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VASCULAR PROTECTIVE PROPERTIES OF
SUPPLEMENTAL GLYCINE
Supplemental glycine, via activation of
glycine-gated chloride channels that are
expressed on a number of types of cells,
including Kupffer cells, macrophages, lym-
phocytes, platelets, cardiomyocytes and endo-
thelial cells, has been found to exert
anti-inflammatory, immunomodulatory, cyto-
protective, platelet-stabilising and antiangio-
genic effects in rodent studies that may be of
clinical relevance.1–17 The plasma concentra-
tion of glycine in normally nourished indivi-
duals—around 200 µM—is near the Km for
activation of these channels, implying that
the severalfold increases in plasma glycine
achievable with practical supplementation
can be expected to further activate these
channels in vivo.18 19 The impact on mem-
brane polarisation of such activation will
hinge on the intracellular chloride content;
cells which actively concentrate chloride
against a gradient will be depolarised by
channel activation, whereas other cells will
experience hyperpolarisation. In cells that
fail to concentrate chloride and that express
voltage-activated calcium channels, glycine
tends to suppress calcium influx; this effect is
thought to mediate much of the protection
afforded by glycine.1 The role of chloride
channel activation in the mediation of gly-
cine’s physiological effects is commonly
assessed by the concurrent application of the
chloride channel inhibitor strychnine; if this
abolishes glycine’s effect, this effect is most
likely mediated by chloride channels.
From the standpoint of vascular health, a

recent report that glycine can stabilise platelets is
of evident interest.7 When rats were fed diets
containing 2.5–5% glycine, bleeding time
approximately doubled, and the amplitude of
platelet aggregation in whole blood triggered by
ADP or collagen was halved. This effect was
blocked by strychnine, and the investigators were
able to confirm that platelets express glycine-

gated chloride channels. They also demon-
strated that human platelets likewise were glycine
responsive and expressed such channels. Studies
evaluating the interaction of glycine with aspirin
or other pharmaceutical platelet-stabilising
agents would clearly be appropriate, as would a
clinical study examining the impact of supple-
mental glycine on platelet function.
Another recent study has established that car-

diomyocytes express chloride channels.17 This
may rationalise evidence that preadministration
of glycine (500 mg/kg intraperitoneal) reduces
the infarct size by 21% when rats are subse-
quently subjected to cardiac ischaemia-
reperfusion injury; this effect was associated
with increases in ventricular ejection fraction
and fractional shortening in the glycine pre-
treated animals as compared with the controls.17

This protection was associated with a reduction
in cardiomyocyte apoptosis, blunted activation
of p38 MAP kinase and JNK and decreased Fas
ligand expression. A previous study had
reported that 3 mM glycine promoted increased
survival of cardiomyocytes in vitro subjected to
1 h of ischaemia and then reoxygenated, and
was also protective in an ex vivo model of
cardiac ischaemia reperfusion.20

Vascular endothelial cells express glycine-
gated chloride channels, and it has been sug-
gested that glycine might exert an antiathero-
sclerotic effect by hyperpolarising the
vascular endothelium.19 Since such cells do
not express voltage-gated calcium channels,
the impact of endothelial hyperpolarisation is
to increase calcium influx, as calcium follows
the charge gradient.21 This in turn would be
expected to promote the calcium-mediated
activation of endothelial nitric oxide synthase.
Moreover, endothelial polarisation influences
nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase activity; this is
boosted by depolarisation and conversely
inhibited by hyperpolarisation.22–24 The
vascular-protective impact of potassium-rich
diets is suspected to be mediated in part by
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the endothelial hyperpolarisation that results from
modest physiological increases in the plasma potassium
level (reflecting increased activity of the electrogenic
sodium pump).25 26 Other factors being equal, an
increase in endothelial nitric oxide generation coupled
with a decrease in superoxide production could be
expected to have an antiatherogenic and antihyperten-
sive effect. Also speaking in favour of the antiathero-
sclerotic potential for glycine is a study demonstrating
that glycine exerts an anti-inflammatory effect on human
coronary arterial cells exposed to tumour necrosis factor
(TNF) α in vitro; activation of NF-κB was suppressed, as
was the expression of E-selectin and interleukin-6.27 So
far, there are no published studies evaluating the impact
of dietary glycine on atherogenesis in rodent models.
Evidence that glycine has an antihypertensive effect in
sucrose-fed rats is discussed below.
Glycine is a biosynthetic precursor for creatine,

