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† Background Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied
group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined clas-
sical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysac-
charides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment
essential to a wide range of physiological processes including germination, cell extension and fertilization. The
vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp–arabinogalactan
polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations
and direct experiment identified a 15-residue consensus subunit as a b-1,3-linked galactose trisaccharide with two
short branched sidechains each with a single glucuronic acid residue that binds Ca2+ when paired with its adjacent
sidechain.
† Scope AGPs bind Ca2+ (Kd � 6 mM) at the plasma membrane (PM) at pH�5.5 but release it when auxin-dependent
PM H+-ATPase generates a low periplasmic pH that dissociates AGP–Ca2+ carboxylates (pka �3); the consequen-
tial large increase in free Ca2+ drives entry into the cytosol via Ca2+ channels that may be voltage gated. AGPs are
thus arguably the primary source of cytosolic oscillatory Ca2+ waves. This differs markedly from animals, in which
cytosolic Ca2+ originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that
external dynamic Ca2+ storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exo-
cytosis of AGPs and recycled Ca2+, hence an AGP–Ca2+ oscillator.
† Conclusions The novel concept of dynamic Ca2+ recycling by an AGP–Ca2+ oscillator solves the long-standing
problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca2+ signalling and
auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.

Key words: Arabinogalactan proteins, plant cell wall protein, calcium signalling, hydroxyproline-rich
glycoproteins, ion currents, AGP–Ca2+ flux capacitor.

INTRODUCTION

Arabinogalactan proteins (AGPs) have been subjected to inten-
sive study ever since their discovery more than 45 years ago as
arabinogalactan (AG) ‘polysaccharides’ in the growth medium
of cell cultures (Aspinall et al., 1969). It soon became clear
that these classical AGPs (Table 1), initially defined by their
composition, contained a small amount (5–10 %) of a hydroxy-
proline (Hyp)-rich protein component (Lamport, 1970) and
90–95 % AG. Since then their biological role has remained
elusive and variously described as enigmatic and mysterious
(Albersheim et al., 2011; Pickard, 2013). Many papers have sug-
gested a general signalling function for AGPs while extensive
reviews have provided much interesting background information
(Fincher et al., 1983; Bacic et al., 1996; Du et al., 1996a; Kreuger
and van Holst, 1996; Nothnagel, 1997; Serpe and Nothnagel,
1999; Stone and Valenta, 1999; Clarke et al., 2000;
Jose-Estanyol and Puigdomenech, 2000; Majewska-Sawka and
Nothnagel, 2000; Schultz et al., 2000, 2002; Gaspar et al.,
2001; Showalter, 2001; Qin and Zhao, 2004; Knox, 2006; Pal
and Das, 2006; Seifert and Roberts, 2007; Driouich and
Baskin, 2008; Ellis et al., 2010; Nguema-Ona et al., 2012,
2013). While most reviews ascribe a signalling role to AGPs,

here we present both direct and indirect evidence for a specific
role of AGPs in Ca2+ signalling, a novel aspect not previously
considered.

The quest for AGP structure and function began with an ap-
proach based on 1,3,5-tris(4-b-D-glycopyranosyloxyphenylazo)-
2,4,6-trihydroxybenzene as a specific precipitant of AGPs
(Yariv et al., 1962); now known as the Yariv reagent, it has
proved its versatility. Michael Jermyn exploited it beautifully to
show that AGPs are ubiquitous in the plant kingdom (Jermyn
and Yeow, 1975) and much subsequent progress has used the
Yariv reagent to extend that pioneering work.

Yariv-agglutinated protoplasts isolated from various species
were readily agglutinated by Yariv (Larkin, 1978); this gave
the earliest indication of AGPs (then identified as b-lectins) pri-
marily at the cell surface and was subsequently confirmed by
their biochemical isolation from membrane preparations
(Norman et al., 1990; Serpe and Nothnagel, 1996). Further use
of Yariv as a histochemical reagent visualized AGPs at the cell
surface of metabolically active tissues: styles (Gane et al.,
1994), root cap and embryogenic cells (Samaj et al., 1999a;
Thompson and Knox, 1998; Chapman et al., 2000), coleoptile
epidermis (Schopfer, 1990), seedling roots and root epidermis
(Willats and Knox, 1996; Lu et al., 2001), embryo (Tang et al.,
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2006) and cotyledons (Pal and Das, 2006). Yariv rapidly inhib-
ited pollen tube growth (Roy et al., 1998); this suggested a
direct involvement of AGPs in cell extension consistent with
AGPs localized at the growing tips of pollen (Jauh and Lord,
1996; Coimbra et al., 2004; Castro et al., 2013). Most recently,
Yariv assay adapted for whole cells (Lamport et al., 2006)
enabled AGP distribution (Fig. 1) to be quantified in cell
surface compartments: anchored to the plasma membrane; free
in the periplasm; trapped in the cell wall matrix; and extruded
into the growth medium where they provide a convenient
source of mixed AGPs readily isolated by Yariv precipitation
(Lamport, 2013a, b).

These approaches implicated AGPs in a huge range of pro-
cesses. A consensus emerged that AGPs were signalling mole-
cules, an idea consistent with the assumed great heterogeneity
of their polysaccharide substituents. Both the potential signal-
ling role and possible polysaccharide heterogeneity are dis-
cussed here.

First, a signalling role, i.e. as signalling molecules per se, lacks
direct evidence. The single possible exception of ‘xylogen’
(Motose et al., 2004) remains to be corroborated, nor is it a

classical AGP (Table 1) defined here as an Hyp-rich polypeptide
backbone with a:

(1) N-terminal signal sequence for secretion;
(2) C-terminal sequence for glycosylphosphatidylinositol

(GPI) addition;
(3) a classical AGP may contain as many as 24 O-Hyp-linked

AG polysaccharides based on LeAGP-1 (Zhao et al.,
2002) but the diversity of classical AGPs is well documented
(Showalter et al., 2010);

(4) stoichiometric Ca2+ binding by Hyp AGs: GlcA:Ca2+ 2:1.

Classical AGPs have been variously modelled as a Wattle
blossom, twisted hairy rope and most recently as a necklace
(Fig. 2).

