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Abstract

Erianthus arundinaceus is a valuable source of agronomic traits for sugarcane improvement such as ratoonability, biomass,
vigor, tolerance to drought and water logging, as well as resistance to pests and disease. To investigate the introgression of
the E. arundinaceus genome into sugarcane, five intergeneric F1 hybrids between S. officinarum and E. arundinaceus and 13
of their BC1 progeny were studied using the genomic in situ hybridization (GISH) technique. In doing so, we assessed the
chromosome composition and chromosome transmission in these plants. All F1 hybrids were aneuploidy, containing either
28 or 29 E. arundinaceus chromosomes. The number of E. arundinaceus chromosomes in nine of the BC1 progeny was less
than or equal to 29. Unexpectedly, the number of E. arundinaceus chromosomes in the other four BC1 progeny was above
29, which was more than in their F1 female parents. This is the first cytogenetic evidence for an unexpected inheritance
pattern of E. arundinaceus chromosomes in sugarcane. We pointed to several mechanisms that may be involved in
generating more than 2n gametes in the BC1 progeny. Furthermore, the implication of these results for sugarcane breeding
programs was discussed.
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Introduction

Sugarcane (Saccharum spp.) plays a pivotal role in world

agriculture as a primary sugar-producing crop and has significant

potential as a renewable bioenergy crop [1]. The genus Saccharum
is comprised of six species: The two wild species are S. spontaneum
and S. robustum, and the four cultivated species are S.

officinarum, S. barberi, S. sinense and S. edule. S. officinarum
(2n = 80) is known as the noble cane due to its high sugar content

and thick and juicy culms. The wild species S. spontaneum
(2n = 40–128; chromosome number varies) has very low sugar

content but exhibits high vigor, profuse tillers and strong ratooning

ability, as well as resistance to diseases and pests. Modern

sugarcane cultivars are highly complex polyploid aneuploids and

typically have 100–130 chromosomes derived from a combination

of these two species [2].

During the early 20th century, interspecific hybridization was

used to introgress desirable traits from wild species into sugarcane

cultivars, and this practice led to substantial improvements in

sugarcane agriculture [3]. In particular, interspecific hybridization

between S. officinarum as the female parent and S. spontaneum as

the male parent, followed by successive backcrosses of the hybrids

to different clones of S. officinarum as the recurrent parent,

significantly increased cane yields and resistance to biotic and

abiotic stresses. In this hybridization strategy, F1 hybrids and

plants in the first backcross generation (BC1) receive 2n gametes

from female parent and n gametes from male parent, and plants in

the second backcross generation (BC2) receives n gametes from

both the female and male parents [4]. The purpose of the process

termed nobilization, which refers to the crossing and backcrossing

of intergenic hybrids to noble cane, was to retain high-sugar

producing clones and to eliminate the negative effects of wild

germplasm [5]. Over the past decades, much insight has been

gained into the mechanisms underlying 2n gamete formation

through the use of molecular genetic and cytological techniques.

Using simple sequence repeat (SSR), amplified fragment length

polymorphism (AFLP) and diversity arrays technology (DarT),

Hermann et al. [6] provided molecular marker data that suggested

the mechanism was second division restitution (SDR) or mega-

spore tetrad cell fusion (MTCF). Bielig et al. [7] provided

cytological evidence that 2n male gamete formation was probably
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attributable to SDR. Nevertheless, the mechanisms underlying 2n

gamete formation in sugarcane are still not fully understood.

Indeed, the occurrence of 2n gametes is not rare in the plant

kingdom and it has been reported in many genera, including

Brassica, Paspalum, Brachiaria, Citrus, Fragaria, Malus, Man-
ihot, Medicago, Solanum, and Trifolium [8–11]. Several explana-

tions for 2n gamete formation have been proposed, including pre-

meiotic and post-meiotic genome doubling, and meiotic restitu-

tion. Among these possibilities, the majority of reports have

identified a restitution of the meiotic cell cycle in several species

[12–14], suggesting that it is the predominant mechanism of 2n

gamete formation in plants. However, a small number of reports

have documented pre-meiotic and post-meiotic genome duplica-

tions, indicating that these mechanisms of 2n gamete formation

are quite rare. Three cytological processes can lead to 2n gamete

formation during abnormal meiosis: first division restitution

(FDR), second division restitution (SDR) and indeterminate

meiotic restitution (IMR). In FDR, homologous chromosomes

remain together when the nucleus fails to divide after telophase I,

and after a normal second division, sister chromatids derived from

each chromosome move to opposite poles. In SDR, normal

separation of the homologous chromosomes at first division is

followed by the absence of the second meiotic division and sister

chromatids fail to migrate to opposite poles at second division.

