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Abstract

Computed tomography perfusion (CTP) is an important functional imaging modality in the

evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the

post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due

to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the

current computational methods. In this paper, we propose a robust sparse perfusion deconvolution

method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first

build a dictionary from high-dose perfusion maps using online dictionary learning and then

perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our

method is validated on clinical data of patients with normal and pathological CBF maps. The

results show that we achieve superior performance than existing methods, and potentially improve

the differentiation between normal and ischemic tissue in the brain.
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1. Introduction

Stroke is the third-leading cause of death in the United States after heart disease and cancer.

Early and rapid diagnosis of stroke can save critical time for thrombolytic therapy. Cerebral

perfusion imaging via computed tomography perfusion (CTP) has become more commonly

used in clinical practice for the evaluation of patients with cerebrovascular disease such as

acute stroke and vasospasm after subarachnoid hemorrhage (SAH) (Miles and Griffiths,

2003; König, 2003; Hoeffner et al., 2004). Various mathematical models have been used to
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process the acquired temporal data to ascertain quantitative information, such as cerebral

blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT), with higher

radiation dosage compared to a standard CT of the head (Østergaard et al., 1996a; Hoeffner

et al., 2004; Harrigan et al., 2005; Wittsack et al., 2008; He et al., 2010). However, recent

reports on the overexposure of radiation in CTP imaging have brought the dosage problem

to the limelight because many patients suffered biologic effects from radiation exposure,

including hair loss, skin burns and even cancer risk (Wintermark and Lev, 2010). A key

challenge in CTP is to obtain a high-quality CBF image using low radiation dose.

The most commonly used deconvolution method to quantify the perfusion parameters in

CTP is truncated singular value decomposition (TSVD) and its variants, such as circular

TSVD (cTSVD) (Cenic et al., 1999, 2000; Østergaard et al., 1996b,a; Wu et al., 2003;

Wittsack et al., 2008). When TSVD deconvolution algorithm was first introduced in 1996, it

calculates the perfusion parameters for each tissue voxel independently. It assumes the X-

ray radiation and intravenous injection were high enough to generate accurate tissue

enhancement curve (TEC) and arterial input function (AIF) for deconvolution. However,

TSVD-based methods tend to introduce unwanted oscillations (Calamante et al., 2003;

Mouridsen et al., 2006) and results in overestimation of perfusion parameters, particularly

CBF. Numerous works have been proposed to denoise the reconstructed CT images and

therefore successfully improved the quality of CBF maps, including bilateral filtering

(Mendrik et al., 2011), non-local mean (Ma et al., 2011), nonlinear diffusion filter (Saito et

al., 2008), and wavelet-based methods (Lin et al., 2001). However, these works improve the

quality of the reconstructed CT data only and do not take the convolution flow model of

CTP into consideration. The oscillatory nature of the TSVD-based method has initiated

research that incorporates different regularization methods to stabilize the deconvolution,

and have shown varying degrees of success in stabilizing the residue functions by enforcing

both temporal (Calamante et al., 2003; Nathan et al., 2008; Andersen et al., 2002; Wong et

al., 2009) and spatial regularization (He et al., 2010; Fang et al., 2012a) on the residue

function. However, prior studies have focused exclusively on imposing regularizations on

the noisy low-dose CTP, without considering the corpus of high-dose CTP data.

Since perfusion images tend to be noisy at low-dose, our aim is to develop a method to

perform deconvolution-based first-pass hemodynamic parameter estimation that is more

robust to noisy input at low radiation dosage by learning from high-dose data, and to

produce perfusion parameter maps with better signal-to-noise characteristics. To that end,

we have developed a formulation that utilizes a sparse representation functional to enforce

both temporal convolution and spatial regularization using example-based restoration

learned from high-dose CTP parametric maps. Because TSVD-based approaches estimate

the residue function (and hence the perfusion parameters) for each voxel independently of its

neighbors, our sparse perfusion deconvolution approach with dictionaries learned from high-

dose perfusion maps mitigates the noise issue associated with the traditional approaches.

Although sparse representation image models have been used in several context (Aharon et

al., 2006; Mairal et al., 2008), to date we are not aware of any such work in the context of

perfusion parameter estimation to bridge the gap between high- and low-dose CTP data.
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In this paper, we propose a robust sparsity-based deconvolution method to estimate CBF in

CTP at low radiation dose We first learned a dictionary of CBF maps from a corpus of high-

dose CTP data using online dictionary learning and then perform deconvolution-based

hemodynamic parameter estimation of the low-dose CTP. This method produces perfusion

parameter maps with better signal-to-noise characteristics.