haeme, nucleic acids and the key intracellular antioxi-
dant glutathione. Measures which raise or conserve
intracellular glutathione levels may be of benefit from
the standpoint of oxidant-mediated mechanisms that
impair vascular health. A recent clinical study reports
that concurrent supplementation of elderly participants
with glycine and cysteine (100 mg/kg/day of each, cyst-
eine administered as its N-acetyl derivative) reverses the
marked age-related reduction in erythrocyte glutathione
levels while lowering the serum markers of oxidative
stress28; the authors, however, did not prove that the sup-
plemental glycine was crucial for this effect.
With respect to diabetes, it is of interest that high

intakes of glycine have the potential to oppose the for-
mation of Amadori products, precursors to the advanced
glycation endproducts (AGEs) that mediate diabetic
complications.29 30 Indeed, supplementation of human
diabetics with glycine—5 g, 3-4 times daily—is reported
to decrease haemoglobin glycation.31 32 A similar effect
has been reported in streptozotocin-treated diabetic
rats.33 These studies did not measure AGEs per se, so
their findings should be interpreted cautiously.
Nonetheless, glycine supplementation has delayed the
progression of cataract, inhibited microaneurysm forma-
tion, normalised the proliferative response of blood
mononuclear cells and aided the humoral immune
response in diabetic rats, effects which suggest that
glycine may have potential for prevention of some dia-
betic complications.34–36 In a recent controlled but
unblinded study, patients with diabetes experiencing
auditory neuropathy achieved improvements in hearing
acuity and auditory nerve conduction while ingesting
20 g glycine daily for 6 months.37

GLYCINE AFFORDS PROTECTION FROM
SUCROSE-INDUCED METABOLIC SYNDROME
Of particular interest are studies showing that high
glycine intakes can counteract many of the adverse
effects of a high-sucrose diet on the liver, adipose mass

and vascular function in rats.38 39 Glycine decreased the
elevated non-esterified fatty acid content of the liver of
sucrose-fed rats, increased the state IV oxidation rate of
hepatic mitochondria, corrected an elevation of blood
pressure, normalised the serum triglycerides and insulin,
prevented an increase in abdominal fat mass and, in the
vasculature, boosted glutathione, decreased oxidative
stress and normalised endothelium-dependent vasodila-
tion. Of likely relevance to these findings is a recent clin-
ical report that supplemental glycine (15 g daily in three
divided doses) administered to patients with metabolic
syndrome lessened indices of oxidative stress in erythro-
cytes and leucocytes, while lowering systolic blood pres-
sure.40 These findings are of considerable interest,
particularly in the light of evidence that high dietary
fructose intakes can promote metabolic syndrome and
non-alcoholic fatty liver disease in humans and increase
LDL cholesterol.41–43

The protective effects of glycine in sucrose-fed rats,
and in humans with metabolic syndrome, are not
readily explained on the basis of the known metabolic
effects of glycine. Fructose is known to exert its adverse
effects primarily via its impact on liver metabolism; it is
catabolised almost exclusively in the liver, and its oxida-
tion, unlike that of glucose, is not regulated by meta-
bolic need.41 44 As a result, a high intake of fructose
floods the liver with substrate and suppresses hepatic
fatty acid oxidation, while promoting de novo lipogen-
esis and triglyceride synthesis; increased generation of
malonyl-coenzyme A is responsible for the first two
effects, whereas an increase in glycerol-3-phosphate
contributes importantly to fructose’s stimulatory impact
on triglyceride synthesis. These effects also increase
hepatic production of diacylglycerols, which impair
hepatic insulin sensitivity via activation of protein kinase
C-ε.45 46 The increased triglyceride content of
fructose-exposed hepatocytes can be expected to stabil-
ise apoB100 and accelerate secretion of very-low-density
lipoprotein (VLDL) particles47 48; this phenomenon
may explain the elevation of LDL cholesterol induced
by high-fructose intakes.42 The increased hepatic secre-
tion of VLDL triglyceride presumably is responsible for
the increase in visceral fat observed in rodents and
humans fed high-fructose diets.41 This in turn can
induce metabolic syndrome, including an increase in
blood pressure driven in part by hyperinsulinaemia49