IMR has been best described in lily meiocytes, and simultaneously

shows characteristics similar to both SDR and FDR within a single

meiocyte [15–18].

Modern sugarcane cultivars have limited genetic diversity, due

to the small number of progenitors used in the initial interspecific

hybridizations during the process of nobilization [19–21]. This

genetic bottleneck has impeded further sugarcane improvement

for certain traits such as tolerance to biotic and abiotic stresses.

Therefore, it is urgent to broaden the genetic base of sugarcane by

introgressing favorable genes from closely related Erianthus,
Miscanthus, Narenga and Sclerostachya genera [22].

Erianthus is one of the most closely related genera to

Saccharum and has attracted the interest of sugarcane breeders

worldwide. Erianthus arundinaceus (E. arundinaceus, 2n = 20,

40, 60) is one of eight species in the genus Erianthus [23], and it

possesses valuable agronomic traits for sugarcane improvement

such as high biomass, vigor, ratoonability, tolerance to drought

and water logging, and resistance to pests and disease [23–28].

Favorable alleles can be introduced into modern sugarcane

cultivars for yield and stability improvement, although the hybrid

progeny is often sterile [26]. However, significant progress has

been made to produce genuine F1 hybrids and to backcross the

progeny successfully. Molecular markers and genomic in situ

hybridization (GISH) techniques have been used to identify true

intergeneric hybrids between Saccharum spp. and Erianthus spp.

[23,24,26,29]. According to histological staining character of root

tips, Fukuhara et al. [30] concluded that F1 hybrids were

successfully obtained from the intergeneric hybridization between

Saccharum spp. hybrid and E. arundinaceus.
Using GISH, N. Piperidis et al. [29] reported that chromosome

transmission was n+n in both F1 (S. officinarum 6 E.

arundinaceus) and BC2 (BC1 6 sugarcane cultivar) generations,

but was 2n+n in the BC1 (F16sugarcane cultivar) cross. In similar

crosses six F1 hybrids had fewer than 70 chromosomes and one

had more than 70, indicating that all F1 crosses were aneuploidy

[26]. In this report, we studied chromosome transmission in (E.
arundinaceus 6 S. officinarum) hybrids by using GISH to

determine the chromosome composition of two generations

including five intergeneric F1 hybrids and 13 BC1 progeny.

Materials and Methods

Plant materials
The plant materials used in this study consisted of 18 clones

derived from two generations of intergeneric hybrids (Table 1).

The male parent of the F1 generation was either E. arundinaceus

Table 1. The intergeneric F1 hybrids and their BC1 progeny between Saccharum spp. and E. arundinaceus.

Generation Clones Female parent Male parent

F1 YCE 96-66 Badila HN 92-105

F1 YCE 96-40 Badila HN 92-77

F1 YCE 96-43 Badila HN 92-77

F1 YCE 96-45 Badila HN 92-77

F1 YCE 95-41 Badila HN 92-77

BC1 YCE 01-33 YCE 95-41 CP 84-1198

BC1 YCE 01-46 YCE 95-41 CP 84-1198

BC1 YCE 01-48 YCE 95-41 CP 84-1198

BC1 YCE 01-36 YCE 96-40 CP 84-1198

BC1 YCE 01-92 YCE 96-40 CP 84-1198

BC1 YCE 01-99 YCE 96-40 CP 84-1198

BC1 YCE 01-102 YCE 96-40 CP 84-1198

BC1 YCE 01-105 YCE 96-40 CP 84-1198

BC1 YCE 01-116 YCE 96-40 CP 84-1198

BC1 YCE 01-134 YCE 96-40 CP 84-1198

BC1 YCE 01-63 YCE 96-66 CP 84-1198

BC1 YCE 01-61 YCE 96-66 CP 84-1198

BC1 YCE 01-69 YCE 96-66 CP 84-1198

doi:10.1371/journal.pone.0110390.t001
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HN 92-77 (2n = 60) or HN 92–105 (2n = 60) from Hainan, China.

