper corner to the right lower corner of the receiver operation characteristic (ROC) space, which corresponds to the highest value of sensitivity and specificity for the test. The positive likelihood ratio (PLR) represents the value by which the odds of the disease increase when a test is positive, whereas the negative likelihood ratio (NLR) shows the value by which the odds of the disease decrease when a test is negative. Statistical heterogeneity was assessed using the χ^2 test, and alpha significance testing was performed at the two-tailed 0.05 level. The professional statistical software programs (Meta-DiSc 1.4 and SPSS 13.0) were used for analysis. Publication bias was assessed by Egger analysis.

RESULTS

The literature search retrieved 541 citations, 408 of which were excluded because they were duplicates. Of the 133 potentially eligible studies, 96 publications were excluded

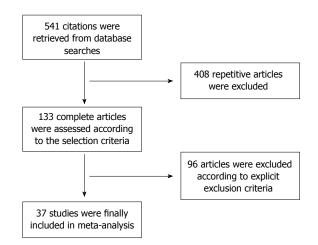


Figure 1 Flowchart of the study selection.

because they did not investigate colorectal tumour or human stool studies (n = 21), included no diagnostic value studies (n = 20), were reviews (n = 27) or had overlapping data (n = 28). Finally, 37 studies that focused on the target patient spectrum were included (Figure 1).

Study characteristics

Of the 37 studies, 7 were Chinese and 30 were English, and they included 4484 patients (Table 1). These studies were performed in 10 countries or regions (including China, the United States, the Netherlands, Spain, Japan, Germany, Iran, Hong Kong, Austria and South Korea). In these studies, 34 evaluated CRC, and 26 evaluated colorectal adenoma. Twenty-four studies focused on the methylation of a single gene, and the other 13 studies involved the methylation of multiple genes.

Genes evaluated in these studies were mainly involved in three types of regulation pathways: the Wnt pathway, the DNA damage repair pathway and other pathways. Five genes of the Wnt pathway were involved in 11 studies: secreted frizzled-related proteins (SFRP1, SFRP2, SFRP5), Adenomatous Polyposis Coli (APC) and WNT2. Two genes of the DNA damage repair pathway were involved in 7 of the studies: O-6-Methylguanine-DNA Methyltransferase (MGMT) and MutL Homologue 1(MLH1). Twenty-nine studies involved 22 genes of other pathways: Vimentin, Oncostain M Receptor- β (OSMR), Phosphatase and Actin Regulator 3 (PHACTR3), Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A), Tissue Factor Pathway Inhibitor (TFPI2), Hyperplastic Polyposis Protein Gene (HPP1), GATA4, Human Lactoferrin (HLTF), ATM, Ras Association Domain Family2 (RASSF2), RARB2, Hypermethylated In Cancer 1 (HIC), Engrailed gene (EN1), N-Myc Downstream-Regulated Gene family (NDRG4), IGTA4, T-cell differentiation protein (MAL), Spastic Paraplegia-20 ISPG20), Fibrillin-1 (FBN1), AGTR1, SLIT2, SEPT9 and Angiotensin II type 1 receptor gene (AGTR1).

Qualitative and quantitative methods were the two main types of methods used for methylation detection. The qualitative method included methylation-specific PCR (MSP) and methylation-specific melting curve analysis (MS-MCA). The quantitative method included Methyl-BEAMing; quantitative MSP (qMSP); Methy-Light; combined bisulfite restriction analysis (COBRA); pyrosequencing; and quantitative, allele-specific, real-time target and signal amplification (QuARTS).

Colorectal carcinoma meta-analysis

The colorectal carcinoma results were pooled from 34 studies and are shown in Table 2. The meta-analysis showed that the sensitivity and specificity of the detection of colorectal carcinoma by the methylation of genes were 73% (95%CI: 71%-75%) and 92% (95%CI: 90%-93%), respectively. The positive likelihood ratio was 8.07 (95%CI: 6.26-10.41), the negative likelihood ratio was 0.31 (95%CI: 0.25-0.38), the diagnostic odds ratio was 31.49 (95%CI: 23.25-42.64), and the symmetric area under the curve was 0.9281.

Heterogeneity was significant for the sensitivity (P < 0.001), specificity (P = 0.0008), positive likelihood ratio (P = 0.0025), negative likelihood ratio (P < 0.001), and diagnostic odds ratios (P = 0.0340).

Of the involved regulation mechanisms, we found that DOR and AUC of the methylated genes belonging to the Wnt pathway were higher than those of genes of the DNA damage repair pathway and other pathways. The sensitivity, specificity, DOR and AUC of different methylated genes in the three types of pathways were calculated (Table 2), and the results indicated that the accuracy of faecal *SFRP2* methylation in the diagnosis of colorectal carcinoma was higher than that of other genes, with a sensitivity of 79% (95%CI: 75%-82%) (Figure 2A), a specificity of 93% (95%CI: 90%-96%) (Figure 2B), a diagnostic OR of 47.57 (95%CI: 20.08-112.72), and an area under the curve of 0.9565 (Figure 2C).

Colorectal adenoma meta-analysis

Pooled colorectal adenoma analysis (Table 3), including 26 studies, provided the following results: the sensitivity and specificity of gene methylation for colorectal adenoma diagnosis were 51% (95%CI: 47%-54%) and 92% (95%CI: 90%-93%), respectively. The positive likelihood ratio was 5.52 (95%CI: 4.23-7.19), the negative likelihood ratio was 0.52 (95%CI: 0.44-0.61), and the diagnostic odds ratio and symmetric area under the curve were 12.61 (95%CI: 8.66-18.37) and 0.8830, respectively.

Heterogeneity was also clear regarding sensitivity (P < 0.001), specificity (P = 0.0233), positive likelihood ratio (P = 0.1166), negative likelihood ratio (P < 0.001), and diagnostic odds ratios (P = 0.0565).