The main contributions of our work are threefold: (1) We propose to train a dictionary of

perfusion parameter maps from the high-dose CT data in an online fashion to improve the

quantification of low-dose CTP. (2) We combine the temporal convolution model with the

dictionary mapping term and the sparsity term to enforce spatio-temporal regularization. (3)

In vivo brain aneurysmal SAH patient data, we demonstrate that our estimated CBF values

lead to better separation between ischemic tissue — which by its angiogenic nature tends to

have less blood flow — and normal tissue.

2. Related work

Since we use sparsity prior and example-based restoration to enhance low-dose perfusion

CT images, we review relevant work in both sparsity prior and example-based restoration

work.

2.1. Sparsity prior and dictionary learning

Sparsity methods have been vastly investigated in recent years. Candès et al. (2006) and

Donoho (2006b) have shown that a sparse signal can be recovered from a small number of

its linear measurements with high probability. Various greedy algorithms have been

proposed to solve the problems with sparsity priors, including basis pursuit (BP) (Chen et

al., 2001), matching pursuit (Mallat and Zhang, 1993), orthogonal maching pursuit (OMP)

Chen et al. (1989) and stagewise OMP (stOMP) (Donoho, 2006a). Another approach is to

use l1 norm relaxation and convex optimization (Candès et al., 2006; Kim et al., 2007;

Figueiredo et al., 2007), which is employed in our work.

Sparse representation and dictionary learning has been widely used in computer vision and

multimedia communities, such as, but not limited to, natural image and video denosing

(Elad and Aharon, 2006; Protter and Elad, 2009), image restoration (Mairal et al., 2009b),

image super-resolution (Yang et al., 2008), robust face recognition (Wright et al., 2009),

automatic image annotation (Zhang et al., 2010). In medical image analysis, sparsity prior

has been applied to MR reconstruction (Lustig et al., 2007; Huang et al., 2011), shape

modeling (Zhang et al., 2012a), deformable segmentation (Zhang et al., 2012b), etc.

However, to the best of our knowledge, it is the first time sparse prior and learned

dictionaries are used in a spatio-temporal model to address the challenging task of low-dose

CTP enhancement. The sparsity prior leads to more robust solution in face of over-complete

bases in signal recovery, and removes noise existent in the captured signal. Specifically,

Wright et al. (2009) have shown that sparse representation is critical for high-performance

classification of high-dimensional data, and occlusion and corruption can be handled

uniformly and robustly with this framework.
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To learn a compact representation from the original dataset due to computational cost when

the training datasets have thousands or millions of samples, extensive studies in dictionary

learning have been done. A brief introduction of the relevant algorithms are presented here.

Dictionary learning typically consists of two steps: sparse coding and codebook update.

Sparse coding can implemented using greedy algorithms such as matching pursuit (MP)

(Mallat and Zhang, 1993) and orthogonal matching pursuit (OMP) (Chen et al., 1989) by

finding the sparsest coefficients. And codebook update employs optimal direction (MOD)

(Engan et al., 1999), K-SVD (Aharon et al., 2006) or the recently proposed online dictionary

learning (Mairal et al., 2009a). Online dictionary learning is used in this work because it can

handle large training dataset with higher efficiency and achieves more robust dictionary

compared to MOD and K-SVD.

2.2. Example-based Restoration

Redundancy representation and sparsity have been the driving forces for signal denoising for

the research in the past decades or so, leading to what is considered today as some of the

best available image denoising methods (Portilla et al., 2003; Starck et al., 2002; Eslami and

Radha, 2006; Matalon et al., 2005). While this work is built on the very same concept of

sparsity and redundancy concepts for restoration, it is adopting a different point of view,

drawing resources from yet another recent line of work on example-based restoration.

Traditionally, the image prior to address the general inverse problem in image processing

using Bayesian approach has been based on some simplifying assumptions, such as spatial

smoothness, low/max-entropy, or sparsity in transform domain. On the other hand, example-

based approach resorts to the images themselves for the optimal prior, for instance, using a

spatial-smoothness based Markov random field prior and training the derivative filters for

image restoration (Zhu and Mumford, 1997; Roth and Black, 2005). Example-based

restoration has been applied to image and video denoising (Elad and Aharon, 2006; Mairal

et al., 2008; Protter and Elad, 2009), image super-resolution (Freeman et al., 2002), shape

representation and segmentation (Zhang et al., 2012a,b). We introduce the concept of

example-based restoration into low-dose perfusion CT enhancement by learning the prior

from the high-dose perfusion maps.

