
Butyrate Increases Intracellular Calcium Levels and
Enhances Growth Hormone Release from Rat Anterior
Pituitary Cells via the G-Protein-Coupled Receptors
GPR41 and 43
Maria Consolata Miletta1, Vibor Petkovic1, Andrée Eblé1, Roland A. Ammann2, Christa E. Flück1,
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Abstract

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered
to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises
concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the
metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an
endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing
hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the
generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was
transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate
promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate
enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the
butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a
metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
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Introduction

Growth hormone (GH) is a member of the somatotropin/

prolactin family of hormones and it is secreted in a pulsatile

manner by the pituitary gland. Beyond its well-known effects on

longitudinal growth during childhood and adolescence, GH plays

a crucial role in controlling energy homeostasis, particularly

during energy restriction and fasting [1]. By increasing lipolysis

and protein retention, GH impairs suppression of hepatic glucose

production and decreases insulin-dependent glucose disposal [2–

4]. However, potential secondary mediators that contribute to the

metabolic action of GH during fasting have not been investigated

in great detail.

Butyrate is a short-chain fatty acid (SCFA) produced by

bacterial anaerobic fermentation in the gut and is subsequently

released into the bloodstream. It is structurally and functionally

related to the ketone body ß-hydroxybutyrate (BHB) [5], the major

source of energy during prolonged exercise and starvation [6]and

is an endogenous agonist for the two G-protein-coupled receptors

(GPCR), GPR41 and 43 [7]. During fasting when the liver

switches to fatty acid oxidation, a rise in serum GH is observed

together with the accumulation of BHB and SCFA such as acetate,

propionate and butyrate. The metabolic and hormonal mecha-

nisms by which nutritional deprivation affects the hypothalamic–

somatotrophic axis are not completely understood. Until recently,

the regulation of GH release was believed to represent the net

result of the antagonistic actions of hypothalamic growth hormone

releasing hormone (GHRH) and somatostatin (SRIF) on the

pituitary, as well as negative feedback via circulating insulin-like

growth factor I (IGF-I) [8]. The effect of butyrate and BHB on GH

secretion is poorly investigated and it remains unclear whether

butyrate induces GH secretion by a direct action on somatotroph

cells of the pituitary gland.

Butyrate exerts its action by binding to the receptors GPR41

and GPR43 [7,9], the two putative GPCR for SCFA sharing 40%

of their amino acid sequence, which has been preserved across

several mammalian species [7,9,10]. Both receptors respond to

SCFAs containing two to five carbons, although a preference of

GPR43 for C3–C5 fatty acid and of GPR41 for C2 and C3 chain

lengths have been reported [7,9,11]. The receptors differ in their
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intracellular signalling capabilities, with GPR43 coupling to either

Gq or Gi/o and GPR41 exclusively activating Gi/o pathway

[7,9,11]. The finding that both receptors are located in the rat

pituitary [12] suggests that butyrate may use this pathway to

modulate GH secretion.

Therefore, the aim of this study was to examine the effect of

butyrate on hGH production and secretion under non-stimulated

and GHRH-stimulated conditions. Moreover, using a heterolo-

gous cell system based on GC cells (rat pituitary tumour cell line)

stably expressing the hGHRH-receptor (GC-GHRHR cells) which

were transiently transfected with wt-hGH, we investigated the

potential role of GPR41 and 43 in butyrate-induced Ca2+

signalling and its possible impact on hGH secretion.

Materials and Methods

2.1. Cell culture and treatment
Rat pituitary cell line, GC cells [13], stably transfected with

hGHRHR (GC-GHRHR) were cultured in DMEM (4.5 g/liter

glucose) supplemented with 15% heat-inactivated horse serum,

2.5% heat-inactivated fetal calf serum, 10 mM Na-Pyruvate

(LifeTechnologies, Invitrogen AG, Basel, Switzerland), and

100 U/liter penicillin/streptomycin.

2.2. Expression vectors and transfection
Human wild-type GH (wt-hGH) was cloned in pXGH5 (Nichols

Institute Diagnostics, San Clemente, CA) as previously described

[14]. GC-GHRHR were transiently transfected with wt-hGH,

using Amaxa nucleofection (Lonza Group, Switzerland), with

nucleofector solution L using program T-05. As a negative control,

GC-GHRHR cells were also transfected with an empty vector

(puc18). The transfection efficiency was checked using EGFP-N1

(enhanced green fluorescent plasmid) and results (cells transfection

efficiency was between 65–70%) were found to be consistent

throughout independent experiments.