Secondly, AGP polysaccharide heterogeneity seems overem-
phasized; it does not include a wide variety of different sugars or
glycosidic linkages (e.g. as in pectic RG-II) and is more accurate-
ly described as polydispersity due to the variable number of re-
petitive AG subunits (1–15). The AG consensus structure has
the theoretical molar ratio: Gal5 Ara6 GlcA2 Rha2 (�2246 Da;

TABLE 1. Classical AGPs: molecular properties

Distribution: �80 % periplasmic, �20 % cell wall; T ¼M + S + W
T ¼ total AGPs; M ¼ membrane-bound; S ¼ soluble after cell breakage; M + S ¼ periplasmic W ¼ wall-bound.
Quantification: e.g. BY-2 cells T ¼ 600 mg AGPs g f. wt (Lamport et al., 2006)

Molecular Size: �120 kDa ¼ �3 × 60 nm (Zhao et al., 2002)
Genes: �19 in Arabidopsis (Schultz et al., 2000)

13 in rice (Yang et al., 2007; Ma and Zhao, 2010; Showalter et al., 2010)
At 17,18 & 19 (null; Coimbra et al., 2009) have a Lys-rich subdomain (Yang et al., 2007)
eb1 is deficient in Gal synthesis (UDPGlc epimerase; Seifert et al., 2002)
AtAGP17 (rat1) decreases Agrobacterium transformation (Gaspar et al., 2004)

Polypeptide: 87–739 aa residues in extended conformation (Showalter et al., 2010)
Hyp, Ala, Ser, dominate
Lack Tyr, Phe, Trp and Cys
Subdomain often a 12-r Lys-rich (Gao et al., 1999; Zhao et al., 2002; Yang et al., 2005, 2007)
Glycosylation motifs: SP AP TP VP (Tan et al., 2003)

Polysaccharide: Arabinogalactan ‘beads’ or Hyp–AG glycomodules
Size: 15–150 sugar residues
Backbone: b-1,3-linked galactose trisaccharides b-1,6-linked (Tan et al., 2004, 2010)
Sidechains: bifurcated (Ara)3-Gal-(Rha-GlcU; Tan et al., 2010)
Yariv reactivity: contentious; see text

Post-translational modifications: N-terminal signal peptide (Schultz et al., 2000)
C-terminal GPI lipid anchor (Oxley and Bacic, 1999; Svetek et al., 1999; Borner et al., 2003)
Hydroxylation of peptidyl Pro via direct O2 fixation (Lamport, 1963a)
O-Hyp glycosylation rules (no N-glycosylation)
Non-contiguous Hyp–AG polysaccharides (Zhao et al., 2002)
Contiguous Hyp short arabino-oligosaccharides
12 to 24 acidic Hyp–AGs (15–150 residues; Zhao et al., 2002)
An Hyp–AG has 1 to 15 AG subunits
AG subunit is a repetitive glycomotif of �15 sugar residues
Glycomotif consensus: Ara6 Gal5 GlcA2 Rha2

AG bifurcated sidechain: Rha, GlcA, Ara3, Gal
Lack fucose with exceptions (Wu et al., 2008, 2010)
Glycomotif linkage analysis (mol %):
Main chain: 3,6-Gal ×2 (13.3 %) 6-Gal ×1 (6.7 %)*
Sidechain: 3,6-Gal ×2 4-GlcA ×2
3,5-Ara ×2 t- Rha ×2
3-Ara ×2 t- Ara ×2

Calcium binding: GlcU/Ca2+ molar ratio 2:1
�30 Ca2+-binding subunits/120 kDa AGP†

* 6-linked Gal connects repetitive subunits (glycomotifs).
† AGPs approx. 120 kDa bind approx. 1 % Ca2+ w/w ¼ 1.2 kDa Ca2+. Thus, moles bound Ca2+ ¼ 1.2 kDa/40 Da.
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Tan et al., 2010), in agreement with an earlier conclusion of AG
regularity (Churms et al., 1983; Gane et al., 1995b) although a
somewhat larger subunit of �8 kDa.

A relative few classical AGPs comprise the bulkof cell surface
AGPs based on amino acid analyses of HF-deglycosylated AGP
polypeptides separated by reversed-phase liquid chromatog-
raphy (Gao et al., 1999) and the narrow size distribution of
AGPs separated by Superose-6 gel filtration (Lamport et al.,
2006). Many other AGP-like molecules exist (Borner et al.,
2002, 2003) but these make only a minor contribution to the
total mass of AGPs; this includes the recently described classical
AGP ‘APAP1’, At-AGP57C (a minor secreted component that
crosslinks pectic RG-I in muro; Tan et al., 2013) and the non-
classical AGP31 (Liu and Mehdy, 2007).

Structural elucidation exemplifies a biochemical approach.
For AGPs this involves in particular the C-terminal GPI that
anchors AGPs to the outer leaflet of the plasma membrane
(Youl et al., 1998; Svetek et al., 1999; Borner et al., 2002) and
the N-terminal signal sequence for secretion. However, the
90–95 % AG polysaccharide generally remained incompletely
characterized due to its perceived overwhelming complexity.
However, unlike most proteins polysaccharides derive their com-
plexity from relatively simple repetitive subunits (Rees, 1977).
Indeed, numerous earlier carbohydrate analyses clearly pointed
to such an AG ground plan with small blocks of a b-1,3-linked

galactan backbone separated by periodate-sensitive residues
(Fincher et al., 1983). Size heterogeneity of Hyp-
polysaccharides released by alkaline hydrolysis (Pope, 1977) ini-
tially deterred further analysis. However, designing (Hyp)-rich
cell surface glycoproteins (HRGPs) as green fluorescent protein
(GFP) fusion proteins (Shpak et al., 1999) solved the problem of
purifying individual AGPs and novel AGP-like constructs (Xu
et al., 2007). Thus, the tenacity of Li Tan with the combined
forces of genetic engineering and state-of-the-art nuclear magnteic
resonance imaging (NMR) characterized a range of small Hyp–
AG polysaccharides that yielded evidence of a consensus
15-residue repetitive AG subunit (Fig. 3; Tan et al., 2004, 2010).
Thus, variation in the number of repetitive AG subunits and
minor variation in sugar composition may simply reflect AG poly-
dispersity rather than true compositional AG heterogeneity.