3. Methodology

In this section, we present the new sparse perfusion deconvolution (SPD) framework for

CTP quantification. The framework is comprised of two steps: online dictionary learning

and sparse perfusion deconvolution.

3.1. Perfusion parameter model

Based on the theoretical model provided in (Østergaard et al., 1996b), in CTP, the amount of

contrast in the region is characterized by

(1)

where Cv(t) is the tissue enhancement curve (TEC) of tracer at the venous output in the

volume of interest (VOI), CBF is the cerebral blood flow, Ca(t) is an arterial input function
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(AIF) and R(t) is the tissue impulse residue function (IRF), which measures the mass of

contrast media remaining in the given vascular network over time. Under this model, at time

t = t0, a unit of contrast agent is injected as a bolus, and R(t = t0) = 1 indicates that the entire

mass of contrast agent is within the vascular network. After a finite duration (tN) when all

contrast has left the vascular network, R(t = tN) = 0.

To discretize the computation, we assume that Ca(t) and C(t) are measured with N equally

spaced time points t1, t2, …, tN with time increment Δt. The convolution is discretized

(2)

where

and

When R(t) is estimated from Eq. (2), CBF can be computed from

(3)

since from the definition of the residue function R(t), R(t = 0) = 1.

3.2. Circulant truncated singular value decomposition

Singular value decomposition is a widely adopted approach to estimate the perfusion

parameter maps (Østergaard et al., 1996b; Cenic et al., 1999, 2000), where matrix Ca is

factorized into two orthogonal matrices U and VT and a diagonal matrix S, with n singular

values, si, i = 1,2, , n in descending order along the diagonal

(4)

Eq. (2) can be rewritten as
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(5)

Because smaller singular values related to the higher frequency singular values and the

reciprocal of these small singular values lead to large weighting coefficients of oscillatory

singular vectors, TSVD regularized the solution by truncating small singular values to zero

using a threshold λ and therefore remove the corresponding oscillatory terms from the

solution. In this paper, we set parameter λ=0.3 (30% of the maximum element in S) based

on the experimental analysis in (Fieselmann et al., 2011). Delay and dispersions between the

AIF and tissue VOI can lead to inaccurate estimation of perfusion parameters, especially

when contrast agents arrive earlier in the tissue than in the chosen AIF. Therefore in this

paper block-circulant version of Ca matrix is used instead of linear deconvolution to avoid

the causality problem.

3.3. Proposed sparse perfusion deconvolution with online dictionary learning (ODL-SPD)

Sparse representations over trained dictionaries for perfusion parameter maps restoration

rest on the assumption that the image priors in the perfusion maps can be learned from

images, rather than choosing a prior based on some simplifying assumptions, such as spatial

smoothness, non-local similarity, or sparsity in the transform domain. Since the low-dose

CTP has high noise level in TEC, it is important to learn the dictionaries from the high-dose

(thus low noise level) CTP. Therefore, we implement the sparse and redundant

representation in the spirit of Sparseland (Elad and Aharon, 2006). In our model, we

estimate perfusion parameters by considering both temporal correlations and example-based

restoration using dictionaries learned from high-dose data.

Basic framework—Suppose C(x, y, z, t) ∈ ℝN×T is TEC in VOI [x, y, z]T from a spatial-

temporal patch of size  pixels and T time points. R(x, y, z, t) ∈ ℝN×T

represent the remaining tracer concentration of the voxel [x, y, z] at a given time point t,

where x, y and z are the respective row, column and slice coordinates of the spatial-temporal

data. The least-square form of Eq. (2) is

(6)

By definition, CBF map can be computed using f = R(t = 0), where f ∈ ℝN indicates a vector

of patch in the CBF map by stacking the pixels vertically.

Due to the noise in the low-dose CTP data, the solution of Eq. (6) may be severely distorted.

To utilize the high-dose repository existent as a prior, we first learn a compact dictionary D

∈ ℝN×K from the existing high-dose CBF maps, where K is the number of patches in D and

N is the number of pixels in each patch. f is the vector of a newly-input patch which needs to

be constrained or refined. Our basic framework assumes any input patch can be

approximately represented as a weighted linear combination of the patches in the learned

dictionary D. We denote α = [α1,α2,…,αK]T ∈ ℝK as the coefficients or weights. Thus the

values of α for the linear combination is found by minimizing the following loss function:
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(7)

where μ1 indicates the importance of the temporal correlation term in the loss function. f and

α are computed by solving Eq. (7).

Sparse linear combination—The limitations of Eq. (7) are twofold. First the dictionary

D may be overcomplete (K > N) when the number of atoms is larger than the length of f.