2.3. GHRH stimulation and butyrate treatment
Six hours after transfection, GC-GHRHR cells were washed in

PBS and the culture medium was changed to OPTIMEM medium

(Life Technologies, Invitrogen AG). Thereafter, the cells were

either stimulated or not with 10 nM GHRH (Bachem AG,

Bubendorf, Switzerland) and treated or not with 5 mM butyrate

(added as a sodium butyrate) (Sigma Aldrich, Poole, UK) for 24 h.

In addition, as a negative control, GC-GHRHR cells were

transfected with an empty vector.

2.4. RNA isolation and RT-PCR
Total RNA was extracted from GC-GHRHR cells 24 h after

transfection with wt-hGH, using QIAGEN RNeasy kit (QIAGEN

AG, Basel, Switzerland) including deoxyribonuclease treatment.

Thereafter, total RNA was reverse transcribed (1 mg total RNA) in

25 ml reverse transcriptase reaction using oligo (deoxythymidine)

18 primers, 20 mM of each deoxynucleotide triphosphate, 10X

first strand buffer solution, Moloney murine leukemia virus reverse

transcriptase (Roche Molecular Biochemicals, Mannheim, Ger-

many), and diethyl pyrocarbonate. The PCR mixture (25 ml total

volume) consisted of primers (forward and reverse 900 nM) and

the PCR universal master mix (PE Applied Biosystems). Negative

controls included no template control and RNA control to check

for genomic contamination. The primer pairs for rat GPR41, 43

were designed as described previously [12]. PCR conditions were

as follows: 94uC for 5 min; 33 cycles at 94uC for 1 min, 58uC for

1 min 30 s, and 72uC for 40 s for GPR43 and GPR41; 94uC for

5 min; 25 cycles at 94uC for 30 s, 60uC for 45 s, and 72uC for 45 s

for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Ali-

quots of the PCR reaction were analysed on 1.5% Metaphor gels

(Bioconcept, Allschwil, Switzerland).

2.5. Western blot analysis
Cellular proteins were extracted 24 h after GHRH and/or

butyrate treatment from GC-GHRHR cells using RIPA lysis

buffer; 50 mg of total cell lysates were separated on 15% SDS-

PAGE gel and blotted on Immobilon P transfer membranes

(Millipore, Bedford, MA) using a Trans-Blot semidry apparatus

(Bio-Rad Laboratories, Hercules, CA). Membranes were probed

with polyclonal rabbit anti-human GH antibodies (1000x) (ICN

Pharmaceuticals, Inc., Eschwege, Germany) and with monoclonal

mouse anti-b-actin (1000x) (Sigma Aldrich, Buchs, SG, Switzer-

land). For secondary antibodies, anti-rabbit (DakoCytomation,

Glostrup, Denmark) or anti-mouse immunoglobulins (Santa Cruz

Biotechnology, Labforce AG, Switzerland) were used. Protein

bands were visualized by enhanced chemiluminescence substrate

reagent and exposed on ECL Plus films (Amersham Pharmacia

Biotech, Dubendorf, Switzerland). b-actin was used as a control

for equal loading. For quantification, protein bands were

densitometrically measured using Quantity One software. Cellular

proteins extracted from untransfected GC cells were used as a

negative control.

2.6. Extracellular hGH secretion measurement after GHRH
and/or butyrate treatment

Aliquots of culture medium were collected 24 h after 10 nM

GHRH and/or 5 mM butyrate treatment. Extracellular hGH was

measured in the aliquots of culture medium by the DSL-10-1900

Active hGH enzyme-linked immunoabsorbent assay (ELISA) kit as

previously described [15]. The results of hGH secretion were

normalized to a total protein content. The assay kit used was

highly specific for the exclusive detection of hGH.