S. officinarum Badila (2n = 80) was used as the female parent for

the F1 generation. Female parents of the BC1 generation were

YCE 95-41, YCE 96-40 and YCE 96-66, which were derived from

crosses between Badila and HN 92-77 or HN 92–105. The male

parent of the BC1 generation was CP 84–1198 (2n = 120), which is

a commercial cultivar containing germplasm from S. officinarum,

S. spontaneum, S. barberi and S. robustum without contribution

from E. arundinaceus. F1 and BC1 plants were generated at the

Hainan Sugarcane Breeding Station of Guangzhou Sugarcane

Industry Research Institute. All clones were planted in the

greenhouse at Fujian Agriculture and Forestry University.

Genomic in situ hybridization procedure
Chromosome preparation, chromosome spreading and GISH

experiments were performed as described in D’hont et al. [24].

Genomic DNA from E. arundinaceus HN 92-77 and HN 92–105

was labeled with digoxigenin-11-dUTP (Roche) and genomic

Figure 1. GISH analysis of the F1 hybrids and BC1 progeny. Saccharum spp. chromosomes were visualized in red and E. arundinaceus
chromosomes in green. (A) YCE 96-66 (F1): 29 chromosomes from E. arundinaceus and 40 chromosomes from Saccharum spp.; (B) YCE 01–102 (BC1):
22 chromosomes from E. arundinaceus and 96 chromosomes from Saccharum spp.; (C) YCE 01–36 (BC1): 36 chromosomes from E. arundinaceus, 96
chromosomes from Saccharum spp. and one terminally translocated chromosome; (D) YCE 01–61 (BC1): 31 chromosomes from E. arundinaceus and 85
chromosomes from Saccharum spp.; (E) YCE 01–69 (BC1): 31 chromosomes from E. arundinaceus and 88 chromosomes from Saccharum spp.; (F) YCE
01–92 (BC1): 35 chromosomes from E. arundinaceus, 95 chromosomes from Saccharum spp. and one terminally translocated chromosome. The
arrowhead in Figure 1C and Figure 1F shows the translocated chromosome. Scale bars: 5 mm.
doi:10.1371/journal.pone.0110390.g001
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DNA from Badila and CP 84–1198 was labeled with biotin-16-

dUTP (Roche) using the Nick Translation Kit (Roche). To detect

signal from biotin-labeled probes, Avidin D, Rhodamine 600

(XRITC) and biotinylated anti-avidin antibody (Vector Labora-

tories, Burlingame, CA) were used. To detect signal from

digoxigenin-labeled probes, sheep-anti-digoxin-FITC (Roche,

Lewes, UK) and rabbit-anti-sheep-FITC (Roche, Lewes, UK)

were used. Chromosomes were then counter stained using DAPI

in Vectashield anti-fade solution Vectashield (Vector Laboratories,

Burlingame, CA). The hybridization signals were observed on an

AxioScope A1 Imager fluorescent microscope (Carl Zeiss,

Gottingen, Germany). Images were captured digitally with an

AxioCam MRc5 and AxioVision v.4.7 imaging software (Carl

Zeiss, Gottingen, Germany).

Results and Discussion

Aneuploidy in F1 hybrids
Five F1 hybrids analyzed by GISH were characterized by the

presence of 68–69 chromosomes, consisting of 40 Saccharum-

derived chromosomes and 28–29 E. arundinaceus-derived chro-

mosomes (Figure 1A, Figure S1–S4 in File S1). Therefore, the five

F1 hybrids were the products of n+n chromosome transmission

(Table 2), and all hybrids were also aneuploid. These results are

consistent with G. Piperidis’s studies [26]. Notably, the high rate of

aneuploidy in F1 hybrids contributes to the production of

unbalanced gametes, which might be associated with the high

degree of sterility in F1 hybrids [31,32]. Chromosomes inherited

from divergent parents are often unable to pair with each other in

meiosis [33–36], producing very few or no viable pollen grains

[26,37]. In order to obtain backcross generations, an adjustment in

sugarcane breeding was implemented, involving F1 hybrids as

female parents and CP 84-1198 as the male parent, although this

does not conform perfectly to the fundamental principles of

backcross breeding. Even though F1 hybrids were used as female

parents, their fertility was still very low. Among the five F1 hybrids,

only YCE 96-40, YCE 96-66 and YCE 95-41 as female parents

generated several BC1 progeny by backcrossing with CP 84–1198.

Attempts to backcross YCE 96-43 and YCE 96-45 to CP 84-

1198 were not successful.