Hyp–AG subunits (Fig. 3) have a relatively simple structure –
a repetitive b-1,3-linked galactosyl trisaccharide backbone
linkedb-1,6 to successive galactosyl trisaccharides. Each repeti-
tive galactosyl trisaccharide has two bifurcated sidechains: one
branch an arabinofuranosyl trisaccharide, the other a rhamnosyl-
glucuronic acid disaccharide. The five-residue sidechain structure
is evidently widespread, first elucidated in gum arabic of Acacia
senegal (Defaye and Wong, 1986). Such Hyp–AG conservation
implies an essential role for AGP glucuronic acid residues, previ-
ouslyoverlooked despite the ‘known’ approx. 1 % Ca2+ contentof
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gum arabic (Anderson and Brown Douglas, 1988; Lamport and
Varnai, 2013), and its cytochemical location as membrane-bound
Ca2+ (Slocum and Roux, 1982). Significantly, gum arabic does
not form a stable complex with Mg2+ (Kunkel et al., 1997).

3D computer models of the Hyp–AG subunit (Fig. 3b)
showed a dramatically close approach of glucuronate carboxyls
– a eureka moment that pointed to a specific biochemical role for
the repeating Hyp–AG subunit in binding Ca2+. Subsequent
experiments confirmed the tight binding constant (Kd �
6.5 mM) together with the 2:1 GlcA:Ca2+ binding stoichiometry
at pH 5 (Lamport and Varnai, 2013) and pH-dependent dissoci-
ation (Fig. 4). These data also corroborate the repetitive subunit
structure of the Hyp–AG deduced from NMR experiments (Tan
et al., 2010). Numerous methylation analyses of AGPs (Table 2)
show approx. 7 % 1,6-linked Gal (i.e. one in every 15 residues of
the consensus sequence) and thus further verify the consensus
structure.

Significantly, AGPs bind Ca2+ more strongly than does pectin
(Lamport and Varnai, 2013). Thus, the lower pKa and non-
methyl esterification of glucuronic acid rationalizes Nature’s
choice of glucuronic acid for AGPs rather than the methyl esteri-
fied galacturonic acid that typifies pectin. Furthermore, these
biochemical data imply a biological role for tightly bound
AGP–Ca2+ (pH 5) by creating a periplasmic reservoir of Ca2+

that can be dissociated by activated H+-ATPase of the plasma
membrane, thus feeding Ca+ channels (Wheeler and
Brownlee, 2008; Verret et al., 2010) that supply cytosolic Ca2+

(Felle, 1988; Gehring et al., 1990a; Shishova and Lindberg,
2004). Hence the suggestion that AGP–Ca2+ at the periplasmic
interface is the major source of cytosolic Ca2+ (Lamport and
Varnai, 2013). In one fell swoop this scenario connects AGPs
with Ca2+ signalling – a unifying hypothesis that differs from
previous models (Trewavas, 2000; Dodd et al., 2010) but with
considerable ramifications.

‘The subtlety of Nature far surpasseth the subtlety of Man’s
understanding’ Francis Bacon 1561–1621). Indeed, cell signal-
ling molecules with their myriad interactions and interdependen-
cies involving cross-talk, feedback, feed-forward and so on are of
daunting complexity. A simplifying principle assumes that sig-
nalling networks do not operate independently but are integrated.
Precisely how AGPs fit into this scheme we discuss below.

Ca2+ behaves as a universal signalling currency and acts as a
‘second messenger’ in plants (Hepler, 2005; Vanneste and Friml,
2013) and also in animals (Berridge, 1997) where it involves a
huge range of processes most evident in muscle contraction
(Ebashi and Endo, 1968) but also including cell migration
(Tsai et al., 2014) and skin homeostasis (Vandenberghe et al.,
2014). In plants, Ca2+ signalling involves an equally wide
range of complex processes consistent with an earlier percipient
comment that ‘Perhaps in the phloem there is an electrical control
of Ca2+ flux reminiscent of the well-known control by the sarco-
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plasmic reticulum in striated muscle!’ (Pickard, 1973). However,
the source of the Ca2+ signal involves dynamic Ca2+ storage by
AGPs of the cell surface (Lamport et al., 2006; Lamport and
Varnai, 2013) and thus differs radically from the classical intern-
al endoplasmic reticulum storage of animals.

AGPs strongly associated with so many plant processes
(Table 3) led to the idea of AGPs as signalling molecules per
se. However, specific AGP receptors remain elusive most
likely because they are non-existent. As an alternative we
propose that the AGP–Ca2+ oscillator integrates most signalling
pathways that are downstream from the early Ca2+ signal (Ma
et al., 2013). This accounts for the ubiquity of AGPs where a
trinity of primary messenger (e.g. auxin), secondary messenger
(Ca2+) and AGPs comprise a global signalling paradigm, with
the evidence summarized in the following six sections.

THE AGP – Ca2+ OSCILLATOR: AUXIN AND
EXTENSION GROWTH

AGPs and auxin are involved in most aspects of plant develop-
ment; it is increasingly evident that auxin generates Ca2+

signals evidenced by increased cytosolic Ca2+ (Pickard, 1984;
Gehring et al., 1990b; Tretyn et al., 1991; Irving et al., 1992;
Ayling et al., 1994; Plieth and Trewavas, 2002; Shishova and
Lindberg, 2010; Monshausen et al., 2011), including a particu-
larly insightful recent review (Vanneste and Friml, 2013). We
propose that the AGP–Ca2+ oscillator generates those signals
and is thus an integral component of the following AGP–
Ca2+–auxin signalling cascade (Fig. 5):

(1) auxin-activated plasma membrane H+-ATPase releases
protons at the surface;

TABLE 2. Content (mol %) of 6-linked galactose in AGPs

Species Source

6-Gal
content

(mol %)* Reference(s)

Acer
pseudoplatanus

Cultures n.d. Aspinall et al. (1969)

Acacia senegal Gum
exudate

1.2 Akiyama and Kato (1981)

Physcomitrella
patens

Cultures 2 Lee et al. (2005)

Phleum pratense Cultures 5 Sims et al. (2000)
Vitis vinifera Grape juice 6 Saulnier et al. (1992)
Plantago major Leaves 7 Samuelsen et al. (1998)
Rosa sp. Cultures 7 Serpe and Nothnagel

(1996)
Lolium
multiflorum

Cultures 8 Bacic et al. (1987)

Nicotiana alata Pistil
(AGPNa3)

8 Du et al. (1996b)

Acacia erioloba Gum
exudate

12 Churms et al. (1986)

Raphanus sativus Storage root 14 Kitazawa et al. (2013),
Tsumuraya et al. (1988)

Nicotiana alata Styles
(GaRSGP)

14 Sommer-Knudsen et al.
(1996)

N. alata Stigma 21 Bacic et al. (1988)

* Identified as 2,3,4-trimethyl galactose.
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(2) decreases pH of AGPs strategically located at the plasma
membrane;

(3) low pH discharges AGP–Ca2+ (Fig. 5);
(4) Ca2+ enters the cytosol via plasma membrane Ca2+ channels

(Wheeler and Brownlee, 2008; Verret et al., 2010);
(5) cytosolic Ca2+ increases;
(6) activates Golgi vesicle exocytosis.