The DOR and AUC of the methylated Wnt pathway genes were higher than those of the genes of the DNA damage repair pathway and other pathways when grouping all of the genes by pathway for analysis. In these regulation mechanisms, we also found that the Wnt pathway was higher than the DNA damage repair pathway and the other pathway group. The sensitivity, specificity, DOR and AUC of the different methylated genes in the three types of pathways were calculated (Table 3), and

Ref.	Country/region	Methylation of genes	n	C	RC	Ade	noma	No	rmal	Blind design	Detection method	QUADA
				+	-	+	-	+	-	uesigii	method	score
Ahlquist <i>et al</i> ^[10] 2012	Ireland	Vimentin/NDRG4/BMP3/ TFPI2	98	26	4	18	4	5	41	Yes	QuARTS	11
Bosch <i>et al</i> ^[11] 2011	The Netherlands	PHACTR3	185	40	25	6	13	4	97	Unclear	qMSP	10
		GATA4	160	29	11	3	16	6	95			
[10]		OSMR	185	25	40	4	15	7	94			
Ahlquist <i>et al</i> ^[12] 2011	Ireland	PHACTR3	639	214	38	51	43	29	264	Yes	QuARTS	11
Azuara <i>et al</i> ^[13] 2010	Spain	RARB2/P16/MGMT/APC	98	25	13	20	20	0	20	Yes	MS-MCA	10
		RARB2	85	11	23	7	31	0	13			
		P16	77	9	21	6	28	0	13			
		MGMT	80	9	19	3	34	0	15			
		APC	77	9	19	9	25	0	15			
Tang <i>et al</i> ^[14] 2011	China	SFRP2	262	142	27	29	34	2	28	Yes	MSP	9
Baek <i>et al</i> ^[15] 2009	South Korea	Vimentin/MGMT/MLH1	149	45	15	31	21	5	32	Yes	MSP	9
		MLH1	149	18	42	6	46	0	37			
		Vimentin	149	23	37	8	44	0	37			
		MGMT	149	31	29	19	33	5	32			
Li <i>et al</i> ^[16] 2009	United States	Vimentin	80	9	13	9	11	2	36	Unclear	Methyl- BEAMing	5
Melotte <i>et al</i> ^[17] 2009	The Netherlands	NDRG4	150	42	33	NR	NR	3	72	Yes	qMSP	11
Ausch <i>et al</i> ^[18] 2009	United States	IGTA4	37	NR	NR	7	2	6	22	Unclear	qMSP	4
Hellebrekers <i>et al</i> ^[19] 2009	The Netherlands	GATA4	150	44	31	NR	NR	9	66	Yes	qMSP	10
Mayor <i>et al</i> ^[20] 2009	Spain	EN1	60	8	22	NR	NR	1	29	Unclear	MS-MCA	7
Kim <i>et al</i> ^[21] 2009	United States	OSMR/SFRP1	42	12	8	6	11	0	5	Yes	qMSP	9
		OSMR	201	35	54	2	14	4	92			
		SFRP1	52	11	9	5	12	0	15			
Nagasaka <i>et al^[22]</i> 2009	Japan	SFRP2	253	53	31	18	38	9	104	Unclear	COBRA	10
0	. 1	RASSF2	253	38	46	7	49	6	107			
Glöckner <i>et al</i> ^[23] 2009	United States	TFPI2	129	44	14	7	19	2	43	Yes	qMSP	12
Wang <i>et al</i> ^[24] 2008	China	SFRP2	133	60	9	21	13	2	28	Yes	MethyLight	8
Oberwalder <i>et al</i> ^[25] 2008	Australia	SFRP2	19	NR	NR	6	7	0	6	Yes	MethyLight	9
Itzkowitz <i>et al</i> ^[26] 2008	United States	Vimentin	80	9	13	9	11	2	36	Yes	MSP	13
Huang et $al^{[27]}$ 2007	China	SFRP2/HPP1/MGMT	97	50	2	15	6	1	23	Yes	MSP	8
Truang et al 2007	Ciuita	SFRP2	97	49	3	11	10	1	23	165	IVISI	0
		HPP1	97	37	15	12	9	0	23			
		MGMT	97	25	27	6	15	0	24			
Itzkowitz <i>et al</i> ^[28] 2007	United States	Vimentin/HLTF	162	31	9	NR		19	103	Yes	MSP	13
ILZKOWILZ ET UL 2007	Officed States	HLTF	162	15	25	NR	NR	9	113	165	IVISI	15
		Vimentin	162	29	11	NR	NR	16	106			
Abbaszadegan <i>et al</i> ^[29] 2007	Hong kong	p16	45	29 5	20	NR	NR	0	20	Unclear	MSP	8
Zhang et $al^{[30]}$ 2007	Germany	SFRP1	43 44	16	4	7	0	2	20 15	Yes	MSP	9
Leung et al ^[31] 2007	5				4		7	2	27			
Leung et al. 7 2007	Hong kong	SFRP2/MGMT/MLH1/ HLTF/ATM/APC	75	16		18				Yes	MSP	13
		SFRP2	75	6	14	3	22	2	28			
		MGMT	75	4	16	3	22	0	30			
		MLH1	75	4	16	3	22	0	30			
		HLTF	75	5	15	5	20	1	29			
		ATM	75	5	15	5	20	0	30			
. [22]		APC	75	4	16	4	21	0	30			
Petko <i>et al</i> ^[32] 2005	United States	MGMT/CDKN2A/MLH1	48	NR	NR	16	13	7	12	Yes	MSP	9
		CDKN2A	48	NR	NR	9	20	3	16			
		MGMT	48	NR	NR	14	15	5	14			
		MLH1	48	NR	NR	0	29	2	17			
Lenhard et al ^[33] 2005	Germany	HIC1	71	11	15	4	9	0	32	Yes	MSP	11
Chen et al ^[34] 2005	United States	Vimentin	263	43	51	6	44	8	111	Yes	MSP	11
Müller <i>et al</i> ^[35] 2004	Australia	SFRP2/SFRP5	39	20	3	NR	NR	8	8	Unclear	MethyLight	5
		SFRP2	39	19	4	NR	NR	4	12			
		SFRP5	39	18	5	NR	NR	5	11			
Xu et al ^[36] 2012	China	SFRP2	90	20	10	15	15	1	29	Unclear	MSP	5
Kang et al ^[37] 2011	China	MGMT/MAL/CDKN2A	119	64	5	17	7	2	24	Unclear	MSP	7
		MAL	119	54	15	14	10	1	25			
		CDKN2A	119	36	33	10	14	0	26			
		MGMT	119	38	31	9	15	1	25			
Zhang <i>et al</i> ^[38] 2011	China	Vimentin/OSMR/TFPI2	107	52	8	13	4	4	26	Unclear	MSP	9
Zhang et al ¹⁰⁰ 2011	2-11-14	Vimentin	107	32	28	5	12	0	30			ĺ.
					40				00			
		OSMR	107	41	19	7	10	0	30			