2.7. Dual luciferase reporter assay
GC-GHRHR cells were transiently transfected with the Renilla

luciferase control vector and with the reporter construct pCREluc,

a luciferase expression vector, under the control of 16 cAMP-

responsive elements [16], using nucleofection as described above.

1.5 mM 8-Br-cAMP (Sigma Aldrich, Poole, UK) was used as a

positive control. 20–24 h post-treatment transfected cells were

lysed and assayed for dual luciferase activities as described by the

manufacturer (Promega, Dübendorf, Switzerland).

2.8. siRNA-mediated gene silencing of GPR41 and 43 and
quantitative real-time PCR analysis (SYBR Green)

GC-GHRHR cells were transiently transfected with rat GPR41

siRNA (59-GGAGCUACGUGCUUCUCCU-39) or rat GPR43

siRNA (59-CUGCUAUUGGCGCUUUGUA-39) (Sigma Aldrich,

Buchs, Switzerland) using Amaxa nucleofection as described

above. A mixture of four or more mismatches with known rat

genes (siControl Non-Targeting siRNA Pool) (Pharmacon,

Thermo Fisher Scientific, Wohlen, Switzerland) was used as a

negative control to detect off-target effects. Two days after

transfection, GPR41 and 43 mRNA expression were determined

by quantitative real-time PCR (qRT-PCR) using the 7500 Fast

Real-Time PCR System (Applied Biosystems, Foster City, CA,

USA). In brief, PCR reactions were performed in 96-well plates

(MicroAmp, Applied Biosystems) using cDNA prepared as

described above. We used ABsolute QPCR SYBR Green Mix

(ABgene, Thermo Fisher Scientific, Wohlen, Switzerland), 1 ml

(20 pmol/ml) specific primers (Microsynth, Balgach, Switzerland)
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and 40 ng cDNA in a total volume of 25 ml. Relative expression

values were determined by the comparative Ct method using 18S

rRNA as the reference gene. Amplification curves and the mean

Ct values were calculated using the 7500 Fast System SDS

software (Applied Biosystems, LifeTechnologies, Basel, Switzer-

land).

48 h after silencing, cells were further re-transfected with wt-
hGH and treated or not with 10 nM GHRH and/or 5 mM

butyrate for 24 h. The extracellular GH secretion was measured as

described in 2.6.

2.9. Intracellular calcium [Ca2+]i measurements
GC-GHRHR cells, transiently transfected with wt-hGH and

treated for 24 h with 5 mM butyrate, were plated in half-area

clear bottom 96-well plates (Corning, CA, USA) at 753 cells/well.

24 h later, following two washings with OPTIMEM medium +
2.5 mM probenicid (Sigma-Aldrich, Buchs, Switzerland), cells

were incubated with 2 mg/mL Fluo-4 AM (Invitrogen, Life-

Technologies, Basel, Switzerland) and Pluronic F-127 0.025% (w/

v) (Invitrogen, LifeTechnologies, Basel, Switzerland) for 30 min in

dark at 37uC. After washing twice with OPTIMEM medium, cell

measurement was performed on a Synergy-4 instrument (BioTek,

Highland Park, VT, USA) with an excitation band of 485/20 nm

and fluorescence was measured at 528/20 nm. Baseline signal (F0)

was recorded during 5 min before the addition of each stimulus.

Subsequently, continuous fluorescence measurements were per-

formed for 20 to 30 min. Ionomycin (Calbiochem, San Diego,

CA, USA) stimulation was used as a positive control. Results are

shown as F/F0 ratios after background subtraction, where F was

the fluorescence signal intensity and F0 was the baseline as

calculated by averaging the ten frames before stimulus application.

For [Ca2+]i measurements in siRNA-treated cells, cells were

further transfected with wt-hGH 48 h post-siRNA transfection and

treated with 5 mM butyrate. After 24 h cells were seeded and

treated as mentioned above.

2.10. Statistical analysis
Means and standard deviation of means were calculated for the

3 to 10 replications performed per experiment. For analysis of

[Ca2+]i measurements, peaks (maximum F/F0 ratio within

499 sec. after stimulus) were compared using Student’s t-test,

and means and slopes of F/F0 ratio in the plateau phase ($

500 sec. after stimulus) were compared using random coefficients

mixed linear regression (random intercept and random slope per

run, first-order serial autocorrelation) [17].