Unexpected inheritance pattern in BC1 progeny
GISH analysis of nine BC1 progeny revealed plants with a total

chromosome complement ranging from 117 to 125 (Table 2), of

which 93 to 97 chromosomes were derived from Saccharum and

Figure 2. Schematic of seven meiosis scenarios with two pairs of homologous chromosomes. (A) NM: normal meiosis; (B) FDR: first
meiotic division restitution; (C) SDR: second meiotic division restitution; (D) NHC: nondisjunction of homologous chromosomes in first meiotic
division; (E) NSC: nondisjunction of sister chromatids in second meiotic division; (F) NHC+SDR: nondisjunction of homologous chromosomes in first
meiotic division and second division restitution; (G) FDR+NSC: first division restitution and nondisjunction of a chromosome with sister chromatids in
the second meiotic division. For simplicity, recombination events are not illustrated in these meiosis schematics.
doi:10.1371/journal.pone.0110390.g002
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22 to 29 chromosomes were derived from E. arundinaceus
(Figure 1B, Figure S5–S12 in File S1). These results indicated that

the nine BC1 progeny were products of 2n+n transmission. G.

Piperidis et al. [26] and N. Piperidis et al. [29] reported similar

results. GISH analysis of another four BC1 progeny revealed

plants with a total chromosome complement ranging from 116 to

132, and evidence of an unusual mode of chromosome transmis-

sion (Table 2, Figure 1C–1F). In YCE 01–36, YCE 01–61, YCE

01–69 and YCE 01–92, 85 to 96 chromosomes were derived from

Saccharum and 36, 31, 31 and 35 chromosomes were derived

from E. arundinaceus, respectively. These results indicated that, in

these four BC1 progeny, more than 29 E. arundinaceus-derived

chromosomes (Table 2, Figure 1) were transmitted, which is a

greater number than was detected in the F1 generation. To our

knowledge, ours is the first report to document that the E.

arundinaceus-derived chromosome number was above 29 in BC1

progeny. Within the plant kingdom, this unusual phenomenon has

rarely been reported. It is especially noteworthy that four BC1

progeny out of 13 exhibited greater than 2n female-inherited

chromosomes, suggesting that this newly discovered phenomenon

can occur at relatively high frequency in sugarcane (above 30%).

More importantly, the occurrence of more than 2n female gametes

was detected in two diverse parental combinations rather than an

individual case, suggesting that this phenomenon is not restricted

to an individual plant. The results also suggest that the four BC1

progeny were the product of a new pattern of chromosome

transmission. Interestingly, YCE 01–36 (Figure 1C) and YCE 01–

92 (Figure 1F) were found to both have a terminally translocated

chromosomes.

Possible mechanisms
The unexpected inheritance pattern that we observed in BC1

progeny is not in accordance with prevailing theories of

chromosome transmission in hybrids. If meiosis occurs normally,

four gametes are generated with different numbers of E.

arundinaceus-derived chromosomes, due to the 29 E. arundina-
ceus chromosomes in F1 hybrids. As a result, two gametes are

produced containing 14 E. arundinaceus chromosomes and the

other two gametes contain 15 E. arundinaceus chromosomes.

(Figure 2A). In FDR, two gametes are produced with 29 E.

arundinaceus chromosomes (Figure 2B). In SDR, one gamete is

produced with 28 E. arundinaceus chromosomes and a second

contains 30 E. arundinaceus chromosomes (Figure 2C). SDR has

been extensively reported in sugarcane [7,38,39]. In addition,

Figure 3. The relationship between NHC and the total E. arundinaceus chromosome number of gametes (blue curve), and the
interrelationship of two gametes (red curve). Note: g and g’ are the total number of E. arundinaceus chromosomes in each gamete after
meiosis, i is the number of NHC.
doi:10.1371/journal.pone.0110390.g003
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Narayanaswami [40] discovered that 2n gametes originated from

the fusion of the two innermost cells of the megaspore tetrad

(megaspore tetrad cell fusion, MTCF). Post-meiotic restitution

(PMR), in which chromosome doubling occurs after the second

meiotic division, was observed by Bremer [38].