Table 1 Characteristics of the included studies in the meta-analysis and quality assessment of studies of diagnostic accuracy scores

Fu et al ^[39] 2010	China	Vimentin	22	5	9	NR	NR	0	8	Unclear	MSP	5
Ling <i>et al</i> ^[40] 2009	China	P16	108	47	14	16	11	1	19	Unclear	MSP	7
Cheng et al ^[41] 2007	China	SFRP2	97	49	3	11	10	1	23	Unclear	MSP	5
Zhao et al ^[42]	China	NDRG4	114	64	20	NR	NR	3	27	Unclear	MSP	6
2009												
Chang et al ^[43] 2010	South Korea	IGTA4/SFRP2/P16	86	21	9	18	7	1	30	Yes	MSP	8
		IGTA4	86	11	19	4	21	0	31			
		SFRP2	86	18	12	11	14	0	31			
		P16	86	12	18	6	19	1	30			
Zhang et al ^[44] 2013	China	SPG20	126	77	19	NR	NR	0	30	Unclear	MSP	7
Carmona et al ^[45] 2013	Spain	AGTR1/WNT2/SLIT2	102	50	14	NR	NR	4	34	Unclear	Pyrosequencing	10
		AGTR1	107	14	54	NR	NR	2	37			
		WNT2	91	21	31	NR	NR	1	38			
		SLIT2	108	37	34	NR	NR	2	35			
		9-Sep	61	7	28	NR	NR	0	26			
		Vimentin	55	18	15	NR	NR	3	19			
Guo et al ^[46] 2013	China	FBN1	105	54	21	NR	NR	2	28		MSP	6

+: Represents the number of individuals when the DNA methylation test was positive; -: Represents the number of individuals when the DNA methylation test was negative; MSP: Methylation-specific PCR; NR: Not reported; *n*: Total number.

Table 2 Methylation of pooled genes for the diagnosis of colorectal cancer

Wnt pathway	DNA damage repair pathway	Other pathways	SE (95%CI)	SP (95%CI)	DOR (95%CI)	AUC
Wnt pathway	DNA damage repair pathway	Other pathways	73% (71%-75%)	92% (90%-93%)	31.49 (23.25-42.64)	0.928
Wnt pathway	-	-	72% (68%-75%)	93% (90%-96%)	33.99 (17.99-60.50)	0.931
-	DNA damage repair pathway	-	42% (36%-47%)	97% (94%-99%)	12.87 (5.98-27.72)	0.730
-	-	Other pathways	57% (55%-59%)	94% (93%-95%)	20.17 (15.18-26.80)	0.921
SFRP2	-	-	79% (75%-82%)	93% (90%-96%)	47.57 (20.08-112.72)	0.957
-	MGMT	-	47% (40%-53%)	95% (90%-98%)	11.67 (5.10-26.67)	0.709
-	MLH	-	28% (18%-39%)	100% (95%-100%)	23.68 (3.02-185.44)	0.500
-	-	Vimentin	49% (43%-54%)	93% (90%-95%)	13.81 (8.57-22.27)	0.847
-	-	OSMR	47% (40%-54%)	95% (91%-98%)	14.66 (5.06-42.47)	0.225
-	-	P16	50% (42%-58%)	98% (92%-100%)	24.39 (7.26-81.96)	0.975
SFRP2	MGMT	-	69% (66%-72%)	94% (91%-96%)	33.24 (16.76-65.93)	0.946
SFRP2	MLH	-	72% (68%-75%)	94% (92%-96%)	43.03 (20.15-91.87)	0.953
SFRP2	MLH	Vimentin	64% (60%-67%)	93% (92%-95%)	24.93 (15.34-40.50)	0.928
SFRP2	MLH	OSMR	65% (62%-69%)	95% (93%-96%)	33.10 (17.12-63.98)	0.951
SFRP2	MLH	P16	68% (64%-71%)	95% (93%-97%)	38.86 (20.11-67.54)	0.952

SE: Sensitivity; SP: Specificity; DOR: Diagnostic odds ratios; AUC: The area under the curve; CI: Confidence interval; MLH: MutL Homologue; MGMT: O-6-Methylguanine-DNA Methyltransferase.

the results indicated that the values of DOR and AUC of *P16* and *SFRP2* were higher than those of other genes, but the accuracy of faecal *SFRP2* methylation for the diagnosis of colorectal adenoma was higher than that of *P16* according to sensitivity (Figure 3A-C).

Meta-regression

In the meta-regression analysis, the difference in relative diagnostic odds ratio values between the higher and lower quality studies was not significant. We also noted that the differences between blinded and non-blinded methods, qualitative and quantitative methods, single and multiple gene methylation did not reach statistical significance, indicating that these potential factors did not substantially affect the diagnostic accuracy, as shown in Table 4.