Specifically, the lme procedure of the nlme package in R 3.0.2

(R Foundation for Statistical Computing, Vienna, Austria) was

used. In addition the area under the curves was calculated using

trapezoidal rule and the results were compared using a Student’s t-

test.

For the remaining analyses, two-sided one–way ANOVA

followed by Bonferroni’s post hoc comparison tests was performed

used GraphPad prism 5 (*p,0.05, **p,0.01, ***p,0.001). p-

values ,0.05 were considered significant.

Results

3.1. Intracellular hGH production and hGH secretion after
GHRH and/or butyrate treatment

We assessed the impact of butyrate on intracellular hGH

production by Western blot. After transfection with wt-hGH, GC-

GHRHR cells were treated or not with 10 nM GHRH and/or

5 mM butyrate for 24 h. GHRH treatment evoked a 6.2 fold

increase in hGH protein expression when compared to non-

stimulated conditions. Treatment with butyrate induced a 6.6 fold

increase while combined treatment with GHRH and butyrate

induced a 9.4 fold increase in hGH protein expression over non-

stimulated conditions (Fig. 1A).

We also measured the hGH secretion in the same experimental

setting. Basal hGH release (NS) (mean: 14 ng/ml) significantly

increased after GHRH treatment (mean: 119 ng/ml) (p,0.01).

Butyrate treatment itself significantly increased hGH secretion

(mean: 66 ng/ml) (p,0.01) compared to the basal level while in

the presence of both GHRH and butyrate, extracellular GH

secretion was significantly increased (mean: 187 ng/ml) (p,0.01)

when compared to cells stimulated with butyrate only (Fig. 1B).

3.2. cAMP production in GC-GHRHR cells after GHRH and/
or butyrate treatment

Since butyrate increased intracellular hGH content and its

extracellular release, we next investigated whether the main

signalling pathway, the adenylate cyclase (AC)/cAMP/protein

kinase (PKA) pathway, activated by GHRH, is activated in

response to butyrate. A dual luciferase reporter assay showed that

GHRH evoked an increase in cAMP levels through GHRHR

activation, while butyrate itself induced no increase of cAMP levels

compared to non-treated conditions (NS) (Fig. 2A). On the

contrary, co-treatment with GHRH and butyrate decreased

cAMP levels by 60% compared to those evoked by GHRH

treatment alone. Our results indicate that the reduction in cAMP

level induced by co-treatment with GHRH and butyrate may

occur as a result of an interaction between different Ga subunits

associated with either GPR41 (Gi/o inhibiting the cAMP

production) or GHRHR (Gs catalysing the increase in cAMP

levels), which are activated by butyrate or by GHRH.

Figure 1. Analysis of intracellular hGH expression and extra-
cellular hGH secretion after GHRH and/or butyrate treatment.
(A) A representative Western Blot analysis of hGH is shown. The bands
were densitometrically quantified and normalized to b-actin. The band
corresponding to non-stimulated and non-treated conditions (NS) were
set to 1 and all the remaining samples were compared accordingly. GC-
cell non-transfected with wt-hGH were used as a negative control. (B)
Measurements of extracellular hGH secretion. hGH secretion was
measured in aliquots of culturing medium by DSL-GH ELISA and all
the values are further normalized to total protein content. For all the
experiments, the results represent a mean +/2 SD of at least four
independent quantification experiments. (*, p,0.05, **, p,0.01).
doi:10.1371/journal.pone.0107388.g001
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3.3. GHRH- and/or butyrate-induced hGH secretion after
Na+ channels blockade

Based on previous reports [18] demonstrating that GHRH

depolarizes the cell membrane by activating Na+ channels

resulting in the opening of calcium channels and a Ca2+ influx

into the cells, we assessed the involvement of Na+ channels on

butyrate-induced hGH release. hGH release was measured in

response to GHRH and/or butyrate treatment with or without

additional incubation with 30 mM tetrodotoxin, a selective Na+

channel blocker. In the presence of tetrodotoxin, we observed 20%

reduction of GHRH-induced hGH secretion when compared to

samples not treated with tetrodotoxin (Fig. 2B). Since a compa-

rable reduction in hGH secretion was also observed after GHRH

+ butyrate stimulation, our results suggest that Na+ channels do

not participate in the process of butyrate-induced hGH secretion.