The normal separation of chromosomes in the first meiotic

division or sister chromatids in the second meiotic division is called

disjunction. Nondisjunction can occur in the first meiotic division

(nondisjunction of homologous chromosomes; NHC) or second

meiotic division (nondisjunction of sister chromatids; NSC). These

distinct processes of nondisjunction create gametes with different

numbers of chromosomes (Figure 2D, Figure 2E). In this study,

we propose two possible mechanisms responsible for the formation

of gametes with chromosome number greater than 2n. The first

possibility (Model I) involves both NHC and SDR, which would

generate two gametes with different even numbers of E.

arundinaceus chromosomes after meiosis (Figure 2F; NHC +
SDR). The second possibility (Model II) involves both FDR and

NSC, which would generate two gametes with different odd or

even numbers of E. arundinaceus chromosomes after meiosis

(Figure 2G; FDR + NSC).

According to the results obtained from plants in the F1

generation, their meiocytes contained 29 E. arundinaceus chro-

mosomes. During S phase of pre-meiotic interphase, all chromo-

somes are duplicated and each chromosome is comprised of two

sister chromatids. Consequently, after meiosis, the total number of

E. arundinaceus chromosomes in the F1 gametes should be 58.

According to Model I, if there are i pair(s) of NHC in the first

meiotic division, this yields a difference of 2(2i +1) E. arundinaceus
chromosomes between the two gametes. According to Model II, if

there are j chromosomes with NSC in the second meiotic division,

this yields a difference of 2j E. arundinaceus chromosomes

between the two gametes. Thus, the following two simultaneous

linear equations are obtained:

Model I :
g~g0z2(2iz1)~g0z4iz2

g~58{g0

(

Model II :
g~g0z2j

g~58{g0

(

Figure 4. The relationship between NSC and the total number of E. arundinaceus chromosomes in each gamete (blue curve), and the
interrelationship of two gametes (red curve). Note: g and g’ are the total number of E. arundinaceus chromosomes in each gamete after
meiosis, j is the number of NSC.
doi:10.1371/journal.pone.0110390.g004
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In these equations, g and g’ are the total number of E.

arundinaceus chromosomes in each gamete after meiosis, and i
and j are the number of NHC and NSC, respectively. From our

experimental observations of 29 E. arundinaceus chromosomes in

a meiocyte and 58 E. arundinaceus chromosomes in two gametes,

we required that 0 # g # 58; 0 # g’ # 58; 0 # i # 14; and 0 # j
# 29. The four variables g, g’, i and j were integral. After solving

these simultaneous linear equations, we obtained two formulas:

Model I : g~2iz30 ;

Model II : g~2jz29

Based on these formulas, graphs of these linear equations are

shown in Figure 3 and Figure 4.

In this study, eight different E. arundinaceus chromosome

numbers were observed (22, 23, 27, 28, 29, 31, 35 and 36) in BC1

progeny. Due to the fact that we detected odd numbers of E.

arundinaceus chromosomes in BC1 progeny, we speculate that

Model II may be a more likely mechanism than Model I, but

Model I cannot be ruled out as a mechanism occurring in plants

that inherited even numbers of E. arundinaceus chromosomes. It

is possible that both models are valid, suggesting that both

mechanisms can occur.

Modern sugarcane cultivars are characterized by a high degree

of inbreeding depression, so any increase in the heterozygosity of

gametes may be beneficial to breeding efforts [6]. Depending on

the specific mode of chromosome segregation, gametes can exhibit

different degree of heterozygosity. During normal meiosis,

crossing-over occurs between two non-sister chromatids. In

FDR, 2n gametes always possess two non-sister chromatids and

consequently maintain equivalent levels of parental heterozygosity

and epistatic interactions. In SDR, sister chromatids do not

separate and these gametes exhibit high levels of homozygosity. As

a result, most parental heterozygosity and epistatic interactions are

lost [41,42]. The highest degree of heterogeneity is found in

gametes originated through IMR, since these gametes result from

a mixture of FDR and SDR [15]. In addition, when chromatids

migrate to the same pole as in NHC and NSC, chromosomes are

doubled. In NHC+SDR or FDR+NSC, some E. arundinaceus
chromosomes would be doubled twice. This process likely creates

a larger number of new multilocus allelic combinations and

provides the opportunity to select the resulting germplasm for new,

desirable traits.

Future directions
In order to understand the underlying mechanisms involved in

generating the number of E. arundinaceus chromosomes in BC1

progeny, detailed cytological observations of female gametes and

chromosomal dynamics in the embryo sac of F1 hybrids are

needed. Although difficult to access, a more thorough under-

standing of the megagametophyte may result in possible applica-

tions for improving sugarcane through 2n gamete transmission.
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