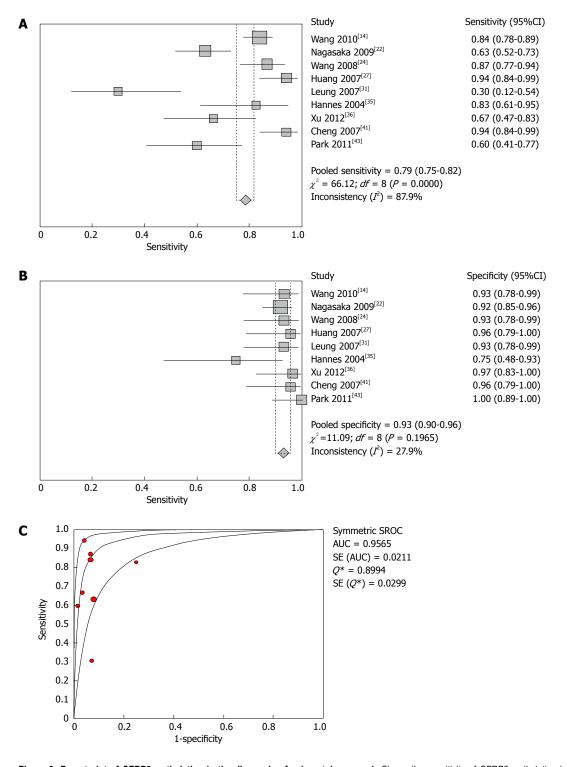
Publication bias

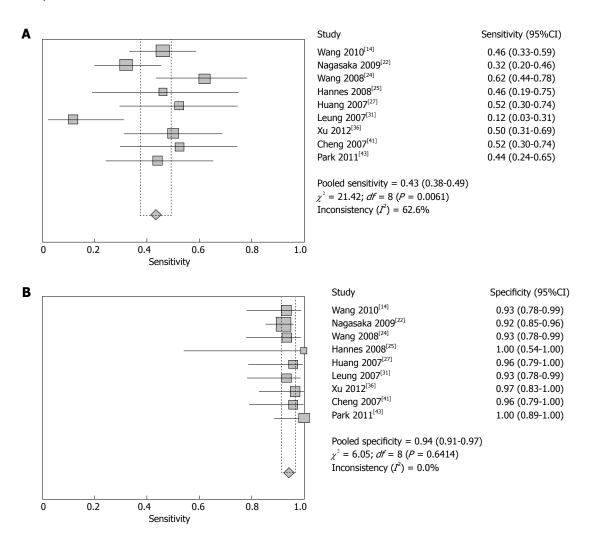
In our meta-analysis, publication bias was evaluated using the Egger test. The results showed no significant publication bias among the studies of *SFRP2* methylation in faecal samples from CRC or adenoma patients (Figures 4A and B).

DISCUSSION

It is widely accepted that DNA methylation in stool may be valuable for increasing the rate of CRC detection at earlier stages^[47]. In the present study, we focused on the detection performance of gene methylation in stool samples for patients with colorectal tumours. Our analysis suggests that the specificity of *SFRP2* methylation is high (93% for CRC and 94% for colorectal adenoma) for the detection of colorectal tumours; however, it has moderate (79%) and low sensitivity (43%) for diagnosing CRC and adenoma, respectively. Compared to FOBT, with a sensitivity of 14% for colorectal tumour diagnosis^[48], the detection accuracy of faecal methylation biomarkers was higher as a CRC-screening method.

The diagnostic odds ratio (DOR) is an indicator of test accuracy. The value of the DOR ranges from 0 to




Figure 2 Forest plot of *SFRP2* methylation in the diagnosis of colorectal cancer. A: Shows the sensitivity of *SFRP2* methylation in stool samples used for colorectal carcinoma diagnosis. The point estimates of specificity from each study are shown as red squares; B: Shows the specificity of *SFRP2* methylation in stool samples used for colorectal cancer diagnosis. The point estimates of specificity from each study are shown as blue squares; C: Shows the summary receiver operating characteristic curves (SROC) of *SFRP2* methylation assays used for diagnosis of colorectal carcinoma. Red circles represent each study that was included in the meta-analysis. The size of each study is indicated by the size of the red circle. SROC curves summarize the overall diagnostic accuracy. Error bars indicate the 95%CI, and df indicates the degrees of freedom.

infinity, and higher values indicate better discriminatory test performance. In this meta-analysis, we found that the DOR of faecal *SFRP2* methylation for colorectal carcinoma and adenoma were 47.57 and 11.06, respectively, which indicated a high level of overall accuracy for CRC

and a low level for adenoma. The SROC curve represents an overall measure of the discriminatory power of a test. The area under the curve of 1 for any test indicates that the test is excellent. Our data showed that the area under the curve (AUC) values of the SROC curve for faecal

Wnt pathway	DNA damage repair pathway	Other pathways	SE(95%CI)	SP(95%CI)	DOR(95%CI)	AUC
Wnt pathway	DNA damage repair pathway	Other pathways	51% (47%-54%)	92% (90%-93%)	12.61 (8.66-18.37)	0.883
Wnt pathway	-	-	40% (35%-46%)	95% (92%-97%)	10.81 (6.43-18.16)	0.932
-	DNA damage repair pathway	-	21% (17%-27%)	95% (91%-97%)	4.23 (2.01-8.88)	0.672
-	-	Other pathways	32% (28%-35%)	94% (93%-95%)	7.78 (5.48-11.05)	0.873
SFRP2	-	-	43% (38%-49%)	94% (91%-97%)	11.06 (5.77-21.18)	0.956
-	MGMT	-	29% (22%-36%)	93% (87%-96%)	4.42 (2.18-8.95)	0.614
-	MLH	-	8% (4%-16%)	98% (92%-100%)	2.35 (0.14-40.83)	-
-	-	Vimentin	23% (17%-31%)	95% (92%-98%)	8.30 (2.60-26.55)	0.898
-	-	OSMR	25% (14%-39%)	95% (91%-98%)	5.20 (1.44-18.82)	0.817
-	-	P16	33% (23%-44%)	97% (89%-100%)	13.27 (3.40-51.83)	0.97
SFRP2	MLH	-	34% (29%-39%)	95% (92%-97%)	9.62 (4.64-19.93)	0.947
SFRP2	MGMT	-	38% (33%-42%)	94% (91%-96%)	7.85 (4.79-12.87)	0.753
SFRP2	-	OSMR	41% (35%-46%)	95% (92%-96%)	9.25 (5.13-16.69)	0.948
SFRP2	-	Vimentin	36% (32%-41%)	95% (93%-96%)	9.88 (5.55-17.57)	0.946
SFRP2	-	P16	41% (36%-46%)	95% (92%-97%)	10.37 (6.21-17.31)	0.948
SFRP2	MGMT	Vimentin	34% (30%-38%)	94% (92%-96%)	7.81 (4.96-12.29)	0.804
SFRP2	MGMT	OSMR	36% (32%-41%)	94% (92%-96%)	7.25 (4.61-11.39)	0.775
SFRP2	MGMT	P16	37% (33%-41%)	94% (92%-96%)	7.92 (5.14-12.21)	0.772
SFRP2	MLH	Vimentin	31% (27%-35%)	95% (93%-97%)	8.99 (4.95-16.31)	0.944
SFRP2	MLH	OSMR	33% (29%-38%)	95% (93%-97%)	8.37 (4.50-15.59)	0.941
SFRP2	MLH	P16	34% (30%-38%)	95% (93%-97%)	9.98 (5.45-18.27)	0.947