3.4. GHRH and/or butyrate stimulation affect intracellular
calcium [Ca2+]i levels

Considering that butyrate might exert its action on somato-

trophs through binding to the two putative SCFAs receptors,

GPR41 and 43, we assessed their expression in GC-GHRHR cells

transfected with wt-hGH by RT-PCR and found both receptors to

be constitutively expressed (Fig 3A). The rise in [Ca2+]i is a key

event in any nutrient-induced GH secretion [19] and therefore

butyrate might stimulate hGH release by enhancing [Ca2+]I levels.

To test this hypothesis, changes in [Ca2+]i in GC-GHRHR cells

expressing wt-hGH after stimulation with 10 nM GHRH and/or

5 mM butyrate were monitored from 20 to 30 minutes (Fig. 3B).

In comparison to non-stimulated conditions (NS), GHRH

stimulation induced a significant increase (p,0.001) in a biphasic

Ca2+ oscillation with an initial sharp peak in [Ca2+]I, resulting

from Ca2+ release from intracellular stores [19–21], followed by a

moderate and long-lasting [Ca2+]i rise due to the influx of Ca2+

through the opening of the Voltage Gated Calcium Channel

(VGCCs) [20]. Interestingly, stimulation with butyrate led to a

similar calcium response to that induced by GHRH (Fig. 3B).

Combined stimulation with GHRH and butyrate induced a

statistically significant biphasic Ca2+ increase (p,0.001), which

was more pronounced in the plateau phase when compared to

GHRH alone (Fig. 3B). To verify the specificity of the intracellular

calcium response recorded, changes in [Ca2+]i were also followed

in the absence of stimuli (NS). Under the culture conditions

employed, spontaneous Ca2+ oscillations were not observed,

whereas a spontaneous transient rise in Ca2+ was only occasionally

encountered. Finally, considering that extracellular acidosis

induces Ca2+ oscillations [22], we confirmed that pH of the

culture medium was not changed after the addition of butyrate

(medium pH = 7.21, medium + sodium butyrate pH = 7.26,

conditions: 37uC and 5% CO2).

Figure 2. Involvement of cAMP and Na+ channels in butyrate-
mediated hGH secretion. (A) Effect of butyrate on cAMP accumu-
lation was assessed in GC-GHRHR cells co-transfected with a dual
luciferase reporter vector and following 24 h incubation with 10 nM
GHRH and/or 5 mM butyrate. Results are given as relative luciferase
units (RLU) and expressed as fold increase over non-treated conditions
(NS). (B) hGH secretion was measured in aliquots of culturing medium
from GC-GHRHR cells transfected with wt-hGH after 24 h incubation
with 10 nM GHRH and/or 5 mM butyrate and additional incubation
with 30 mM tetrodotoxin (TTX). All the values are normalized to a total
protein content. For all the experiments, the results represent a mean
+/2 SD of at four independent quantification experiments. (*, p,0.05,
**, p,0.01).
doi:10.1371/journal.pone.0107388.g002

Figure 3. Intracellular calcium [Ca2+]i response in GC-GHRHR
cells mediated by GPR41 and 43 receptors. (A) GPR41 and GPR43
expression was detected by RT-PCR in GC-GHRHR cells. The expected
sizes of the amplified DNA bands were 439 and 508 bp for GPR43 and
GPR41, respectively. (B) Measurements of the [Ca2+]i in GC-GHRHR cells,
transiently transfected with wt-hGH and treated with butyrate, were
assessed after stimulation with 10 nM GHRH and/or 5 mM butyrate.
Addition of the stimulus is indicated with an arrow. One representative
experiment of at least 5 independent experiments is shown (*, p,0.05,
**, p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0107388.g003
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3.5. Silencing of GPR41 and 43 by gene-specific siRNA’s
To further test the possible correlation between the expression

of GPR41 and 43 and the increase in [Ca2+]i in GC-GHRHR

cells, we silenced GPR41 and 43 using gene-specific siRNA’s.

