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SUMMARY

Advanced variant detection in genes underlying risk of sudden unexpected death in epilepsy
(SUDEP) can uncover extensive epistatic complexity and improve diagnostic accuracy of epilepsy
related mortality. However, the sensitivity and clinical utility of diagnostic panels based solely on
established cardiac arrhythmia genes in the molecular autopsy of SUDEP is unknown.

We applied the established clinical diagnostic panels, followed by sequencing and a high density
copy number variant (CNV) detection array of an additional 253 related ion channel subunit genes
to analyze the overall genomic variation in a SUDEP of the three year old proband with severe
myoclonic epilepsy of infancy (SMEI).

We uncovered complex combinations of single nucleotide polymorphisms and CNVs in genes
expressed in both neuro-cardiac and respiratory control pathways, including SCN1A, KCNAL,
RYR3, and HTR2C.

Our findings demonstrate the importance of comprehensive high resolution variant analysis in the
assessment of personally relevant SUDEP risk. In this case, the combination of de novo SNPs and
CNVs in the SCN1A and KCNAL genes respectively is suspected to be the principal risk factor for
both epilepsy and premature death. However, consideration of the overall biologically relevant
variant complexity with its extensive functional epistatic interactions reveals potential personal
risk more accurately.
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INTRODUCTION

Children with epileptic encephalopathy and uncontrolled seizures are at increased risk for
sudden unexpected death in epilepsy (SUDEP).! Yet, the clinical risk factors do not provide
a pathogenic mechanism, nor are they strongly predictive of the individual mortality hazard.

lon channel genes modulating cardiac, autonomic, and respiratory functions are prime
molecular risk factors for SUDEP. The causative mechanistic link between epilepsy,
arrhythmias, sudden death, and the most common LQT gene, the potassium channel
KCNQ1, was originally demonstrated in transgenic mice? and subsequently clinically
validated. 3

Since many ion channel genes critical for the regulation of neurocardiac and
neurorespiratory pacemaking are also expressed within brain networks underlying epilepsy,
potential number of novel SUDEP candidate genes extends beyond the cardiac LQT genes.*
For example, the voltage gated potassium channels KCNA is coexpressed in brain and vagus
nerve and Kcnal null mice have seizures, cardiac arrhythmias, vagal hyperexcitability, and
die prematurely. > 6 Similarly, the voltage gated sodium channel SCN1A is dually expressed
in the brain and the cardiac sinoatrial node and ventricular myocytes.” Scnla deficient mice
also show autonomic instability and seizure-driven vagal activation preceding sudden death’
paralleling the clinical observations in children with SCN1A mutations and severe myoclonic
epilepsy of infancy (SMEI).8 However, most SMEI patients do not die suddenly, suggesting
the modulating influence of other candidates in the genetic background, beginning with ion
channels themselves.

We identified a SUDEP patient who displayed multiple established clinical-pathological risk
factors for SUDEP, including pharmacoresistant epileptic encephalopathy of the SMEI
spectrum?, recurrent peri-ictal respiratory compromise, and a suspected cardioautonomic
clinical phenotype. In order to comprehensively assess the SUDEP risk embedded within
this SMEI phenotype, we designed and performed an extensive postmortem search for
deleterious variants in candidate ion channel subunit genes regulating excitability within
neural cardiorespiratory regulatory pathways.

METHODS

The 11 months old patient and his parents were recruited into the IRB-approved lon
Channels in Epilepsy Project at Baylor College of Medicine.19 Genomic DNA prepared
from blood lymphocytes was submitted for commercial diagnostic exome sequencing in five
LQT genes; KCNQ1, SCN5A, KCNH2, KCNE2, ANK2 (Transgenomics), whole genome
copy number variants (CNV) analysis at the Medical Genetics Laboratory at Baylor College
of Medicine, exome sequencing of 237 ion channel genes1?, and screening on a custom
designed lon Channel Comparative Hybridization (ICCH) 4 x 44K microarray (Agilent
Technologies, Santa Clara, CA, USA).11 (See Supplemental information for detailed
methods).
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RESULTS