Thus the system may not have a unique solution. More constraints of the coefficient α are

needed. Second, the input patch, including the noises, may be perfectly represented if any

linear combination can be used. A more approximate assumption is that the input patch can

be approximately represented by a sparse linear combination of the dictionary atoms. Thus

in the spirit of Sparseland model, the problem is reformulated as:

(8)

where ||·||0 is the l0 norm counting the nonzero entries of a vector, k is the pre-defined

sparsity number. Such formulation ensures that the number of nonzero elements in α is

smaller than k. The value of k depends on specific applications.

Convex relaxation—The constraints in Eq. (8) are not directly tractable because of

nonconvexity of l0 norm. Greedy algorithms can be applied to this NP-hard l0 norm

minimization problem, as in (Fang et al., 2012b), but there is no guarantee to capture the

global minima. In the general case, no known procedure can correctly find the sparsest

solution more efficiently than exhausting all subsets of the entries for f. Thanks to the recent

proof of the sparse representation theorem (Donoho, 2006b), l1 norm relaxation can be

employed to make the problem convex while still preserving the sparsity property. Thus Eq.

(8) is reformulated as

(9)

where μ1 and μ2 controls the weight of the temporal term and how sparse α is. Since the

deviation from Eq. (8) to (9) relaxes the absolute sparseness constraints of the objective

function (l0 norm to l1 norm), and converts a NP hard problem to a continuous and convex

optimization problem, which can be solved efficiently, it paves the way for a feasible spatio-

temporal deconvolution procedure as described later.

Connections to other methods—It is interesting to look in Eq. (9) by adjusting μ1 and

μ2 into some extreme values.

• If μ1 is extremely large, the temporal correlation term dominates. Thus SPD is

similar to methods that do not model spatial regularization.

• If μ1 is extremely small, the temporal correlation is no longer a constraint. With

proper initialization, SPD becomes the imaging denoising method using learned

dictionaries.
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• If μ2 is very large, may have only one non-zero element. Thus SPD becomes the

nearest neighbor method.

• If μ2 is very small, the sparsity constraint no longer exists. A dense linear

combination of atoms is used, which is able to perfectly approximate the low-dose

perfusion parameter map.

Parameter settings—Eq. (9) has two user tunable parameters μ1 and μ2, which are

usually crucial to the performance and convergence. It is desirable to have parameters easy

to tune and insensitive to different data in one application from a practical view. Fortunately

the parameters in our algorithm have a physical meaning and it is straightforward to adjust

them. μ1 controls the weight of the temporal correlation term. A good initialization of CBF

map would conform to the temporal correlation model. Thus a small μ1 is good enough with

a warm start. μ2 controls the sparsity of α. The length of vector α is equal to the number of

atoms in the dictionaries. It is usually larger than 200. To generate a sparse coefficient α, a

relatively large μ2 is necessary. Both the parameters are straightforward to tune given their

meanings.

Vessel and non-vessel threshold—To further improve the signal-to-noise ratio for

different types of tissue, which have different physiological structures and spatial resolution

requirements, we apply different regularization parameters to different tissue types. In this

paper, we use different parameter settings for vessel and non-vessel voxels. Vessels are

identified by setting a threshold on the CBF map, e.g. if vessel threshold is 40 mL/100 g/

min, then every voxel with at least 40mL/100 g/min CBF value in the brain is marked as

vessel. For vessels, we apply low regularization parameters  and  because vessels have

high-contrast boundaries with respect to neighboring regions. For non-vessel voxels, we

apply high regularization parameters  and  because they are expected to be more

spatially coherent.

Dictionary learning—To learn the dictionary D, we use the recently developed online

learning algorithm (Mairal et al., 2009a) which solves Eq. (9) by processing one sample (or

a mini-batch) at a time and updating the dictionary using block coordinate descent with

warm restart. We first learn a dictionary by using randomly sampled patches from the CBF

perfusion maps estimated from the high-dose CTP data. Given a set of image patches

, each of , we seek the dictionary D that minimizes

(10)

where A is a matrix formed by [α1,α2,…,αN]. To solve Eq. (10), we start from an initial

dictionary (i.e. the overcomplete DCT dictionary), and CBF parameter map estimated using

cTSVD algorithm at high-dose CTP.

Sparse perfusion deconvolution (SPD)—When the dictionary D is known, the CBF

perfusion parametric map from the low-dose CTP data can be estimated using our sparse
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perfusion deconvolution method by minimizing Eq. (9) in an iterative fashion. Our SPD

method is divided into two sub-problems: (1) minimization with respect to α with f fixed,

(2) update of f with α fixed as a simplified linear inverse problem.