Silencing of rat GPR41 or GPR 43 expression using specific

siRNA caused a significant decrease in the mRNA expression of

both receptors when compared to the controls (cells transfected

with siRNA non targeting) (Fig. 4). Two days after transfection,

mRNA expression of GPR41 and 43 declined to less than 25% of

that detected in control cells. Transfection of GC-GHRHR cells

with siRNA non-targeting had no effect on the expression of

GPR41 and GPR43 mRNA when compared to untransfected

cells.

3.6. Effect of GHRH and/or butyrate stimulation on the
[Ca2+]I and extracellular hGH secretion after silencing of
the GPR41 and 43 receptors

Further we wanted to test whether the silencing of GPR41 and

43 has a direct impact on [Ca2+]i changes evoked by butyrate

and/or GHRH and whether it directly affects hGH secretion,

which would demonstrate a direct link between butyrate activation

of GPR 41 and 43, elevation of [Ca2+]I and enhanced hGH

secretion. Therefore, two days after silencing, cells were re-

transfected with wt-hGH, treated with butyrate and further

incubated for 24 h when the [Ca2+]i response to GHRH and/or

butyrate stimulation was assessed.

In cells transfected with siRNA non targeting the [Ca2+]i

response evoked by butyrate and/or GHRH was statistically not

different from that measured in GC-GHRHR cells (Fig. 5A–C).

In presence of GHRH (Fig. 5A), silencing of GPR41 induced a

[Ca2+]i response higher in the peak phase (p,0.05) compared to

the control; while, after silencing of GPR43, the [Ca2+]i response

following GHRH stimulation did not change. On the other hand,

the [Ca2+]i response to butyrate stimulation was lower in the peak

phase (p,0.05) following silencing of GPR41 or 43 (Fig. 5B). Co-

stimulation with butyrate and GHRH (Fig. 5C) showed a

decreased [Ca2+]i response (p,0.05), in the peak phase, following

silencing of GPR41 or 43.

Finally, we analysed the impact of GPR41 and 43 silencing on

extracellular hGH secretion. The silencing of GPR41 evoked a

significant increase (p,0.05) in GHRH-induced hGH secretion

compared to cells transfected with siRNA non targeting (p,0.05),

while silencing of GPR43 had no impact on GHRH-induced hGH

secretion (Fig 6A). Furthermore, butyrate-induced hGH secretion was significantly decreased (p,0.01) after the silencing of GPR41

or GPR43 when compared to cells transfected with siRNA non-

targeting (Fig 6B). In the presence of GHRH and butyrate

(Fig. 6C), GPR43 or GPR41 silencing caused a significant

decrease in hGH secretion when compared to the controls (p,

0.01).

Discussion

The aim of this study was to test the impact of butyrate on hGH

secretion and production in a rat pituitary tumour cell line and to

investigate a potential role for SCFAs’ receptors, GPR41 and

GPR43, in mediating the effect of butyrate on [Ca2+]I and hGH

secretion.

We showed that in rat pituitary tumour cells, butyrate enhances

hGH release in both not-stimulated and GHRH-stimulated

conditions through the activation of GPR41 and 43 receptors.

Reported effects of butyrate on GH secretion obtained in vitro
are still controversial, since it has been reported that butyrate

inhibits GH synthesis in GH1 cells [23] but stimulates GH

Figure 4. Silencing of GPR41 and GPR43 by gene-specific
siRNAs detected by qRT-PCR (SYBR Green). GC-GHRHR cells were
transiently transfected with either negative control (siRNA non
targeting) or GPR41- or GPR43- specific siRNA and analysed after two
days of incubation. Results are expressed as fold induction over siRNA
non targeting condition. The results represent a mean +/2 SD of four
independent experiments. (*, p,0.05, **, p,0.01).
doi:10.1371/journal.pone.0107388.g004