Index Case Clinical Report

The proband was a healthy, full term Latin American male born to a G1P1 mother. At four
months of age, the child developed a prolonged, afebrile hemiclonic seizure that subsided
spontaneously but was followed by cessation of respiration. CPR was administered by a
family member and the child promptly and fully recovered. General physical and
neurological examinations, a head CT and an electroencephalogram (EEG) were normal,
and treatment was deferred. Within a month he started experiencing weekly, treatment
resistant hemiclonic seizures involving either side. Serial electroencephalograms and brain
MRI studies remained unremarkable. Karyotyping confirmed a normal male chromosomal
pattern. Routine serum and CSF studies were repeatedly normal and a comprehensive
diagnostic work-up for inborn metabolic errors was non-contributory. His development
remained normal. Detailed family history was positive for migraine headaches in the
mother. An episode of elevated temperature of 100.8 F triggered the first generalized tonic-
clonic seizure at 9 months. Treatment resistant daily myoclonic jerks associated with loss of
tone began at 11 months of age and the EEG showed epileptiform bursts of fronto-centrally
dominant generalized 2—-3 Hz abortive spike and slow wave activity. The monthly,
prolonged partial seizures were associated with cyanosis and frequent secondary
generalization. By 18 months, global developmental delay became evident and the clinical
evolution led to the diagnosis of SMEI.12 A cardiac murmur was noted during a follow-up
visit. The routine EKG was unremarkable, but he was referred to a cardiologist for further
evaluation. The proband was 3 years and 3 months old and in his usual state of health when
he was found cyanotic and unresponsive in bed. Full autopsy showed only pulmonary
congestion, a frequent finding in sudden death.13 SUDEP was confirmed as the official
cause of death.

Integrated Genomic Analysis

Our initial search centered on the five principal LQTS genes. It showed inherited nsSNPs of
unknown clinical significance in KCNH2 (LQT2), SCN5A (LQT3) and KCNEL1 (LQT5)
(TABLE 1A) and in the context of the LQT genotype (Supplemental TABLE 1), it failed to
reveal a plausible molecular diagnosis. We next evaluated the channel variant profile
(channotype) of the proband through parallel Sanger sequencing of 237 ion channel genes.10
This step confirmed the previously detected LQTS polymorphisms and additionally
uncovered a maternally transmitted heterozygous ryanodine receptor 2 (RYR2) nsSNP
Q2958R (rs34967813) that has been previously reported in association with
catecholaminergic polymorphic ventricular tachycardia (CPVT)14 (TABLE 1A)
(Supplemental FIGURE 1A).

The known epilepsy genes, SCN1A, KCNA1L, and SCN8A have also been implicated in
SUDEP.5 7:15-17 prohand channotype analysisi revealed an inherited common
polymorphism A1067T and a de novo nsSNP, A1783V in SCN1A (TABLE 1A;
Supplemental FIGURE 1B) previously found in SMEI (http://www.molgen.vib-ua.be/
SCN1AMutations/Home). This predicted deleterious de novo mutation in our case suggests
a contribution to the epileptic encephalopathy phenotype, yet its influence on the lethality is
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uncertain. We also uncovered a paternally inherited, novel, nsSNP, C1288Y, in the RYR3
gene that is preferentially expressed in hippocampus and smooth muscle cells of the
pulmonary artery18: 19 and the animal models support its role in learning, cognition, and in
hypoxia-induced pulmonary vasoconstriction. Thus a dysfunctional RYR3 channel could
contribute to the cognitive impairment and respiratory compromise of our patient and
targeted RYR3 analysis in SMEI cohorts will be essential to validate this assumption.

Given the clinical history of recurrent, seizure-related apnea, we also analyzed genetic
variation in all 18 of the known 5-HT ligand gated ion channels (HTR1A-F, HTR2A-C,
HTR3A-E, HTR4, HTR5A, HTR6, and HTR7) and found three inherited nsSSNPs (TABLE
1A) of which only the R260H variant is predicted to be possibly damaging by SIFT.

Considering the modulating role of genetic background on clinical phenotype, we also
examined the whole genome for structural gene rearrangements. The clinical aCGH screen
identified eight inherited autosomal copy number changes in the proband, such as the
paternally inherited duplication in SLC6A10P, a gene recently implicated in autistic
spectrum disorder2, and the recurrent deletion at 15q11.2 which was previously found in
excess in children with congenital heart defects2}(TABLE 1B). Since all eight CNVs were
inherited and their pathogenic relevance to epilepsy or SUDEP was uncertain we applied our
custom high resolution custom designed lon Channel Comparative Hybridization (ICCH)
Array which has minimal detection threshold of 50 bp and an ultra-dense coverage across
the exome of 253 ion channel genes, their structurally related family members, and known
accessory subunits. Eleven novel duplications in nine known SUDEP genes were confirmed
by gPCR (TABLE 1B). Duplication size ranged from to 60 to 3059bp. Four CNVs were de
novo. Two rearrangements were independent gains in RYR2, and one was a duplication in
GABRG3. They were restricted to introns. The single coding de novo CNV, confirmed by
gPCR was at the 3’ end of exon 2 in KCNAL (FIGURE 2A, B, C), a gene encoding the
Kv1.1 pore forming alpha subunit whose loss of function causes severe epilepsy and
SUDEP in animal models ® (FIGURE 2C). Normalization with two reference genes revealed
that the proband harbored five extra copies of this exonic region as compared to the diploid
genomes of both parents (FIGURE 2D). This gain has a direct impact on the protein coding
sequence of the KCNAL gene. It extends from the highly conserved proline hinge motif (Pro-
X-Pro) to the end of the S6 transmembrane helix of the Kv1.1 subunit (FIGURE 2E). The
PVP motif in this membrane spanning helix forms a flexible hinge in the transmembrane
domain and is directly involved in channel function. Mutations in this region have
previously been shown to cause epilepsy (V408T)22, and premature C-terminal truncation or
deletion of the Kv1.1 gene leads to aberrant protein expression resulting in epilepsy, ataxia,
megalencephaly and SUDEP in mice.23 The repeated gain of this transmembrane helix in
the Kv1.1 subunit is likely to impact protein packing and lipid membrane insertion, and thus
is an attractive candidate mechanism for Kv1.1 dysfunction contributing to both the seizure
and SUDEP phenotype of the proband.
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DISCUSSION