While the above implies a role for AGPs in cell extension,
there is also strong circumstantial evidence of AGP involvement

in hypocotyl cell extension where a gibberellin-responsive gene
(CsAGP1) encodes a classical AGP (Park et al., 2003).

The AGP–Ca2+ capacitor offers a new perspective on the source of
cytosolic Ca2+ and its regulation

First, recycling Ca2+ via exocytosis of Golgi vesicles (Battey
et al., 1999; Roy et al., 1999) recharges the AGP capacitor, and
traps and conserves Ca2+, thus avoiding the uncertainties of an
external apoplastic supply of free Ca2+.

TABLE 3. Processes that involve auxin, Ca2+ and AGPs

Primary messenger
auxin

Secondary messenger
Ca2+

AGP
involvement

I. Auxin and extension growth +++ +++ +++
II. Tropisms and
mechanotransduction

Gravitropism +++ +++ +

Thigmotropism – + + +
Pollen tube growth – +++ +++
Stomatal movements + +++ +++
Phototropism +++ +++ ?

III. Intracellular dynamics +++ +++ +
IV. Morphogenesis Seeds ? ? +++

Germination +++ +++ +++
Roots and lateral roots +++ + +++
Shoots and branching +++ + + +++
Leaves +++ ? ?
Flowering, fertilization and early
embryogenesis

+++ ? +++

V. Stress, pathogenesis and
symbiosis

Abiotic stress ? +++ ?

Wound response ? + +++
Salt stress ? +++ +++
Pathogenesis and symbiosis + + + +++

+, ++, and +++ indicate increasing evidence for involvement in a given process; see text for references.
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of Cl– as a counterion may maintain electrical neutrality (Cosgrove and Hedrich, 1991; Zonia et al., 2002). [Reprinted from Lamport and Varnai (2013).]
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Secondly, classical AGPs at the plasma membrane are by def-
inition close to Ca2+ channels. This confers a huge kinetic ad-
vantage to Ca2+ ions for entry into the cytosol when low pH
dissociates AGP–Ca2+.

Thirdly, plasma membrane-bound AGPs bind Ca2+. This
drastically decreases the Ca2+ electrochemical gradient until
low pH dissociates the AGP–Ca2+. [Note that pectic carboxyls
will also bind free Ca2+.]

Fourthly, cells can adjust the precise size of the capacitor by
controlling surface AGP levels (section IV) but also by the size
of O-Hyp-linked polysaccharides – these can vary by a factor
of ten or more (Lamport, 1977; Pope, 1977; Xu et al., 2008).

Fifthly, the Hyp–AG Ca2+-binding subunit is a consensus
motif whose subtle variation presumably alters the Kd for Ca2+

and also the ability to discriminate against other divalent ions
and monovalent ions, particularly Na+, that compete at high
levels (Fig. 6). Replacing glucuronic with 4-O-methylglucuronic
acid is probably the most frequent variation. Minor sugars such
as 3-O-methylgalactose are present in lower plants (Popper
et al., 2001) and include 3-O-methylrhamnose (acofriose) in
AGPs isolated from the moss Physcomitrella (Popper et al.,
2004; Fu et al., 2007). However, fucose (6-deoxy-L-galactose),
frequently reported as a minor component of AGPs (Tryfona
et al., 2012) and a likely conservative replacement for rhamnose
(6-deoxy-L-mannose), has not been detected in any Hyp–AG,
but we have yet to explore this planet’s vast AGP resources!

This review cannot do justice to all the ramifications of the
AGP–Ca2+ capacitor. Here we discuss the correlation between
AGPs, Ca2+ signalling and the primary messenger auxin with
its classical effect on wall plasticity (Heyn, 1940). Increased
wall plasticity or wall loosening, is pH-dependent (‘proton ex-
cretion’; Rayle and Cleland, 1980), but a biochemical basis for
the firmly entrenched ‘acid growth’ hypothesis (Rayle and
Cleland, 1992) remains recalcitrant; its major postulate that
low pH in muro activates wall loosening enzymes per se lacks
convincing evidence (Schopfer, 1993) despite the clear involve-
ment of plasma membrane H+-ATPase in cell extension (Hager,

2003). However, the AGP–Ca2+ capacitor (Fig. 5) may resolve
this problem as it identifies the source of cytosolic Ca2+ oscilla-
tions and shows how they are consistent ‘with the general
concept of calcium acting as a second messenger in hormone
action in plants’ (Felle, 1988; Hepler, 2005): low pH dissociates
carboxylate-bound Ca2+ of AGPs at the plasma membrane
(Fig. 5). Remarkably, however, AGPs may perform a dual func-
tion by acting as a pectic plasticizer after their release from the
plasma membrane (Lamport, 2001).

A dual role of classical AGPs in cell extension is consistent
with the following observations:

(1) AGPs are strongly associated with rapid growth of cell sus-
pension cultures and rapid cell extension during tip growth
of moss protonema (Lee et al., 2005), pollen tubes (Jauh
and Lord, 1996) root hairs (Samaj et al., 1999b) and coleop-
tile epidermal walls with AGPs suggested as ‘an epidermal
wall-loosening factor in auxin mediated coleoptile growth’
(Schopfer, 1990).

(2) Growth retardation in double null AGP mutant pollen tubes
(Costa et al., 2013a), and in the protonema of Physcomitrella
AGP1 knockouts (Lee et al., 2005) and in root hairs of the
reb1 arabidopsis mutant (Ding and Zhu, 1997).