Figure 5. Intracellular calcium [Ca2+]i response after GPR41 and
43 silencing. (A) [Ca2+]i changes were measured in response to 10 nM
GHRH or (B) in response to 5 mM butyrate and (C) in response to 10 nM
GHRH +5 mM butyrate in GC-GHRHR cells transfected with wt-hGH and
cells further expressing siRNA control (siRNA non targeting), GPR43-
specific siRNA, or GPR41-specific siRNA previously treated for 24 h with
5 mM butyrate. Addition of the stimulus is indicated with an arrow.
Mean values and area under the peaks were compared for statistics.
One representative experiment of at least 5 independent experiments is
shown (*, p,0.05, **, p,0.01).
doi:10.1371/journal.pone.0107388.g005
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synthesis in GH3 [24] and GH4Cl cells [25]. More recently

Ishiwata et al. [12] demonstrated a suppressive effect of butyrate

on rat GH secretion in a primary culture of rat anterior pituitary

cells, which is however a heterogeneous cell population consisting

of five different types of neuroendocrine cells. Due to its short

plasma half-life [26,27], in vivo testing of the effects of butyrate

may be difficult. Infused butyrate is rapidly metabolised and the

plasma concentration is well below the concentrations in the mM

range that are generally needed to produce effects in vitro.

However, several compounds structurally related to butyrate, like

gamma-hydroxybutyrate (GHB or sodium oxylibate) [28,29],

beta-hydroxy-beta methylbutyrate (HMb) or even the infusion of

BHB alone have been shown to significantly increase GH secretion

in humans [30].

Efforts to determine the precise mechanism responsible for this

response have been confounded by the fact that butyrate can act

on both the hypothalamus and pituitary [12,31]. So far it has been

suggested that butyrate-induced GHRH release is sufficient to

elicit GH secretion but no studies have provided convincing data

to support this hypothesis. Therefore, based on current data, it

remains unclear whether the potentiated GH secretion responses

arise from the direct action of butyrate on the somatotroph cells.

In our cell model, we used GC cells, a homogeneous

neuroendocrine cell population that produce endogenous rGH

but do not express rat GHRHR and are thus refractory to GHRH

stimulation. We could thus transfect them with wt-hGH and

stimulate hGH production and secretion with GHRH (Robinson,

I. C., unpublished data).

In the somatotroph cells of the pituitary gland, the release of

GH is primarily regulated by GHRH and the underlying

mechanism involves an increase in cAMP level and changes in

[Ca2+]I [32,33]. Our results show that in spite of having no effect

on cAMP levels and a reducing effect on GHRH-stimulated

cAMP accumulation, butyrate is still able to stimulate GH

secretion. This suggests that its enhancing effect on GH release

is independent of its effect on cAMP accumulation and is mediated

by a mechanism involving changes in [Ca2+]i. This notion is based

on observations that [Ca2+]i response to butyrate stimulation was

of similar magnitude to that evoked by GHRH. In both cases,

[Ca2+]i displayed either a peak phase resulting from Ca2+ release

from intracellular stores, or a plateau type phase characterized by

a moderate and long-lasting [Ca2+]I, rise due to the influx of Ca2+

through the opening of Voltage Gated Calcium Channel (VGCCs)

[20,21,34]. A Ca2+-dependent, cAMP-independent action of

butyrate raises the possibility that butyrate may act on a receptor

distinct from GHRHR.

Based on our hypothesis that butyrate increases [Ca2+]i through

activation of GPR41 and 43 and to further demonstrate their

involvement in butyrate-induced increase of hGH secretion, we

silenced both receptors by gene-specific siRNA’s.

GC-GHRHR cells were transfected with rat GPR41 or GPR43

siRNA, which largely reduced the GPR41 or 43 mRNA

expression. Silencing of GPR41 or GPR43 significantly reduced

the [Ca2+]i response induced by butyrate stimulation or by the co-

stimulation with butyrate and GHRH to the same extent. Both

receptors may in fact induce an increase in [Ca2+]i via inositol

1,4,5-trisphosphate formation [7]. The [Ca2+]i reduction following

downregulation of GPR41 or 43 was unlikely to be due to non-

specific silencing of key components involved in Ca2+ signalling,

since Ca2+ signals induced by ionomycin (Ca2+ ionophore)

remained unaffected by GPR41 or 43 –specific siRNA silencing.