The first step is sparse coding, which is formulated as

(11)

Eq. (11) can be solved by LARS-Lasso (Efron et al., 2004).

The second step is to minimize

(12)

Because f = R(t = 0), Eq. (12) can be rewritten as

(13)

where R is the residue functions normalized by f so that R(t = 0) = 1. Eq. (13) is a quadratic

term that has a closed-form solution.

If vec(B) denotes the vector formed by the entries of a matrix B in column major order, and

define P = CaR, then

(14)

where M is a TN × N matrix in form of

where P.,i dictates the ith column of matrix P in its column vector form. Eq. (13) can be

transformed into the conventional least square problem

(15)

Let A = (In; M) and B = (Dα; vec(C)), we get
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(16)

where A+ is the pseudo-inverse of matrix A, (.;.) denotes a vector or matrix by stacking the

arguments vertically.

Two procedures are iteratively employed to obtain f and α. Note that theoretically this

iterative algorithm might lead to local minima. However, in our extensive experiments

(Section 4), we did not observe this situation yet. We also observe our results are quite

stable with respect to the training dataset.

To address the global CBF deconvolution problem, we use a sliding window of size

 on the specific slice and overlaps the windows by a step size of one. The final

global CBF parametric map is generated by averaging the areas that the windows overlap.

4. Experiments

In this section, we describe the results from comparing our online-dictionary-learning sparse

perfusion deconvolution (ODL-SPD) with cTSVD and SPD deconvolution using K-SVD

learning algorithm (KSVD-SPD) (Fang et al., 2012b). Out of 20 subjects, 10 are used as

training data (7 with CTP deficits in the brain and 3 normal), and the rest 10 are used for

testing purpose (5 with CTP deficits and 5 normal). A board-certified neuro-radiologist with

12 years experience reviewed CTP data in a blind fashion to determine the type and location

of CTP deficits.

4.1. Experiment setup

Data acquisition—CTP was performed during the typical time-period for patients with

cerebrovascular disease enrolled in an IRB-approved clinical trial from August 2007 to June

2010, between days 6–8 in asymptomatic patients and on the same day clinical deterioration

occurred in symptomatic patients. CTP was performed with a standard scanning protocol at

our institution using GE Light speed or Pro-16 scanners (General Electric Medical Systems,

Milwaukee, WI) with cine 4i scanning mode and 45 second acquisition at 1 rotation per

second using 80 kVp and 190 mA. A scanning volume of 2.0 cm was used consisting of 4

slices at 5.0 mm thickness with its inferior extent selected at the level of the basal ganglia,

above the orbits, to minimize radiation exposure to the lenses. Approximately 45 mL of

nonionic iodinated contrast was administered intravenously at 5 mL/s using a power injector

with a 5 second delay.

Low-dose simulation—Repetitive scanning of the same patient at different radiation

doses is unethical. Thereby, Gaussian noise is added to the reconstructed CT images in high-

dose CTP to simulate low-dose CTP data at I mA following the practice in (Britten et al.,

2004).

The noise model is built on the inverse relationship between the tube current I (mA) and the

noise standard deviation σ in CT images
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(17)

The value K is computed by analyzing the Gaussian noise in the CTP images of 22 patients

under I0=190 mA tube current and the average K value is 103.09 mA1/2. Assume I is the

simulated tube current level in mA, and σ0 is the noise standard deviation in CTP images

scanned under I0 mA. We can rewrite Eq. (17) as

(18)

Because noise distribution is statistically independent, the relationship between σ, σ0 and the

standard deviation of the added Gaussian noise σa is

(19)

From Eq. (18) and (19), we can compute the simulated tube current I given added noise

standard deviation σa

(20)

When σa = 25.5, the simulated low-dose I = 15 mA.

Implementation details—We implemented cTSVD, KSVD-SPD and ODL-SPD

algorithms in MATLAB and applied them to the clinical CTP data acquired at 190mA

(high-dose) and simulated low-dose dataset. All experiments are conducted on a 2.8GHz

Intel Core i7 with dual cores MacBook Pro with 4GB memory in MATLAB environment.

We download the online dictionary learning for sparse representation code from the authors’

website1.

For all experiments of SPD, the dictionary used are of size 64 × 256 designed to handle

perfusion image patches of 8 × 8 pixels with 256 atoms in the dictionary. In all experiments,

the denoising process uses a sparse coding of each patch of size 8 × 8 pixels from noisy

image.

Evaluation metrics—In this paper, we use two metrics to evaluate the performance of the

deconvolution algorithms. CBF maps computed from CTP data obtained at high tube current

of 190 mA were regarded as the reference standard.

