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Abstract—Bioengineered hydrogels have been explored in
cell and tissue engineering applications to support cell growth
and modulate its behavior. A rationally designed scaffold
should allow for encapsulated cells to survive, adhere,
proliferate, remodel the niche, and can be used for controlled
delivery of biomolecules. Here we report a microarray of
composite bioadhesive microgels with modular dimensions,
tunable mechanical properties and bulk modified adhesive
biomolecule composition. Composite bioadhesive microgels
of maleimide functionalized polyethylene glycol (PEG-MAL)
with interpenetrating network (IPN) of gelatin ionically
cross-linked with silicate nanoparticles were engineered by
integrating microfabrication with Michael-type addition
chemistry and ionic gelation. By encapsulating clinically
relevant anchorage-dependent cervical cancer cells and

suspension leukemia cells as cell culture models in these
composite microgels, we demonstrate enhanced cell spread-
ing, survival, and metabolic activity compared to control
gels. The composite bioadhesive hydrogels represent a
platform that could be used to study independent effect of
stiffness and adhesive ligand density on cell survival and
function. We envision that such microarrays of cell adhesive
microenvironments, which do not require harsh chemical and
UV crosslinking conditions, will provide a more efficacious
cell culture platform that can be used to study cell behavior
and survival, function as building blocks to fabricate 3D
tissue structures, cell delivery systems, and high throughput
drug screening devices.

Keywords—Cell adhesive, Microgels, Michael-type addition,

Composite hydrogels, Bioadhesive, Cancer, Leukemia.

INTRODUCTION

Cell encapsulated microscale hydrogels and scaf-
folds have emerged as implantable or injectable bio-
materials for the delivery of biological therapeutics,
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and numerous cell-tissue engineering applications.
Hydrogel microencapsulation of cells is a promising
strategy to support cell growth, modulate its behavior
and alongside provide for immunoisolation after
transplantation.16,27,34,38,41 Microarrays of cell-encap-
sulated hydrogels can be used to study cell behavior
and survival, serve as building blocks to fabricate 3D
tissues, cell delivery systems, and high throughput drug
screening devices.10 Conventional design consider-
ations for microgels included tunable mechanical and
biochemical properties that could support growth of
encapsulated cells. A rationally designed scaffold
should allow for encapsulated cells to survive, adhere,
proliferate, and remodel the niche, as well as deliver
growth supporting molecules. Recently the paradigm
has shifted towards developing bioengineered hydro-
gels that recapitulate aspects of the cell-specific micro-
environmental conditions in native tissues such as
adhesive proteins and architecture.3–7,9,29,30,35,39 Cur-
rent 3D tissue or cell culture platforms include multi-
cellular spheroids grown in suspension,24,28 cells
encapsulated within naturally derived ECM such as
basement membrane Matrigel,25,47,48 alginate,7 colla-
gen,33 or non-degradable scaffolds fabricated using
chemical, thermal or UV cross-linked methods.2,22

Polyethylene glycol (PEG) based hydrogels consist
of low-protein binding networks with proven minimal
immunogenicity that have been widely used for in vivo
testing.6,21,35,37,40 A vast majority of PEG-based mi-
crogels are prepared using photo, thermal, or emulsion
crosslinking approaches using microfluidics.2,22 In
diacrylate functionalized PEG hydrogels, PEG macr-
omers are crosslinked via free-radical reaction initiated
by chemical activation or UV cleavage of a photoini-
tiator (e.g., Irgacure�). Such photocrosslinked hydro-
gels have been extensively studied over the past decade
yet a critical drawback of free-radical crosslinking is
that it can significantly reduce the viability of encap-
sulated cells and is unwieldy for in situ delivery of cells
and biomolecules through surgical needles. Although
cell encapsulation in a microfluidic chip generated
microgels using emulsification of hydrazide and alde-
hyde functionalized carbohydrates without free radi-
cals have been reported,23 bioactive adhesion
molecules cannot be easily incorporated in such mi-
crogels making the maintenance of cells requiring
adhesive ligands for viability and function difficult.
Alternatively, hydrogels formed by Michael-type con-
jugate addition chemistry present a more suitable
platform for cell encapsulation, adhesive moiety
incorporation, and in situ delivery of cells and/or bio-
molecules.19,20,32,35,40,42,44 Michael-type addition cross-
linking avoids the use of cytotoxic free-radicals and
UV light, but instead requires a nucleophilic buffering

reagent such as triethanolamine (TEA) or HEPES to
facilitate the addition reaction. These hydrogels can be
engineered using Michael-type addition reaction by
cross-reacting functional groups such as acrylate, vinyl
sulfone and maleimide with bi-functional or branched
thiolated molecules. We have previously developed
in situ cross-linkable hydrogels of functionalized PEG
and Dextran that can simultaneously deliver multiple
biomolecules to modulate cell behavior in vivo.42,44