SE: Sensitivity; SP: Specificity; DOR: Diagnostic odds ratios; AUC: The area under the curve; MLH: MutL Homologue; MGMT: O-6-Methylguanine-DNA Methyltransferase.

Meng® WJG www.wjgnet.com

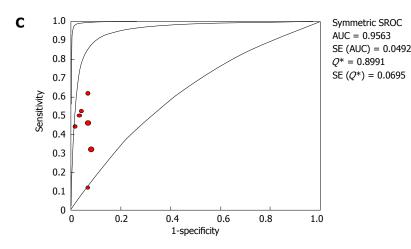


Figure 3 Forest plot of SFRP2 methylation in the diagnosis of colorectal adenomas. A: Shows the sensitivity of SFRP2 methylation in stool samples for colorectal adenoma diagnosis; B: Shows the specificity of SFRP2 methylation in stool samples for colorectal adenoma diagnosis; C: Shows the summary receiver operating characteristic curves (SROC) of SFRP2 methylation assays for the diagnosis of colorectal adenomas.

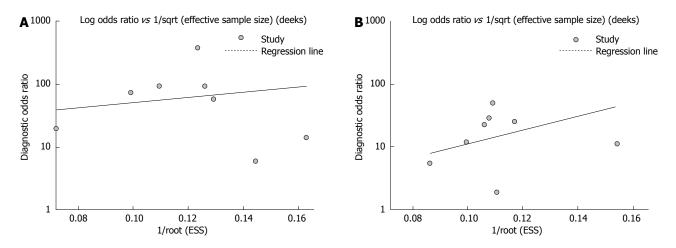


Figure 4 Assessment of the publication bias in faecal SFPR2 methylation for the diagnosis of colorectal cancer (A) and adenomas (B). No significant publication biases were found in any of these studies (all P > 0.05).

SFRP2 methylation for the diagnosis of colorectal carcinoma and adenoma were 0.9565 and 0.9563, respectively, which indicated that faecal *SFRP2* methylation is an excellent diagnostic biomarker for colorectal tumours.

Because the DOR and SROC curve are not easy to use in clinical practice, the likelihood ratios are considered to be more clinically meaningful. For a high-quality diagnostic test, a PLR of > 10 or NLR < 0.1 is typically required. However, our meta-analysis showed that neither PLR nor NLR alone was adequate to confirm or exclude the diagnosis of colorectal carcinoma or adenoma. The PLR value was 9.12 in the diagnosis analysis of CRC, which suggested that patients with a positive faecal SFRP2 methylation assay had a nine-fold chance of being diagnosed with CRC rather than non-CRC. Therefore, a colonoscopy was necessary for patients with a positive faecal SFRP2 methylation assay to confirm the diagnosis of CRC with high probability. On the other hand, a NLR of 0.24 in the diagnosis analysis of CRC suggested that if a faecal SFRP2 methylation assay result was negative, the probability rate of the individual having CRC was 24%. For the diagnosis of colorectal adenoma, a PLR of 5.99

suggested a moderate necessity to consider colonoscopy for patients with a positive faecal *SFRP2* methylation assay to confirm the diagnosis of colorectal adenoma. Moreover, the NLR was 0.60 in the diagnosis analysis of colorectal adenoma. These data suggest that a negative faecal *SFRP2* methylation assay result should not be used alone as a justification for denying or discontinuing the screening of colorectal adenomas.

An aberrant Wnt signalling pathway is an early event in 90% of colorectal carcinomas. SFRPs are secreted glycoproteins that antagonise Wnt signalling by different direct or indirect mechanisms. Thus, the role of SFRPs as a negative regulator of Wnt signalling may have important significance in tumourigenesis. These epigenetic events are involved in the early steps of colon carcinogenesis, and changes in the status of DNA methylation are associated with early stages of the histologic progression of colon carcinoma. Our previous studies of CRC tissue showed that *SFRP1* and *SFRP2* were methylated in more than 80.6% of colorectal carcinomas^[49]. Therefore, faecal *SFRP2* methylation could be expected to be a biomarker for the screening of colorectal tumours. Although it

WJG 🛛 www.wjgnet.com

Table 4 Weighted meta-regression on the diagnostic accuracyof the methylation of genes assays								
Covariates	Coefficient	SE	<i>P</i> value	RDOR	95%CI			
QUADAS score ¹	0.062	0.413	0.881	1.06	(0.46-2.47)			
Detection method ²	-0.146	0.401	0.719	0.86	(0.38-1.96)			
Blinded design ³	-0.166	0.364	0.651	0.85	(0.40 - 1.78)			
Methylation genes ⁴	-0.036	0.444	0.936	0.96	(0.39-2.39)			

¹QUADAS score, which was divided into studies with higher quality (QUADAS score \geq 10) and those with lower quality (QUADAS score < 10); ²Detection method, which was divided into qualitative and quantitative assay methods; ³Blinded design: the study was included with or without blinded design; ⁴Methylation genes, which were divided into single gene and combination genes.

cannot be generally used as a screening tool because of financial limitations, the analysis of methylation markers offers a variety of new opportunities for developing biomarkers at the molecular level of colorectal tumours.