Root-mean-square error (RMSE) is a measure of similarity between the CBF at high-dose

and low-dose, defined by

1http://spams-devel.gforge.inria.fr/
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(21)

where fi and f̂i, i = 1,2,…, n are the estimated CBF value at low dose and reference standard

CBF value at high dose.

Peak signal-to-noise ratio (PSNR) is widely used in signal and image processing to measure

the denoising performance. PSNR is defined as the ratio between the maximum intensity

value in the ground truth image Imax and the power of corrupting noise σ (RMSE between

the ground truth and enhanced image) that affects representation fidelity. PSNR is usually

expressed in the logarithmic decibel scale as

(22)

4.2. Visual comparisons

Comparison of learned dictionaries—Figure 1 shows the learned dictionary using K-

SVD and ODL. Both dictionaries were trained on a dataset of 10,000 8 × 8 patches of high-

dose CBF perfusion maps and initialized with the redundant DCT dictionary. We could

observe from the two dictionaries that the online learned dictionary capture the variety of

patterns in the high-dose CTP data, while the dictionary learned using K-SVD has more

redundancy in the atoms located in the upper and left corners of the dictionary. K-SVD

algorithm solves the l0 norm problem using a greedy codebook update step, which may lead

to unstable dictionary due to perturbation in the training data. Online dictionary learning

solves a relaxed l1 norm problem which is convex and therefore results in more robust

dictionary. This leads to the differences in the two learned dictionaries. Additionally, online

dictionary learning updates the dictionary with one training sample (or a small batch) each

time, which scales up gracefully to large datasets with millions of training samples.

Comparison of CBF perfusion maps—We then compare three deconvolution

algorithms by visually observing the estimated CBF perfusion maps of two patients, a

patient with left middle cerebral artery (LMCA) perfusion deficit on due to vasospasm in an

aneurysmal SAH and a patient with normal CBF map. (Please note that in medical practice,

the left and right side of the patient are designated opposite on the image). Low tube current

of 15 mA was simulated by adding Gaussian noise with standard deviation of 25.5 (Britten

et al., 2004).

As shown in Figs. 2 and 3, variations in the locally smooth regions are reduced significantly

by our proposed method, while the boundaries between different tissue types and blood

vessels are more visible. The arteries and veins are more evidently defined, while the noise

in the white matter is greatly suppressed. While both SPD algorithms suppress noise in the

CBF maps, KSVD-SPD smoothes the CBF map too much and the vessels in the CBF maps

tend to discontinue and the boundaries of the vessels are less clear-cut. The non-vessel tissue
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also tends to be under-estimated in the aneurysmal SAH patient and to be overestimated in

the normal patient by KSVD-SPD, while our proposed ODL-SPD overcomes these

drawbacks with an improved learning and reconstruction algorithm, and different

regularization parameter setting for vessel and non-vessel voxels.

4.3. Quantitative comparisons

To quantitatively compare different methods, we report RMSE and PSNR between the

computed perfusion maps and the reference maps of the entire brain region in Table 1 for

Fig. 2, Fig. 3 and all test data. Generally cTSVD leads to noisy perfusion maps at low-dose.

KSVD-SPD achieves better performance than cTSVD in recovering the high-dose

parametric maps, but it over-smooths the texture details in non-vessel structure, especially in

patients with CTP deficits. In our proposed method, the robust dictionary and different

regularization parameters for vessel and non-vessel structure leads to better performance. It

performs the best in terms of both RMSE and PSNR for patients with CTP deficits and

normal CTP maps.

4.4. Diagnostic analysis

Comparison of asymmetry—As shown in Fig. 2, the intensity difference of CBF values

between LMCA and right middle cerebral artery (RMCA) is more evident in the low-dose

CBF map estimated using our method. To visualize the asymmetry in the left and right

middle cerebral artery of this patient, we compute the intensity difference maps between

LMCA and RMCA for three deconvolution algorithms, namely cTSVD, KSVD-SPD and

ODL-SPD, as shown in Fig. 4. We can observe that the intensity different map using

cTSVD is too noisy to identify the asymmetry of LMCA and RMCA vessel structures, while

KSVD-SPD blurs the details of the vessel structure. Our proposed ODL-SPD generates the

different map with better contrast and spatial resolution for diagnosis of asymmetry in

LMCA and RMCA.

Evaluation of ischemic voxels clustering—By aggregating all voxels (within VOI)

from the normal hemisphere of the patient data into a single “normal” cluster and the

pathologic hemisphere of the ischemia patient data set into an “abnormal” cluster, we have

two clusters of n1 normal voxels and n2 ischemic voxels. In our case, n1 = 877 and n2 = 877.