(figure 1).
There is recent evidence that fructose can also act

indirectly to boost hepatic gluconeogenesis. Fructose,
but not glucose, can activate AMP kinase (AMPK) in
certain regions of the hypothalamus, resulting in
increased adrenocortical production of corticosteroids
that promote hepatic transcription of phosphoenolpyru-
vate carboxykinase, rate-limiting for gluconeogenesis.50

How does glycine intervene in this process? We
propose that glycine-stimulated secretion of glucagon-
like peptide-1 (GLP-1) and of glucagon itself plays a key
role in this regard.
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GLYCINE MAY STIMULATE GLP-1 AND GLUCAGON
RELEASE
Gameiro et al,51 working with the GLUTag cell line
derived from intestinal L-cells—the cell type specialised
for GLP-1 production in the intestinal mucosa—,have
found that glycine provokes an increase of GLP-1 secre-
tion in these cells. This reflects an activation of glycine-
gated chloride channels that triggers a reduction in
membrane polarisation, leading to an increase in cyto-
plasmic free calcium and a consequent release of GLP-1.
The ability of these chloride channels to decrease mem-
brane polarisation in these cells reflects the fact that
they concentrate chloride via a Na+-K+-2Cl− transporter.
Drugs which inhibit either the glycine-gated channels or
the chloride uptake mechanism prevent glycine from
stimulating GLP-1 release in GLUTag cells. Since the
apical microvilli of L-cells face the intestinal lumen, they
are ideally positioned to detect an increase in glycine in
the luminal contents. Hence, glycine supplementation
could be expected to boost GLP-1 production. Although
there do not appear to be any studies that have exam-
ined the GLP-1 response to orally administered glycine
per se, there are two clinical studies demonstrating that
plasma GLP-1 levels rise following ingestion of gelatin, a
protein extraordinarily rich in glycine (constituting 30%
of its amino acids).52 53 This may explain why, when
glucose was fed to patients with type 2 diabetes in con-
junction with seven different proteins, gelatin was
second only to cottage cheese in potentiating the post-
prandial insulin response.54

Oral administration of glycine in humans (75 mg
glycine/kg lean mass) has also been reported to stimulate

an increase in glucagon secretion by pancreatic α-cells.55

This response is negated if glucose is ingested simultan-
eously, most likely reflecting the impact of glucose-evoked
secretion of somatostatin from islet δ-cells.56 The conten-
tion that oral glycine stimulates GLP-1 production is diffi-
cult to square with glycine’s impact on glucagon, as GLP-1
is known to inhibit α-cell glucagon secretion, either dir-
ectly or by provoking δ-cell secretion of somatostatin.57

However, there is recent evidence that glycine may act dir-
ectly on α-cells as a glucagon secretagogue—and perhaps
this effect overrides that of GLP-1 (the impact of GLP-1 on
somatostatin secretion might be minor when glucose is at
basal levels, and that of GLP-1 receptor expression on
α-cells is very low57). Li et al58 have shown that α-cells
express glycine-gated chloride channels that, when acti-
vated, trigger an influx of calcium and glucagon release.
This suggests that α-cells, like L-cells, have a mechanism
for concentrating chloride intracellularly, such that a
receptor-mediated increase in membrane permeability
triggers chloride efflux and membrane depolarisation.
Since the affinity of glycine-gated channels for glycine is
close to the fasting concentration of glycine in plasma,51 it
can be anticipated that a rise in plasma glycine induced
via supplementation will cause an increase in glucagon
secretion. One rather old study failed to observe an
increase in glucagon secretion when glycine was infused
intravenously, until the glycine reached supraphysiological
levels59; it is not clear why the results of this study appear
discordant with those of the two studies previously cited.
It is notable that GLP-1 and glucagon work in comple-

mentary ways to promote fatty acid oxidation and
oppose lipogenesis in the liver.60–65 The effects of