Moreover silencing of GPR41 or 43 largely abolished GH

secretion induced by butyrate or co-stimulation with butyrate and

GHRH. The inhibition of GH secretion parallels the inhibitory

action of GPR41 or 43 silencing on the Ca2+ level. Whether other

mechanisms, which are known to be coupled to GPR43 activation

such as activation of protein kinase C [35], act in concert with or

independently from the rise in Ca2+ to stimulate GH release,

remains to be determined. Considering that a rise in [Ca2+]i is a

key event in triggering GH exocytosis [32,33,36], a causal relation

between the two events seems plausible. Together, these results

indicate that the butyrate-induced [Ca2+]I increase and the

corresponding increase in hGH secretion is mainly mediated by

activation of GPR41 and 43.

On the other hand, silencing of GPR41 but not of GPR43

induced a significant increase in GHRH-induced [Ca2+]i and GH

secretion, which could be explained by the fact that GPR41 is a

Gi/o-coupled GPCR related to the inhibition of cAMP produc-

tion [7,9]. Our results suggest that GHRH-induced reduction in

cAMP level is likely due to the interaction in post receptor

signalling between the two different Ga subunits of GPR41 or 43

and GHRHR. Moreover, in our cell model, butyrate acts

synergistically with GHRH in its effect on GH release and this

action could be mediated by GPR43 as they share the same

pathway (Gbc-PLC-PKC).

Butyrate is considered a minor nutrient source produced by

bacteria in the gut. It was recently shown that GPR41 and 43, for

which butyrate is one of the physiologically endogenous ligands,

Figure 6. Extracellular hGH secretion after GPR41 and GPR43
silencing. hGH secretion was measured by DSL-GH ELISA in aliquots of
culturing medium from GC-GHRHR cells transfected with either
negative control (siRNA non targeting) or GPR41- or GPR43- specific
siRNAs. After 48 h of silencing, cells were re-transfected with wt-hGH
and cultured for additional 24 h with 10 nM GHRH (A), 5 mM butyrate
(B) and 5 mM butyrate plus 10 nM GHRH (C). All the values are
expressed as percentage increase over siRNA non targeting condition.
The results represent a mean +/2 SD of four independent experiments
(*, p,0.05, **, p,0.01).
doi:10.1371/journal.pone.0107388.g006

Ca and cAMP Signalling via Butyrate Receptors in Rat Pituitary Cells

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e107388



provide an additional function for this molecule as an initiating

element in signalling cascade. In addition, it was shown that

butyrate stimulates leptin production in adipocytes through the

activation of GPR41 [37]. Leptin stimulates GH secretion in

rodents at the level of the hypothalamus by regulating GHRH and

SRIF activity [38,39].

GPR41 and 43 are expressed not only in the intestine, but also

in the immune system and sympathetic nervous system where they

regulate energy metabolism [7,9,11,37,40]. Plasma concentrations

of butyrate and ß-hydroxybutyrate (BHB) are normally in the

range of 50–100 mM [41]. During short-term food deprivation

(24 h–48 h), levels gradually increase to low millimolar plasma

concentrations and exceed 10 mM during starvation ketoacidosis

or adherence to a ketogenic diet [42,43], attaining a sufficient

concentration to activate the receptors on other tissues not directly

exposed to the intestinal lumen. The metabolic response to fasting

involves an increase in circulating levels of GH and free fatty acids

and resistance to insulin’s actions on glucose metabolism.

Endogenous GH secretion rates are enhanced 5-fold by a 2-day

fast in healthy young men [44], secondary to fasting-associated

reduction in IGF-1 concentration and the consequent loss of

feedback inhibition. However, pulsatile GH secretion increases

before a significant reduction in total serum IGF-1 concentration

occurs [45] and the role of GH is to change energy substrate

utilization by liberating free fatty acids [1].

In conclusion, we find that butyrate stimulates GH secretion

through activation of receptors different to those used by GHRH,

(the ‘‘classical’’ inducer of the GH release in physiology). This

highlights the possibility that butyrate acts as a potential metabolic

intermediary, which may contribute to the metabolic actions of

GH during fasting. Finally, these findings suggest a role of butyrate

in the regulation of GH axis function, possibly in combination with

other factors such as acetate and ghrelin.
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