To quantify the separability between normal and ischemic CBF values, we define the

distance between these two clusters as:

(23)

where m1, m2 are the means, and σ1 and σ2 are the standard deviations of CBF in the normal

and ischemic clusters, respectively. We hypothesized that our ODL-SPD algorithm to

produce larger distance d as defined in Eq. (23), that is, will more definitely differentiate

between normal and ischemic tissues. Fig. 5 shows scatter plots of normal versus abnormal

cluster. The x coordinate value of each point if the “number of pixels”–increasing pixel

number moves from the top-left to the bottom-right of the region of interest as delineated by

a radiologist. It is apparent that the two clusters are more separable in data processed via
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sparse perfusion deconvolution than cTSVD, as shown in Table 2. Both SPD algorithms

perform better than cTSVD at high-dose and low-dose. Although KSVD-SPD achieves

better separability between normal and ischemic tissues, it tends to under-estimate the CBF

value of normal tissue, as in Fig. 5. At low-dose, ODL-SPD best recovers the CBF values of

both normal and ischemic voxels among the three algorithm, and outperforms cTSVD at

high-dose by increasing the distance between normal and ischemic voxels.

Comparison of diagnostic accuracy—Let us define sensitivity as the proportion of

samples with abnormal CBF values, which test positive, and specificity as the proportion of

samples with normal CBF values that test negative, at a specific threshold. Fig. 6 is the

receiver operator characteristic (ROC) curve drawn based on 877 abnormal samples and 877

normal samples in which we examine a spectrum of thresholds. The plot shows the tradeoff

between true positive rate (sensitivity) and false positive rate (1-specificity). The closer the

curve is to the upper left corner, the more accurate the test. Fig. 6 shows that ODL-SPD

appears to be considerably more accurate than cTSVD and KSVD-SPD, leading to more

efficient diagnosis.

4.5. Parameter influence

Recall that the balance between the temporal convolution model and the dictionary matching

is controlled by the parameter μ1, while the sparsity of the dictionary selection vector α is

controlled by parameter μ2. Table 3 shows the average PSNR at different values of μ1 and

μ2. Our algorithm consistently achieves similar performance. When  and

, the algorithm provides the best CBF estimation at low-dose in terms of

PSNR. Table 4 and 5 shows the parameter influence of vessel threshold and dictionary size.

The threshold for two tissue types is set as CBF value of 40 mL/100 g/min, which can best

differentiate the vessels from other tissue. The dictionary size is 256 when the best

performance is achieved. We therefore use this set of parameters throughout all experiments

in Section 4.2 – 4.4.

5. Discussion

We validate the proposed algorithm on clinical dataset with CTP deficits and normal CBF

maps. The experimental results show the following facts.

1. This implicitly incorporated image reconstruction constraint benefits the quality of

recovered low-dose perfusion maps. Such example-based information improves the

robustness and accuracy of low-dose deconvolution algorithm, and demonstrate

superior performance than existing computational methods.

2. The sparse linear combination of dictionary atoms learned from high-dose

perfusion maps is able to well approximate the input low-dose CTP data. The l1
norm constraint of the coefficient handles the noise and artifacts at low-dose.

Different sparsity regularization parameters are applied to vessels and brain tissue

in observation of the different anatomical structures further improves the results.
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3. When the number of high-dose perfusion data is huge and comes in sequential

fashion, it is infeasible to re-learn the entire dictionary whenever a new training

sample becomes available. In this case, online dictionary learning technique is

employed so our algorithm can be gracefully scaled-up to contain perfusion map

priors from, theoretically, infinite number of training samples.

4. The joint spatio-temporal model overcomes the oscillation in temporal-based

models and preserves the spatial image features such as smoothness and

boundaries, as well as tissue structures. The proposed spatio-temporal method can

be applied to various perfusion maps, such as mean transit time (MTT) and

permeability surface product (PS), and different dynamic imaging modalities such

as SPECT and MRI, which captures the time sequence images at cine mode. We

expect to apply this method to more applications in the future.

We acknowledge the following limitations to this work:

The goal of this work was to enhance parametric maps in low-dose CTP using a model with

a “residue” function convolution kernel that relates the input (arterial enhancement) and

response (tissue enhancement) (Miles and Griffiths, 2003; Hoeffner et al., 2004; Harrigan et

al., 2005). We compared to several existing models including cTSVD and KSVD-SPD,

which are based on similar underlying principles but using different approaches to solve the

problem. However, we did not assess other models that have been applied to CTP data to

calculate perfusion parameters, such as adiabatic approximation to the tissue homogeneity

model (AATH) (Lawrence and Lee, 1998; Kershaw and Cheng, 2010). Future studies are

needed to determine whether our proposed algorithm regarding the dictionary learning and

sparse reconstruction is also effective for these alternative models.