(3) Tropisms and mechanosensory mechanisms (Toyota and
Gilroy, 2013).

(4) Auxin and Ca2+ signalling are connected (Vanneste and
Friml, 2013).

(5) AGP cell wall plasticizers may contribute to the resistance of
resurrection plants to desiccation (Moore et al., 2006, 2013).

THE AGP – Ca2+ OSCILLATOR: TROPISMS AND
MECHANOTRANSDUCTION

Gravitropism

Calcium signalling underlies all tropisms (Toyota and Gilroy,
2013), so the question devolves into the mechanism that elevates
cytosolic Ca2+ (Toyota et al., 2008). Frequently this involves
mechanotransduction exemplified by gravitropism where the
biochemical mechanism now seems to involve the redistribution
of auxin transporter activity and hence auxin itself (Baster et al.,
2013). Furthermore, Ca2+ is well represented by stretch-
activated Ca2+ channels in plants and algae (Ding et al., 1993;
Verret et al., 2010) suggesting that the ultimate gravity sensor
is the membrane and its stretch-sensitive receptors; this would
include the calcium mechanosensitive receptors described by
Pickard (Ding and Pickard, 1993) rather than starch grain ‘stato-
liths’ (Caspar and Pickard, 1989). Thus, ‘Although Ca2+ is
usually discussed as a cytoplasmic regulator, apoplastic fluxes
of this ion may also play a key role in gravitropism’ via stretch-
sensitive Ca2+ channels that regulate Ca2+ flux (Toyota and
Gilroy, 2013). Hence the term ‘flux capacitor’ borrowed from
‘Doc’ Brown immortalized by Christopher Lloyd in the Sci-Fi
movie Back to the Future (Zemeckis, 1985) where Doc’s inven-
tion of the aptly named capacitor was an integral component of
the time machine powered by the continuous flux of a capacitor
in an oscillating circuit; the allusion to time travel is a reminder
that plant evolution is a form of time travel that depends on the
AGP–Ca2+ and other biochemical oscillators!
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Thigmotropism

The AGP–Ca2+ oscillator does not exclude a role for AGPs in
mechanotransduction based on adhesion of plasma membrane to
the cell wall by a ‘plasmalemmal reticulum’ involving AGPs and
wall-associated kinases (WAKs; Gens et al., 2000; Pickard,
2007). Although precise details of such ‘tensegrity’ are
lacking, stretch receptors with associated kinases and AGPs
(Telewski, 2006) and more specifically mechanosensitive (MS)
Ca2+ channels (Nakagawa et al., 2007; Swarbreck et al., 2013)
are clearly involved in thigmotropism, which includes a wide
range of processes ranging from the rapid movements of insectiv-
orous plants and the tendrils of climbing plants to root growth
(Weerasinghe et al., 2009) particularly root tips (Pickard, 2007).

Pollen tube growth

Ca2+ is essential to pollen tube growth (Mascarenhas, 1993;
Chen et al., 2008; Chebli and Geitmann, 2012) and pollen tube
directionality (Franklin-Tong, 1999); not surprisingly, AGPs
are implicated as chemotropic agents (Cheung et al., 1995; Wu
et al., 2000) although not corroborated by others
(Sommer-Knudsen et al., 1998). This discrepancy may be
resolved by considering the in vitro growth of millet pollen
tubes that are directed by a polygalacturonic acid-calcium gel
which forms a Ca2+ gradient (Reger et al., 1992). Thus, the
signal guiding a pollen tube may be the Ca2+ gradient generated
by AGP–Ca2+ dissociation in the transmitting tissue of female
but not in male flowers lacking AGPs (Coimbra and Duarte,
2003) rather than AGPs themselves. Indeed, the apparent in-
crease in AGP glycosylation from stigma to ovule (Wu et al.,
1995) supports this interpretation and strongly hints at the ways
in which AGPs may be involved in tip growth dependent on
the essential ions: Ca2+, protons (H+) and borate (B(OH)4 –;
Holdaway-Clarke et al., 2003). One could, for example, view
the tip as an exquisitely sensitive living Ca2+ electrode whose
AGPs integrate local Ca2+ levels and thus enable directional
growth by discriminating between small but highly localized
changes in Ca2+. This is consistent with the early observation
of a specfic chemotropic response to Ca2+ by growing pollen
tubes (Mascarenhas and Machlis, 1962).

Stomatal movements

Stomata also exemplify the AGP–Ca2+ oscillator hypothesis.
Not only are they replete with oscillator components but changes
in cytosolic pH and calcium of guard cells precede stomatal
movements (Irving et al., 1992; Kim et al., 2010). This is consist-
ent with stretch-activated Ca2+ channels (Cosgrove and Hedrich,
1991) and the marked abundance of guard cell AGP epitopes
(Majewska-Sawka et al., 2002) also demonstrated by cytochem-
ical location of the ‘Lys-rich’ classical AGPAtAGP18 expressed
as a GUS construct (fig. 3j in Yang and Showalter, 2007).

Phototropism

Finally, phototropism involves blue light receptors that initiate
lateral auxin fluxes (Gehring et al., 1990b; Friml et al., 2002;
Christie et al., 2011; Ding et al., 2013) and lead to increased

cytosolic Ca2+ (Folta et al., 2003), indicating yet another pos-
sible role for the AGP–Ca2+ oscillator.

THE AGP – Ca2+ OSCILLATOR: INTRACELLULAR
DYNAMICS

Early work with gibberellin-induced secretion ofa-amylase first
identified a specific Ca2+-dependent biochemical process
(Chrispeels and Varner, 1967). Since then it has become clear
that Ca2+ is directly involved in many processes: cell cycle regu-
lation (Himanen et al., 2002; Vanneste et al., 2005), membrane
trafficking including the transport of auxin efflux proteins
(Baster et al., 2013), the balance between exo- and endocytosis
(Paciorek et al., 2005; Robert et al., 2010; Vanneste and Friml,
2013), apoptosis (Levine et al., 1996) and programmed cell
death (PCD; Jones, 2001; Chaves et al., 2002).

Most if not all of these processes involve the universal Ca2+

signal transducer calmodulin and calmodulin-like proteins
(comprehensively reviewed by Bouche et al., 2005).