Our meta-analysis had several limitations: (1) none of the included studies were multicentre or large-blinded, randomized, controlled trials; (2) conference abstracts and non-English and non-Chinese language studies were excluded, which might have led to publication bias; (3) studies on DNA methylation with statistical significance tend to be published and cited; and (4) due to the absence of case-mix difference analysis, smaller trials may show larger treatment effects than larger studies (*e.g.*, patients with only localised *vs* metastatic disease).

To sum up, stool-based DNA methylation has been shown to be highly discriminatory in the detection of colorectal tumours. Our results demonstrate that *SFRP2* methylation, as a non-invasive modality, shows promise for the accurate detection of CRC; however, a large number of studies are required to further confirm the role of faecal *SFRP2* methylation for early and accurate CRC diagnosis.

COMMENTS

Background

Colorectal cancer (CRC) is the third-most common malignancy and the second leading cause of cancer-related deaths in western countries. The diagnosis of CRC in early stages has great importance for reducing CRC mortality. Although significant advances have been achieved in diagnostic technologies, the current available modalities for diagnosing CRC remain suboptimal.

Research frontiers

DNA methylation often occurs during the early stages of colon tumours and has played an important role in oncology, especially in the early diagnosis of colorectal tumours. However, no consensus with regard to the role of stool methylation markers in colon tumours exists.

Innovations and breakthroughs

Stool methylation markers as an available non-invasive modality have high accuracy and sensitivity for the diagnosis of premalignant lesions of CRC. A few systematic reviews about the efficacy of stool methylation markers in colorectal tumour diagnosis exist. This article comprehensively assesses the accuracy of methylation genes in stool samples for diagnosing colorectal tumours.

Applications

Analysis of DNA methylation in stool samples may be used as a non-invasive test for the diagnosis of CRC, and *SFRP2* methylation is a promising marker

that has great potential in early CRC diagnosis.

Terminology

Diagnostic odds ratio (DOR) reflects the relationship between the result of the diagnostic test and the disease. The summary receiver operation characteristic (SROC) curve displays the trade-off between sensitivity and specificity and represents a global summary of test performance. The authors used the Q-value, the intersection point of the SROC curve with a diagonal line from the left upper corner to the right lower corner of the receiver operation characteristic (ROC) space, which corresponds to the highest value of sensitivity and specificity for the test. The positive likelihood ratio (PLR) represents the value by which the odds of the disease increase when a test is positive, whereas negative likelihood ratio (NLR) shows the value by which the odds of the disease decrease when a test is negative.

Peer review

This study reviewed 37 trials to evaluate the accuracy of stool methylation genes for diagnosing colorectal tumours. Based on these analyses, the authors conclude that stool *SFRP2* methylation is a promising marker that has great potential in early CRC diagnosis. The analysis was carefully performed, and the results were clearly presented and summarized and provided valuable advice for early clinical diagnosis of colorectal tumours.

REFERENCES

- 1 **Jemal A**, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. *CA Cancer J Clin* 2004; **59**: 225-249 [PMID: 19474385 DOI: 10.3322/caac.20006]
- 2 Schetter AJ, Harris CC. Alterations of microRNAs contribute to colon carcinogenesis. *Semin Oncol* 2011; 38: 734-742 [PMID: 22082759 DOI: 10.1053/j.seminoncol.2011.08.009]
- 3 Markowitz SD, Dawson DM, Willis J, Willson JK. Focus on colon cancer. *Cancer Cell* 2002; 1: 233-236 [PMID: 12086859 DOI: 10.1016/S1535-6108(02)00053-3]
- 4 Bosch LJ, Carvalho B, Fijneman RJ, Jimenez CR, Pinedo HM, van Engeland M, Meijer GA. Molecular tests for colorectal cancer screening. *Clin Colorectal Cancer* 2011; 10: 8-23 [PMID: 21609931 DOI: 10.3816/CCC.2011.n.002]
- 5 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96 [PMID: 18287387 DOI: 10.3322/CA.2007.0010]
- 6 Heresbach D, Manfredi S, D'halluin PN, Bretagne JF, Branger B. Review in depth and meta-analysis of controlled trials on colorectal cancer screening by faecal occult blood test. *Eur J Gastroenterol Hepatol* 2006; 18: 427-433 [PMID: 16538116 DOI: 10.00042737-200604000-00018/16538116]
- 7 Tagore KS, Levin TR, Lawson MJ. The evolution to stool DNA testing for colorectal cancer. *Aliment Pharmacol Ther* 2004; **19**: 1225-1233 [PMID: 15191503 DOI: 10.1111/ j.1365-2036.2004.02005.x]
- 8 Berger BM, Ahlquist DA. Stool DNA screening for colorectal neoplasia: biological and technical basis for high detection rates. *Pathology* 2012; 44: 80-88 [PMID: 22198259 DOI: 10.1097/PAT.0b013e3283502fdf]
- 9 Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: 25 [PMID: 14606960 DOI: 10.1186/1471-2288-3-25]
- 10 Ahlquist DA, Taylor WR, Mahoney DW, Zou H, Domanico M, Thibodeau SN, Boardman LA, Berger BM, Lidgard GP. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. *Clin Gastroenterol Hepatol* 2012; 10: 272-7.e1 [PMID: 22019796 DOI: 10.1016/j.cgh.2011.10.008]
- 11 Bosch LJ, Oort FA, Neerincx M, Khalid-de Bakker CA, Terhaar sive Droste JS, Melotte V, Jonkers DM, Masclee AA, Mongera S, Grooteclaes M, Louwagie J, van Criekinge W, Coupé VM, Mulder CJ, van Engeland M, Carvalho B, Meijer GA. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT. *Can-*

cer Prev Res (Phila) 2012; **5**: 464-472 [PMID: 22135045 DOI: 10.1158/1940-6207.CAPR-11-0315]