Another limitation is that the analysis of CTP was predominantly performed on CBF maps

and not necessarily CBV and MTT maps. CBV and MTT maps provide important and

complementary information for detecting and characterizing the ischemic penumbra in

stroke patients. The applicability of our proposed deconvolution algorithm to CBV and MTT

maps will need to be considered and verified by additional appropriate studies.

Finally, we acknowledge the limited number of patients for evaluation of the proposed

deconvolution algorithm in this work. A large-scale validation including evaluation of

different cerebrovascular diseases and patient variety is needed to further validate the

proposed algorithm for widespread clinical application.

6. Conclusions

In this paper, we proposed a sparsity-based perfusion de-convolution algorithm for

enhancing CBF parameter map estimation in low-dose CTP. We take advantage of the

complementary parameter map information available in the high-dose CBF maps from the

existing database to recover the missing structural information in the low-dose CTP. This is

achieved by a spatio-temporal model, which uses a sparse representation approach based on

learned dictionaries from the high-dose CBF maps, combined with the temporal convolution

model. This framework is validated on clinical dataset with subjects with abnormal and
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normal CBF maps. Compared to the existing methods, our sparse perfusion deconvolution

algorithm exhibits better performance.

The proposed method can be further extended in two directions. First, in clinical diagnosis,

infarct core and penumbra usually locate in low-contrast tissues where the delicate tissue

texture are important for neuroradiologists in diagnosis and treatment. Therefore,

incorporating tissue segmentation into the reconstruction framework is worth investigating

as we would learn distinctive dictionaries for tissue types respectively rather than a global

dictionary. Second, since the scope of sparsity-based perfusion deconvolution is beyond the

cerebral blood flow computation, we plan to apply this proposed method to other parametric

maps, such as permeability surface maps, and integrate it into other medical imaging

modalities.
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1. Dictionaries are from high-dose CTP data for low-dose CBF estimation.

2. Temporal convolution model is combined with spatial dictionary mapping prior.

3. Evaluation on in vivo aneurysmal subarachnoid hemorrhage and normal

patients.

4. Outperform existing methods in CBF estimation for low-dose CTP data.

5. Improve the differentiation between ischemic and normal tissues in the brain.
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Figure 1.
Learned dictionaries. Left: K-SVD trained dictionary. Right: Online learned dictionary.
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Figure 2.
CBF maps and zoomed-in regions of a 35-year-old female with left middle cerebral artery

(LMCA) perfusion deficit caused by vasospasm in aneurysmal SAH. LMCA and RMCA are

enlarged for comparison. The results given by cTSVD, K-SVD SPD and our online SPD are

shown in the 1st, 2nd and 3rd row, respectively, each with CBF map of high-dose (190mA)

CTP data on the left and that of low-dose (15mA) on the right.
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Figure 3.
CBF maps and zoomed-in regions of a 42-year-old male with normal cerebral blood flow.

LMCA and RMCA are enlarged for comparison. The results given by cTSVD, K-SVD SPD

and our online SPD are shown in the 1st, 2nd and 3rd row, respectively, each with CBF map

of high-dose (190mA) CTP data on the left and that of low-dose (15mA) on the right.
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Figure 4.
Zoomed-in regions of the intensity difference maps between LMCA and RMCA estimated

by (a) cTSVD (b) KSVD-SPD and (c) ODL-SPD. Arteries are delineated in red.
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Figure 5.
Two clusters of normal vs. ischemic voxels from the aneurysmal SAH patient in Fig. 2. The

results given by cTSVD, KSVD-SPD and our proposed ODL-SPD are shown in the 1st, 2nd

and 3rd row, respectively, each with CBF map of high-dose (190mA) CTP data on the left

and that of low-dose (15mA) on the right.
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Figure 6.
ROC curves generated by cTSVD, KSVD-SPD and ODL-SPD deconvolution algorithms.

Area under curve (AUC) of cTSVD is 0.9483, the AUC of KSVD-SPD is 0.9749 and the

AUC of online-SPD is 0.9852.
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Table 2

Normalized distance between ischemic and normal tissues

Distance 190 mA 15 mA

cTSVD 72.24 46.55

KSVD-SPD 86.56 68.37

Proposed 81.98 76.63
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