THE AGP – Ca2+ OSCILLATOR:
MORPHOGENESIS

It is convenient to discuss morphogenesis beginning with the
seed, as Jermyn first noted that AGPs were released from virtual-
ly all seeds by extraction of the seed meal with mild aqueous
buffer (Jermyn and Yeow, 1975). This raises several questions:
Where are these AGPs located in the seed? Are they identical
to the classical AGPs of actively growing plant cells? Do they
bind Ca2+? What is their functional significance in metabolically
inactive seed tissues? And what role do they play during seed
maturation and germination?

Seeds

Yariv as a cytochemical reagent identifies the cytochemical
location of AGPs in seeds such as coffee (Sutherland et al.,
2004) specifically in the thickened cell walls of the coffee endo-
sperm where they are notably concentrated at the interface
between the wall and the plasma membrane (fig. 2 in Redgwell
et al., 2002; Redgwell et al., 2006). However in seeds of
Jatropha curcas AGPs are particularly evident in vessels of the
cotyledon and in the procambium ring of the embryo (Fig. 7.)
but ‘no AGPs were detected in the endosperm’ (Sehlbach
et al., 2013).

Significant structural differences between the AGPs of seeds
(Tryfona et al., 2010), storage roots (Tsumuraya et al., 1988;
Table 2) and growing tissues (Tan et al., 2004, 2010) suggest dif-
ferent roles for AGPs in metabolically inactive versus metabol-
ically active tissues. AGPs of resurrection plants reportedly
contribute to the viability of their desiccated tissues (Moore
et al., 2013); so byanalogy, seed AGPs mayalso enhance the via-
bility of dehydrated seed tissue, particularly as such AGPs
(Jermyn and Yeow, 1975) may be surprisingly abundant and
may include both classical AGPs and the much smaller AG pep-
tides (Fincher et al., 1983; Fincher and Stone, 1974) that com-
prise, for example, .0.3 % d. wt of wheat flour (Loosveld
et al., 1997; Tryfona et al., 2010) while classical AGPs
account for approx. 0.8 % d. wt of tomato seeds (Lu et al.,
2001) similar to BY-2 cells when adjusted to a fresh weight
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basis although there are clearly wide variations in different
species (Boudjeko et al., 2009). Despite possible structural dif-
ferences between classical and seed AGPs some evidently bind
Ca2+ in germinating barley seeds, as described below.

Germination

Gibberellin (GA) induces Ca2+-dependent secretion of
a-amylase by barley aleurone cells (Chrispeels and Varner,
1967) and also by their protoplasts (Suzuki et al., 2002). As the
b-D-glucosyl Yariv reagent inhibits Ca2+-dependent amylase se-
cretion by the protoplasts, a direct role for AGPs during germin-
ation is likely (Mashiguchi et al., 2008). Curiously, however, the
Yariv reagent does not inhibit amylase secretion by intact aleur-
one cells or the germination of tomato seeds (Lu et al., 2001) pos-
sibly due to a permeability barrier as Yariv reagent markedly
inhibits subsequent seedling growth (Lu et al., 2001). Indeed,
judging from the role of auxin in root tip cell differentiation
(Ding and Friml, 2010), lateral root initiation (Himanen et al.,
2002; Lavenus et al., 2013), root hair formation (Jones et al.,

2009; Ikeda et al., 2009) and root gravitropism (Toyota and
Gilroy, 2013), the AGP–Ca2+ oscillator operates consistently
during seed germination and seedling growth.

Roots and lateral roots

AGP epitopes that appear very early, within one or two cells of
the apical initials, are notably associated with the determination
of cell fate during root development. Thus, the AGP monoclonal
JIM4-labelled developing pericycle cells in carrot root (Knox
et al., 1989). A JIM13 AGP epitope confirmed differentiation
at ‘the earliest stage of development’ (Dolan et al., 1995) in
species-specific patterns (Casero et al., 1998) that were related
to lateral root initiation (De Smet et al., 2006). Inhibition of
auxin transport also inhibits lateral root initiation (Casimiro
et al., 2001) and branching (Lavenus et al., 2013); thus, by in-
creasing the size of their AGP–Ca2+ capacitor, pericycle cells
may predestine their response to auxin during development.
Interestingly, the reb1 mutant yields defective root epidermal
cell walls with lower levels of AGPs (Ding and Zhu, 1997) al-
though more recent work identified reb1 as a UDP–D-Glc epi-
merase defective mutant, and hence a galactose deficiency
with concomitant pleiotropic effects on xyloglucan, pectin and
AGP synthesis according to Nguema-Ona et al. (2006).
Nevertheless, the location of AGPs precisely where Ca2+

signals will be needed seems entirely consistent with the
AGP–Ca2+ oscillator paradigm.

Shoots and branching

Morphogenesis of the shoot, including its vascular system
(Fukuda, 2004), branching (Shinohara et al., 2013) and leaf de-
velopment (Scarpella et al., 2006), is more complex than the
root, so the search for principal determinants has great appeal
(Smolarkiewicz and Dhonukshe, 2013). However, such determi-
nants depend greatly on the level studied: morphological, cyto-
logical, genetic, physiological and molecular.

AGPs provide a new perspective with their novel role as regu-
lators of Ca2+ signalling and metabolism. The Ca2+ oscillator
rationalizes this by relating the size of the AGP–Ca2+ capacitor
to the amplitude of the Ca2+ signal, and hence cellular response.
Significantly the size of the AGP–Ca2+ capacitor depends not
only on AGP concentration at the protoplast surface but also on
variation in the number of Hyp–AGs and their size in any
given AGP (Lamport, 1977; Pope, 1977; Qi et al., 1991; Xu
et al., 2008). Presumably, cells with an AGP deficit will not
react to signals that require release of Ca2+. This may be relevant
to the profound problem of branching where ‘apical dominance’
suppresses axillary buds but far less so in bushy growth. This
involves complex interactions between auxin transport, and
rapid redistribution of auxin efflux transporter PIN proteins by
other growth substances, including cytokinins and the recently
discovered branching repressors, strigolactones (Coombs,
2013; Jiang et al., 2013; Shinohara et al., 2013; Smith, 2013;
Zhou et al., 2013). Intriguingly, over-expression of a single
AGP gene dramatically altered the phenotype of tomato plants
from tall to bushy (Sun et al., 2004). We tentatively suggest
that overexpression of AGPs in axillary buds makes them more
responsive to auxin signals by increasing the availability of
Ca2+. There is a parallel here with phenotypic variation in
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FI G. 7. Jatropha curcas staining with Yariv. J. curcas seed sections after stain-
ing with b-D-glucosyl Yariv: (A) sagittal and (B) transverse section. [Reprinted

from Sehlbach et al. (2013).]
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Streptocarpus caused by theb-Yariv reagent and the conclusion
that AGPs play a pivotal role in pattern formation during plant
morphogenesis (Rauh and Basile, 2003). How far this simple
scenario accounts for the activation of lateral buds after terminal
shoot decapitation remains to be seen.