Figure 1 Hepatic effects of

fructose.
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glucagon appear to be mediated primarily by cAMP,
whereas GLP-1 triggers activation of AMPK in hepato-
cytes. Joint action of GLP-1 and glucagon on the liver
could readily account for the ability of supplemental
glycine to counteract the excessive hepatic triglyceride
synthesis promoted by sucrose or fructose feeding (see
figure 2). Indeed, GLP-1 agonists have been shown to
protect against hepatic steatosis in sucrose-fed rats, and
to have clinical utility in non-alcoholic fatty liver
disease.66–70 Fortuitously, although glucagon could be
expected to promote hepatic gluconeogenesis, GLP-1
mediated AMPK activation would tend to offset this
effect.71 Indeed, AMPK suppresses the transcription of
phosphoenolpyruvate carboxykinase in the liver, poten-
tially offsetting the stimulatory impact of fructose-evoked
cortisol in this regard.72–74

Intriguingly, peptide drugs with dual agonism for
GLP-1 and glucagon receptors have been developed
recently, and these agents have shown markedly benefi-
cial effects in mice with diet-induced obesity.75–77 They
can induce a weight loss of 15–20%, modestly decrease
calorie intake while boosting thermogenesis, decrease
hepatic triglyceride levels and serum levels of triglycer-
ides and LDL cholesterol, improve insulin sensitivity and
glucose tolerance and counteract leptin resistance.
These beneficial metabolic effects are only partially
attributable to the associated weight loss and are consid-
erably greater than the benefits seen with GLP-1 agonists
alone. These agents provide continual stimulation of
their target receptors, and hence understandably
achieve more potent effects than dietary glycine, which
at best could only boost GLP-1 and glucagon levels epi-
sodically. Nonetheless, while glycine does not induce
weight loss or suppress calorie intake in sucrose-fed
mice, it reduces visceral fat stores by over 50%, increases
the thermogenic potential of hepatic mitochondria by
increasing state 4 respiration, alleviates hepatic steatosis
and improves insulin sensitivity and serum lipids. Hence,
its effects are homologous to, if not as dramatic, as those
seen with the coagonist drugs.

FURTHER IMPLICATIONS OF GLP-1 UPREGULATION
If supplemental glycine does indeed boost secretion of
GLP-1, this may have interesting implications for the pre-
vention and treatment of diabetes, and for the preserva-
tion of vascular health. As is well known, GLP-1
functions to potentiate glucose-stimulated insulin secre-
tion, and this is the basis for the therapeutic utility in
diabetes of analogues of GLP-1 such as liraglutide and
exenatide which activate the GLP-1 receptor but have a
vastly longer half-life owing to their resistance to degrad-
ation by dipeptidyl protease-4 (DDP-4).78 Endogenously
produced GLP-1 has a half-life of only several minutes in
plasma owing to its rapid degradation by DDP-4; hence,
drugs which can safely inhibit DDP-4, such as sitagliptin,
are currently employed to prolong the efficacy of
endogenously produced GLP-1 in patients with

diabetes.79 If supplemental glycine does indeed boost
GLP-1 production, it presumably could be used as an
adjuvant to DDP-4 therapy, and, as a stand-alone
measure, might have some potential for the primary pre-
vention of diabetes.
Moreover, if supplemental glycine can promote a

physiologically meaningful increase in GLP-1 produc-
tion, it may have broader protective potential than is
currently appreciated, reflecting the diverse and largely
protective physiological effects of GLP-1.80 With respect
to vascular health, GLP-1 agonist drugs exert cardiopro-
tective effects in rodent models of myocardial infarction
and congestive failure.81–84 Clinically, they promote
modest weight loss in patients with diabetes and obese
non- diabeties, and exert favourable effects on systolic
blood pressure, serum lipids, inflammatory markers and
endothelial function.85 86 Readers interested in the
vascular-protective properties of GLP-1 agonism can be
referred to a recent review by Lorber.86 Assessing the
impact of supplemental glycine on GLP-1 production
should be a high clinical priority.

AN IMPACT ON KUPFFER CELL ACTIVATION
The marked utility of dietary glycine in rodent models
of alcohol-induced steatosis has been traced to its ability
to suppress Kupffer cell activation.9 87 Ethanol feeding,
by promoting intestinal permeability, enables portal
influx of bacterial endotoxins. The resulting activation
of Kupffer cells exposes hepatocytes to proinflammatory
cytokines such as TNF-α that play a key role in induction
of steatohepatitis. Glycine antagonises Kupffer cell acti-
vation via glycine-gated channels, as previously
discussed.
There is some recent evidence that high-fructose diets

in rats likewise impair the intestinal barrier function,
leading to an activation of Kupffer cells that exacerbates
fructose-induced steatosis.88–90 It is reasonable to suspect
that a high-glycine diet would be protective in this
regard, as it is in rodent models of alcohol-induced stea-
tosis. Whether Kupffer cell activation plays a role in the
hepatic steatosis evoked by high-fructose diets in
humans remains to be established.
Fortunately, glycine powder is inexpensive, highly

soluble and has a pleasant sweet flavor; indeed, its name
is derived from the Greek work for ‘sweet’.16 Clinically
useful effects have been observed in patients with meta-
bolic syndrome or diabetes with glycine intakes of 5 g,
3–4 times daily, without discernible side effects.32 40