- 12 Ahlquist DA, Zou H, Domanico M, Mahoney DW, Yab TC, Taylor WR, Butz ML, Thibodeau SN, Rabeneck L, Paszat LF, Kinzler KW, Vogelstein B, Bjerregaard NC, Laurberg S, Sørensen HT, Berger BM, Lidgard GP. Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. *Gastroenterology* 2012; **142**: 248-56; quiz e25-6 [PMID: 22062357 DOI: 10.1053/j.gastro.2011.10.031]
- 13 Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, Biondo S, Blanco I, Peinado MA, Moreno V, Esteller M, Capellá G. Novel methylation panel for the early detection of colorectal tumors in stool DNA. *Clin Colorectal Cancer* 2010; **9**: 168-176 [PMID: 20643622 DOI: 10.3816/CCC.2010.n.023]
- 14 Tang D, Liu J, Wang DR, Yu HF, Li YK, Zhang JQ. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. *Clin Invest Med* 2011; 34: E88-E95 [PMID: 21463549]
- 15 Baek YH, Chang E, Kim YJ, Kim BK, Sohn JH, Park DI. Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in Korean patients. *Dis Colon Rectum* 2009; 52: 1452-149; discussion 1452-149; [PMID: 19617759 DOI: 10.1007/DCR.0b013e3181a79533]
- 16 Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, Levin B, Juhl H, Arber N, Moinova H, Durkee K, Schmidt K, He Y, Diehl F, Velculescu VE, Zhou S, Diaz LA, Kinzler KW, Markowitz SD, Vogelstein B. Sensitive digital quantification of DNA methylation in clinical samples. *Nat Biotechnol* 2009; 27: 858-863 [PMID: 19684580 DOI: 10.1038/nbt.1559]
- 17 Melotte V, Lentjes MH, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, Daenen KL, Partouns-Hendriks IE, Stessels F, Louwagie J, Smits KM, Weijenberg MP, Sanduleanu S, Khalid-de Bakker CA, Oort FA, Meijer GA, Jonkers DM, Herman JG, de Bruïne AP, van Engeland M. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Cancer Inst 2009; 101: 916-927 [PMID: 19535783 DOI: 10.1093/jnci/djp131]
- 18 Ausch C, Kim YH, Tsuchiya KD, Dzieciatkowski S, Washington MK, Paraskeva C, Radich J, Grady WM. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. *Clin Chem* 2009; 55: 1559-1563 [PMID: 19541867 DOI: 10.1373/ clinchem.2008.122937]
- 19 Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, Smits KM, Akiyama Y, Yuasa Y, Sanduleanu S, Khalid-de Bakker CA, Jonkers D, Weijenberg MP, Louwagie J, van Criekinge W, Carvalho B, Meijer GA, Baylin SB, Herman JG, de Bruïne AP, van Engeland M. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. *Clin Cancer Res* 2009; 15: 3990-3997 [PMID: 19509152 DOI: 10.1158/1078-0432. CCR-09-0055]
- 20 Mayor R, Casadomé L, Azuara D, Moreno V, Clark SJ, Capellà G, Peinado MA. Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease. *Br J Cancer* 2009; 100: 1534-1539 [PMID: 19384295 DOI: 10.1038/sj.bjc.6605045]
- 21 Kim MS, Louwagie J, Carvalho B, Terhaar Sive Droste JS, Park HL, Chae YK, Yamashita K, Liu J, Ostrow KL, Ling S, Guerrero-Preston R, Demokan S, Yalniz Z, Dalay N, Meijer GA, Van Criekinge W, Sidransky D. Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. *PLoS One* 2009; 4: e6555 [PMID: 19662090 DOI: 10.1371/journal.pone.0006555]
- 22 Nagasaka T, Tanaka N, Cullings HM, Sun DS, Sasamoto H, Uchida T, Koi M, Nishida N, Naomoto Y, Boland CR,

Matsubara N, Goel A. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. *J Natl Cancer Inst* 2009; **101**: 1244-1258 [PMID: 19700653 DOI: 10.1093/jnci/djp265]

- 23 Glöckner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, Chan TA, Kleeberger W, de Bruïne AP, Smits KM, Khalid-de Bakker CA, Jonkers DM, Stockbrügger RW, Meijer GA, Oort FA, Iacobuzio-Donahue C, Bierau K, Herman JG, Baylin SB, Van Engeland M, Schuebel KE, Ahuja N. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. *Cancer Res* 2009; 69: 4691-4699 [PMID: 19435926 DOI: 10.1158/0008-5472. CAN-08-0142]
- 24 **Wang DR**, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. *World J Gastroenterol* 2008; **14**: 524-531 [PMID: 18203283]
- 25 Oberwalder M, Zitt M, Wöntner C, Fiegl H, Goebel G, Zitt M, Köhle O, Mühlmann G, Ofner D, Margreiter R, Müller HM. SFRP2 methylation in fecal DNA--a marker for colorectal polyps. *Int J Colorectal Dis* 2008; 23: 15-19 [PMID: 17639423 DOI: 10.1007/s00384-007-0355-2]
- 26 Itzkowitz S, Brand R, Jandorf L, Durkee K, Millholland J, Rabeneck L, Schroy PC, Sontag S, Johnson D, Markowitz S, Paszat L, Berger BM. A simplified, noninvasive stool DNA test for colorectal cancer detection. *Am J Gastroenterol* 2008; 103: 2862-2870 [PMID: 18759824 DOI: 10.1111/ j.1572-0241.2008.02088.x]
- 27 Huang ZH, Li LH, Yang F, Wang JF. Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. *World J Gastroenterol* 2007; 13: 950-954 [PMID: 17352030]
- 28 Itzkowitz SH, Jandorf L, Brand R, Rabeneck L, Schroy PC, Sontag S, Johnson D, Skoletsky J, Durkee K, Markowitz S, Shuber A. Improved fecal DNA test for colorectal cancer screening. *Clin Gastroenterol Hepatol* 2007; 5: 111-117 [PMID: 17161655 DOI: 10.1016/j.cgh.2006.10.006]
- 29 Abbaszadegan MR, Tavasoli A, Velayati A, Sima HR, Vosooghinia H, Farzadnia M, Asadzedeh H, Gholamin M, Dadkhah E, Aarabi A. Stool-based DNA testing, a new noninvasive method for colorectal cancer screening, the first report from Iran. *World J Gastroenterol* 2007; 13: 1528-1533 [PMID: 17461444]
- 30 Zhang W, Bauer M, Croner RS, Pelz JO, Lodygin D, Hermeking H, Stürzl M, Hohenberger W, Matzel KE. DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. *Dis Colon Rectum* 2007; 50: 1618-126; discussion 1618-126; [PMID: 17762966 DOI: 10.1007/s10350-007-0286-6]
- 31 Leung WK, To KF, Man EP, Chan MW, Hui AJ, Ng SS, Lau JY, Sung JJ. Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. *Am J Gastroenterol* 2007; **102**: 1070-1076 [PMID: 17378912 DOI: 10.1111/j.1572-0241.2007.01108.x]
- 32 Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, Washington MK, Schultenover S, Gautam S, Markowitz SD, Grady WM. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. *Clin Cancer Res* 2005; **11**: 1203-1209 [PMID: 15709190]
- 33 Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Göke B, Lamerz R, Kolligs FT. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. *Clin Gastroenterol Hepatol* 2005; **3**: 142-149 [PMID: 15704048]
- 34 Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, Platzer P, Lu S, Dawson D, Willis J, Pretlow TP, Lutterbaugh J, Kasturi L, Willson JK, Rao JS, Shuber A, Markowitz SD. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 2005; 97: 1124-1132 [PMID: 16077070 DOI: 10.1093/jnci/dji204]