Leaves

Morphogenesis of the leaf is currentlyof great interest. In 1606
Adrian Spieghel wrote ‘But what is the leaf’ (Arber, 1950),
answered by Nehemiah Grew (�1666) co-founder of plant
anatomy: ‘The skin of the leaf is only the amplification of that
of a branch’ (Arber, 1950). Not surprisingly leaves also
involve similar PIN-directed auxin gradients that mediate mor-
phogenesis (Benkova et al., 2003; Scarpella et al., 2006;
Barkoulas et al., 2008) by the formation of auxin maxima at
sites of tissue outgrowth (Di Giacomo et al., 2013; cf. Fig. 3B).
Again this implies involvement of the AGP–Ca2+ capacitor.

Flowering, fertilization and early embryogenesis

The transition from leaf morphogenesis to flowering (Taoka
et al., 2013) and reproductive growth is essentially a study in
leaf modification. Again AGPs are involved at every develop-
mental stage evidenced by histochemical detection (Yariv) of
AGPs in ovaries (Gane et al., 1995a), immunodetection of a non-
classical AGP in styles (Sommer-Knudsen et al., 1996), direct
isolation of classical AGPs from styles and stigmas (Gane
et al., 1995b) and indirect evidence from auxin-dependent pat-
terning of the ovule (Pagnussat et al., 2009). Indeed, ‘AGPs
are essential for somatic embryogenesis’ (Kreuger and van
Holst, 1993) although that idea was based on the assumption
that AGPs are freely diffusible between cells.

AGP appearance may be dynamic or static. For example, AGP
epitopes localized in unfertilized tobacco egg cells disappear
rapidly after fertilization (Qin and Zhao, 2006) and the stylar
transmitting tissue accumulated AGPs in response to pollination
(Qin et al., 2007) while differential expression of AGPs during
early embryogenesis (Costa et al., 2013b) suggests that asym-
metric delivery of AGPs determines the fate of the basal cell
(Souter and Lindsey, 2000). Indeed, specific AGPs associated
with directional pollen tube tip growth are abundant along the
pistil transmitting tissue pathway based on its reactivity with
monoclonals MAC207 and JIM13 but not JIM8 (Coimbra and
Duarte, 2003). In contrast, cells of the micropyllar nucellus
pathway were JIM8- and MAC207-reactive (Coimbra and
Salema, 1997). Finally, an arabidopsis double null mutant of
two pollen-specific AGPs (agp6 agp11) decreased pollen tube
growth with concomitant altered expression levels of calcium-
and signalling-related genes. The suggested AGP calcium inter-
action via calmodulin (Costa et al., 2013a) is consistent with our
proposal in section II that during pollen tube growth AGPs and
AGP–Ca2+ dissociation may be a crucial determinant of Ca2+

gradients and pollen tube guidance.

THE AGP – Ca2+ OSCILLATOR: STRESS

The pervasive presence of Ca2+ oscillations and Ca2+ signalling
in stress-related plant growth and development (Bose et al.,
2011) is consistent with the major role of Ca2+ as a central

node in the overall signalling web (Tuteja and Sopory, 2007)
and, as inferred here, involvement of the AGP–Ca2+ oscillator
as follows.

Abiotic stress and wound response

Abiotic stress such as drought, heat shock, cold shock, wound
response and salinity increase cytosolic Ca2+ mostly due to
influx from the apoplast (Knight et al., 1997; Neill et al., 2002;
Lecourieux et al., 2006). Indirect evidence involves AGPs in
these responses to stress: the Yariv reagent leads to abrupt cessa-
tion of pollen tube growth with massive accumulation of the
Yariv–AGP complex at the tube tip (Roy et al., 1998). The
Yariv reagent also triggers wound-like responses in cultured
cells (Guan and Nothnagel, 2004) and PCD (Gao and
Showalter, 1999; Chaves et al., 2002). PCD also involves Ca2+

influx (Groover and Jones, 1999). As the Yariv complex un-
doubtedly binds Ca2+, accumulation of a periplasmic AGP–
Yariv complex represents a potentially larger pool of available
Ca2+.

Acacia senegal exemplifies AGP upregulation in response to
wounding even though the AGP (Qi et al., 1991; Goodrum
et al., 2000) and AGP-like gum arabic polysaccharides (Siddig
et al., 2005) function as a plastic wound sealant rather than an
AGP–Ca2+ oscillator. Although known for many years, the sig-
nificance of Ca2+ bound by the uronic acids of gum arabic only
became clear when 3D molecular modelling of the Hyp–AG
structure revealed the mechanism and rationale for specific
Ca2+ binding by the Hyp–AG subunits of periplasmic AGPs
(Lamport and Varnai, 2013).

Salt stress

Salt stress is of particular interest with huge economic and eco-
logical significance. The salt overly-sensitive (SOS) signalling
pathway (Zhu, 2001) enhances tolerance to saline conditions
via SOS1 the Na+/H+ antiporter (Na+ efflux) activated via the
SOS2 kinase in conjunction with the SOS3 Ca2+ sensor that
detects elevated cytosolic levels of Ca2+ (Ishitani et al., 2000).
An extracellular source of Ca2+ is critical (Tuteja and Sopory,
2007). However, high levels of Na+ compete with AGP–Ca2+

(Fig. 6) and may thus dissipate Ca2+ availability. Upregulation
of AGP biosynthesis by salt-stressed tobacco cells (Lamport
et al., 2006) may reflect a homeostatic adaptation for Ca2+ reten-
tion. Halophytes may have solved disruption to Ca2+ signalling
by using AGPs that discriminate more effectively against Na+ by
subtle variation of the Ca2+-binding subunit. This might account
for the occurrence of 3-O-methylgalactose in desiccation-
resistant lycophyte genera such as Lycopodium and Selaginella
(Popper et al., 2001) and 3-O-methylrhamnose (acofriose) in
AGPs isolated from the moss Physcomitrella (Popper et al.,
2004; Fu et al., 2007) and Charophytes such as Chara and
Coleochaete, but not observed (yet!?) in higher plants.