As the list of validated risk genes for SUDEP expands beyond those currently linked to
cardiac-related mortality, robust diagnostic platforms must be developed for optimal
assessment of integrated genetic risk.

Here we show that constructing the genetic variation risk profile for SUDEP benefits from
complementary, comprehensive, candidate ion channel gene focused detection platforms.
Both single base pair substitutions and architectural defects contribute to the risk of epilepsy
and SUDERP as evidenced by the discovery of two biologically plausible pathogenic de novo
variants in known SUDEP candidates, SCN1A and KCNAL. Mutations in both genes play a
critical role in autonomic destabilization described in clinical reports6: 24 and experimental
models of SUDEP ® 7, and likely contributed to lethality in our patient. Yet, the co-
occurrence of epileptic encephalopathy, ictal apnea, suspected cardiac compromise, and
SUDERP in this patient may not be explained solely by the molecular mechanisms elucidated
through the SCN1A and KCNA1 models ° 7, but may also reflect the compound effect of
these mutations together with the transmitted nsSNPs and CNVs of the cardiac arrhythmia
and serotonin receptor genes, RYR3 gene variant, and the 15gq11.2 region variant associated
with structural heart defects. Since clinical phenotypes reflect the pattern of both the
individually unique (de novo) and inherited ion channel variants1® (Supplemental FIGURE
2), resolving the full genetic context is essential for accurate assessment of risk. The
integration of ion channel exome sequencing, high resolution ion channel specific CNV
survey, and subsequent analysis of 54 candidate SUDEP genes in the neuro-cardiac-
respiratory network in this case shows the need for multi-scale channel-based risk prediction
for SUDEP.

We present the first comprehensive genomic interrogation of ion channel candidate gene
pathways to dissect and personalize SUDEP risk prediction in pediatric epilepsy patients.
This case harbored combination of de novo SNPs and CNVs in the SCN1A and KCNA1
genes potentially acting as the principal risk factors for premature death. The larger
complexity of the risk load was revealed by additional inherited structural rearrangements
and missense polymorphisms within the clinically evident neuro-cardiac and respiratory
pathways. As we continue to refine our understanding of the specific biological pathways
and genetic risk factors leading to SUDEP, comprehensive assessment of genomic variation
in cardiac and respiratory networks using detailed gene profiling can enhance predictive
value of gene testing in the routine neurological care of individuals with epilepsy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A de novo gain in the human epilepsy and SUDEP gene KCNA1 was identified in the
proband

A. Chromosomal location of the human KCNA1 gene using Hg18 as the reference genome.
The region of the detected genomic gain is in the grey box with the probe positions located
beneath the coding exon. B. Higher magnification view of the 3’ end of the KCNA1 gene
showing the region of the gain relative to the ICCH comparative hybridization microarray
probes. The gPCR primers TLK1822 and TLK1823 used to validate the CNV are shown
where primer TLK1823 overlaps with the CGH probe. C. Sybr green standard curve shown
against known concentrations of human gDNA to establish gPCR assay efficiency (91.3%).
All gPCR assays underwent optimization and efficiency analysis prior to validation
experiments in proband gDNA. D. Quantification of the gain in the KCNA1 gene showed 5
additional copies of this region in the proband and not in either parent. Normalization of
genomic copy number was performed using two reference genes which are known to be free
of copy number variants and compared to a normal diploid control. E. Homology model of
the human Kv1.1 ion channel subunit showing two opposing subunits in the tetrameric
channel. The ribbon is colored the same as the 6TM schematic diagram top right for
orientation. The S4 voltage sensor is grey with the positively charged arginine and lysine
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residues shown in red. The S6 domain is shown in red and the region of gain is in black. The
S6 PVP hinge sequence is highly conserved from jellyfish to man. The residues V404 and
V408 are shown in black where amino acid substitutions at these positions cause epilepsy,
ataxia and myokymia.
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