- 35 Müller HM, Oberwalder M, Fiegl H, Morandell M, Goebel G, Zitt M, Mühlthaler M, Ofner D, Margreiter R, Widschwendter M. Methylation changes in faecal DNA: a marker for colorectal cancer screening? *Lancet* 2004; **363**: 1283-1285 [PMID: 15094274 DOI: 10.1016/S0140-6736(04)16002-9]
- 36 Xu MH, Cai KY, Tu Y. Stool DNA methylation analysis in the early diagnosis of colorectal cancer. *Linchang Xiaohuabing Zazhi* 2012; 24: 7-19
- 37 Kang YP, Cao FA, Chang WJ, Lou Z, Wang Y, Wu LL, Fu CG, Cao GW. Stool DNA methylation in the screening early colorectal cancer. *Zhonghua Weichang Waike Zazhi* 2011; 14: 52-561 [DOI: 10.3760/cma.j.issn.1671-0274.2011.01.017]
- 38 Zhang JP, Wang J, Gui YL, Zhu QQ, Xu ZW, Li JS. Stool DNA methylation in the diagnosis of colorectal cancer. *Zhonghua Yixue Zazhi* 2011; 95: 2482-2484 [DOI: 10.3760/cma. j.issn.0376-2491.2011.35.010]
- 39 Fu L, Sheng JQ, Meng XM, Meng MM, Jin P, Li AQ, Wu ZT, Li SR. Stool Vimentin methylation in the diagnosis of colorectal cancer. *Weichangbing Ji Ganzabingxue Zazhi* 2010; 19: 601-603 [DOI: 10.3969/j.issn.1006-5709.2010.07.007]
- 40 Ling ZA, Chen LS, He CG. Stool P16 methylation in the diagnosis of colorectal cancer. *Jiezhichang Gangmen Waike* 2009; 15: 144-148 [DOI: 10.3969/j.issn.1674-0491.2009.03.002]
- 41 Cheng ZH. Stool SFRP2 methylation in the diagnosis of colorectal cancer. *Shandong Yiyao Zazhi* 2007; **47**: 10-12
- 42 Zhao HX, Li QW, Dong WW, Duan XH, Zhu JH, Wang RL, Hao YX, Ye M, Xiao WH. Stool NDRG4 methylation in the diagnosis of colorectal cancer. *Zhongguo Yiyao Daobao* 2012; 9: 29-31 [DOI: 10.3877/cma.j.issn.1674-0785.2012.10.012]
- 43 Chang E, Park DI, Kim YJ, Kim BK, Park JH, Kim HJ, Cho YK, Sohn CI, Jeon WK, Kim BI, Kim HD, Kim DH, Kim YH.

Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients. *Hepatogastroenterology* 2010; **57**: 720-727 [PMID: 21033217]

- 44 **Zhang H**, Song YC, Dang CX. Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer. *Int J Med Sci* 2013; **10**: 230-234 [PMID: 23372428 DOI: 10.7150/ijms.5278]
- 45 Carmona FJ, Azuara D, Berenguer-Llergo A, Fernández AF, Biondo S, de Oca J, Rodriguez-Moranta F, Salazar R, Villanueva A, Fraga MF, Guardiola J, Capellá G, Esteller M, Moreno V. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. *Cancer Prev Res* (Phila) 2013; 6: 656-665 [PMID: 23694962 DOI: 10.1158/1940-6207. CAPR-12-0501]
- 46 Guo Q, Song Y, Zhang H, Wu X, Xia P, Dang C. Detection of hypermethylated fibrillin-1 in the stool samples of colorectal cancer patients. *Med Oncol* 2013; 30: 695 [PMID: 23963856 DOI: 10.1007/s12032-013-0695-4]
- 47 Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. *Cancer Metastasis Rev* 2010; 29: 181-206 [PMID: 20135198 DOI: 10.1007/s10555-010-9207-6]
- 48 Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME. Fecal DNA versus fecal occult blood for colorectalcancer screening in an average-risk population. *N Engl J Med* 2004; 351: 2704-2714 [PMID: 15616205 DOI: 10.1056/NEJ-Moa033403]
- 49 Qi J, Zhu YQ, Luo J, Tao WH. Hypermethylation and expression regulation of secreted frizzled-related protein genes in colorectal tumor. *World J Gastroenterol* 2006; 12: 7113-7117 [PMID: 17131472]
 - P- Reviewer: Dolcetti R, Konishi K, Liu T S- Editor: Qi Y L- Editor: Logan S E- Editor: Zhang DN

Published by Baishideng Publishing Group Inc

8226 Regency Drive, Pleasanton, CA 94588, USA Telephone: +1-925-223-8242 Fax: +1-925-223-8243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx http://www.wjgnet.com

© 2014 Baishideng Publishing Group Inc. All rights reserved.