Pathogenesis and symbiosis

‘Hold your friends close but your enemies closer’ reflects the
progress from parasite to symbiont. Both relationships involve
calcium signalling (Lecourieux et al., 2006) with associated
AGPs in root–microbe interactions comprehensively reviewed
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(Nguema-Ona et al., 2013). Frequently these AGPs appear as
markers or predictors of potential cell fate that is presumably
finally triggered by an auxin signal (Grunewald et al., 2009) or
its repression (Navarro et al., 2006).

ONLY CONNECT . . . STRUCTURE WITH
FUNCTION . . . BACK TO THE FUTURE OF AGPs

Hydroxyproline was first identified in plants in the late 1940s as a
minor (secondary) amino acid (Joslyn and Stepka, 1949; Maehly
and Paleus, 1950; Hunt, 1951; Steward et al., 1951). Later its
main location bound to the primary cell wall (Dougall and
Shimbayashi, 1960; Lamport and Northcote, 1960; Lamport,
1963b) suggested a structural protein by analogy with collagen,
the major structural protein of animals. Subsequent work recog-
nized two major families of cell surface HRGPs: the extensins
crosslinked (Held et al., 2004) to the wall itself and classical
AGPs primarily located at the surface of the plasma membrane.
Both families are characteristicallyextended polypeptides rich in
glycosylated Hyp. Despite this similarity in molecular design,
differences in their glycosylation underpin quite different roles
– extensins, self-assembling rod-like amphiphiles stabilized by
short arabinooligosaccharides, are scaffolding proteins that tem-
plate new cross-wall deposition (Cannon et al., 2008). By con-
trast, the exquisitely designed AG polysaccharides of classical
AGPs possess repetitive subunits whose paired glucuronic acid
residues bind substantial amounts of Ca2+ at the plasma mem-
brane: hence, a Ca2+ signalling role. Nevertheless, this work
only scratches the surface regarding our understanding of
AGPs and their possible multifunctional role. There is much to
do at all levels of AGP function from molecular to environment:

The challenge to dissect the molecular role of each AGP sub-
domain includes both protein and glycosubstituents each with
their own fascinating problems.

The N-terminal signal sequence and C-terminal GPI-addition
signal are well known. However, the 12-residue basic subdomain
of LeAGP1, the most abundant and best known AGP of BY-2
cells, remains a mystery (Pogson and Davies, 1995; Li and
Showalter, 1996). Such lysine-rich subdomains in other AGPs
(Yang et al., 2005, 2007) may enable binding to phospholipid
headgroups or pectate carboxylates and would contribute to
orientation and cell surface ordering of AGPs (Gens et al.,
2000; Pickard, 2007).

Molecular dissection of AGP glycosylation presents intri-
guing questions: the size and precise composition and spacing
of Hyp–AGs along the AGP polypeptide as well as the total
number of Hyp–AGs in an AGP are most likely determined or
encoded by the primary amino acid sequence, especially the
AP and SP motifs, whose numbers and clustering vary widely
between different classical AGPs. Are Hyp–AGs ‘tuned’ to dis-
criminate between Ca2+ and other cations such as Al3+ and high
levels of Na+ (Fig. 6)? Besides the Ca2+-binding role of glucur-
onic acid residues (how ‘essential’ is the terminal rhamnose?)
can we dissect the role of the b,1–3-linked AG backbone and
its sidechain substituents? What does the triarabinosyl branch
add? Some suggest that the arabinosyl sidechain is essential for
binding of the Yariv reagent (Komalavilas et al., 1991; Serpe
and Nothnagel, 1994; Classen et al., 2000).

This suggests a molecular role for thea-L-linked triarabinosyl
sidechain in muro; based on the similar sterochemical

configuration ofa-L- andb-D-sugars,a-L-linked arabinosyl side-
chains might dock with the terminal b-D-galacturonic acid of
pectic RG-II sidechain-A; competitive disruption of the
apiosyl borate crosslink (O’Neil et al., 2004) would thus plasti-
cize the pectic network. However, others suggest that the Yariv
reagent binds to the AG b-linked galactan backbone, a discrep-
ancy that may reflect the different binding assays used
(Kitazawa et al., 2013).

This raises furtherquestionsaboutHyp–AGbiosynthesis,which
requires a minimum of eight or nine AGP glycosyltransferases to
build a repetitive Hyp–AG; currently four have been identified:
AtGALT2 (At4g21060), and Hyp-O-galactosyltransferase of the
GT31 family (Basu et al., 2013); AtGALT31A (At1 g32930), a
b-1,6-glactosyltransferase also in the GT31 family (Geshi et al.,
2013); AtGlcAT14A (At5g39990), a b-glucuronosyltransferase
of the GT14 family (Knoch et al., 2013); and AtFUT4
(At2g15390) and AtFUT6 (At1g14080), a-(1,2) fucosyltrans-
ferases of the GT37 family (Wu et al., 2010; Liang et al., 2013).
The evolution of a functional Hyp–AG Ca2+-binding glycomotif
of such elegant complexity (or simplicity?) harks back to the past
origin of glycosylated Hyp in photosynthetic protists (Gotelli and
Cleland, 1968; Lamport and Miller, 1971; Miller et al., 1972;
Bollig et al., 2007). Tantalisingly, however, protists lack classical
AGPs critically identified by chemical characterization. Indeed,
we have been unable to isolate classical AGPs from Coleochaete
despite the presence of Yariv-reactive material (Buglass et al.,
2007)! The appearance of classical AGPs in bryophytes
(Lamport, 1970) reflects the sea change that enabled the transition
to terra firma and a new challenging environment (Popper and Fry,
2003).

The journey from HRGP structure to function begun half a
billion years ago, in human terms only half a century ago, has
finally arrived at molecular-level roles for both extensins
(Lamport et al., 2011) and AGPs with the paradoxical conclusion
that although often perceived, both figuratively and literally, as
peripheral glycoproteins, in fact AGPs and extensins play a
central role in plant growth and development as originally sur-
mised (Lamport, 1963b).
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