Glycine is readily administered by blending into a fluid
of choice, and it should lend itself well to incorporation
into functional foods. Glycine intake can also be
boosted by ingestion of gelatin.

IS URIC ACID A MEDIATING RISK FACTOR?
The proposal that glycine might function as an ‘anti-
dote’ to the adverse metabolic impact of fructose must
contend with the fact that fructose can markedly amplify
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production of uric acid in the liver. Administration of a
bolus of fructose leads to the rapid hepatic generation
of ADP owing to the unregulated activity of fructokinase;
this in turn can lead to accelerated production of AMP,
adenosine and purine catabolites—including the ultim-
ate catabolite (in humans) uric acid. The ability of
fructose-rich diets to boost serum urate levels is well
known, and there is no reason to suppose that glycine
would prevent this effect. This urate does not pose a
problem in fructose-fed rodents, as their uricase activity
converts urate to non-toxic allantoin—but humans do
not express uricase. Human physiological levels of urate
are clearly toxic to the tissues of rodents, as they
promote oxidative stress via NADPH oxidase activa-
tion.91–93

Increased urate levels in humans, in addition to
posing a risk for gout or gouty nephropathy, constitute a
well-established risk factor for coronary disease, hyper-
tension, type 2 diabetes and heart failure, as confirmed
by meta-analyses94–98—although its impact often appears
weak when other risk factors associated with metabolic
syndrome are corrected for. Whether uric acid is a medi-
ating risk factor in these disorders is very much in
dispute. Speaking in favour of this view are studies dem-
onstrating that xanthine oxidase inhibition with allopur-
inol often favourably influences endothelial
dysfunction99–101; however, a counterargument is that
xanthine oxidase activity generates superoxide, so allo-
purinol may simply be functioning as an antioxidant in
these circumstances.102

Moreover, several studies in which urate levels have
been modulated acutely by measures other than xan-
thine oxidase inhibition—raising it with an intravenous
infusion, lowering it with an infusion of urate oxidase—
have failed to observe any adverse impact of urate on
endothelial function or other cardiovascular
indices.103 104 Indeed, urate infusion was found to
improve endothelial function in patients with type 1 dia-
betes, possibly reflecting the utility of urate as a peroxy-
nitrite scavenger.105 The long-term marked elevation of
urate with supplemental inosine—being studied in
patients with multiple sclerosis as an antioxidant strategy
—failed to influence blood pressure.106 Perhaps most
compellingly, a number of recent Mendelian randomisa-
tion analyses, focusing on polymorphisms of renal
tubular transport proteins for urate that influence
serum urate levels, have failed to observe any impact of

these polymorphisms on risk for heart disease, subclin-
ical atherosclerosis, diabetes, hypertension, metabolic
syndrome or diabetes107–111—with the exception of one
small study targeting an Amish population which saw an
association with blood pressure.112 The overall conclu-
sion of these studies is that obesity and metabolic syn-
drome raise the serum urate level, and that the former,
rather than urate per se, mediates the increased risk
associated with elevated urate levels. The hyperinsulinae-
mia associated with metabolic syndrome promotes renal
retention of urate, explaining at least in part the hyper-
uricaemia that is a feature of this syndrome.113 It
appears that primates have evolved resistance to the
pro-oxidant effects of urate demonstrated in rodents,
such that losing their uricase activity did not comprom-
ise their Darwinian viability.
Hence, the failure of glycine to address the

fructose-mediated elevation of serum urate levels, while
unfortunate from the standpoint of gout risk, may not be
disadvantageous from the standpoint of vascular health.
Elevated urate levels appear likely to provide some protec-
tion from Parkinson’s disease—a finding confirmed by a
Mendelian randomisation analysis.114 115
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