Recently, Allazetta et al.2 showed an engineered
microfluidic platform to generate Michael-type addi-
tion based PEG-vinylsulfone and PEG–thiol microgels
with surface tethered biomolecule composition how-
ever bulk incorporation of adhesive molecules and cell
encapsulation was not examined in these studies.
Headen et al.18 reported a microfluidic approach to
functionalize 4-arm PEG-maleimide (PEG-MAL) Mi-
chael-type addition gels with adhesive peptides. The
PEG-MAL hydrogel system has significant advantages
over other hydrogel chemistries, such as well-defined
hydrogel structure, facile and stoichiometric incorpo-
ration of bio-adhesive ligands, increased cellular com-
patibility, and tunable swelling ratios and reaction
rates.35 Nevertheless, arrays of bio-adhesive PEG-
MAL microgels fabricated using Michael-type addi-
tion reaction and interpenetrating networks (IPNs) of
adhesive proteins have not been reported.

Here we report bioadhesive microgels with modular
dimension, mechanical properties and bulk modified
adhesive biomolecule composition created by inte-
grating microfabrication with PEG-MAL chemistry
and IPNs of gelatin and synthetic silicate nanoparticles
in growth media conditions. The resulting system
presents an IPN where PEG-MAL is cross-linked with
dithiothreitol (DTT) cross-linker via Michael-type
addition and gelatin is cross-linked to silicate nano-
particles through ionic interactions (Fig. 1a). The
composite PEG microgels present cell adhesive motifs
for enhanced cell adhesion, spreading, and survival;
and are mechanically more stable than gels formed by
mixing gelatin with silicate nanoparticles (called gela-
tin-NP hereafter). These composite PEG hydrogels
demonstrate negligible cell-mediated hydrogel size
contractions compared to hydrogels formed with gel-
atin-NP only. By encapsulating clinically relevant
anchorage-dependent and suspension cells in these bio-
adhesive hydrogels, we demonstrate enhanced cell
spreading, survival, and metabolic activity compared
to control gels. We envision that such cell adhesive
microenvironments, which do not require harsh
chemical and UV crosslinking conditions, will provide
a more efficacious platform for cell and tissue engi-
neering applications and could support controlled cell
programming as well as differentiation.
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MATERIALS AND METHODS

Hydrogel Microfabrication

Polydimethylsiloxane (PDMS) microwell molds
were fabricated as reported earlier using Sylgard 184
(Dow Corning, MI).43 The microwells were plasma
treated in a Harrick Plasma Cleaner for 2 min to make
the microwells hydrophilic. To obtain siliconized glass
slides, SigmacoteTM was applied to glass slides, dried,
and finally rinsed thoroughly in DI water (Labconco).
PEG-MAL (20,000 Da, 99% functionalized) was pur-
chased from Laysan Bio, Inc. and DTT was purchased
from Life Technologies. Silicate nanoparticle (Laponite
XLG) were obtained from Southern Clay Products, Inc.
(Louisville, KY). Type-A porcine skin gelatin was
obtained from Sigma Aldrich (Milwaukee, WI).

A 5% w/v mixture of synthetic silicate nanoparticle
(NP) in deionized water was prepared and vortexed for
2 min. The mixture transitioned from cloudy to clear,
indicating fully exfoliated nanoparticles. A 12.5% w/v
mixture of gelatin in DMEM was prepared and heated

to 37 �C until the gelatin dissolved. Stock solutions of
0.4% w/v DTT and 25% w/v PEG-MAL in DMEM
medium were prepared and kept on ice until ready. It
should be noted that gels referred to as 0% PEG
essentially means they were composed of gelatin and
silicate nanoparticles only. Other composite gels were
engineered with 2.5 or 5% PEG-MAL macromer. To
fabricate microgels, the precursor solutions were mixed
to form two component mixtures (Fig. 1b). Compo-
nent A consisted of gelatin, DTT, and DMEM. For
cell-encapsulated gels, cell suspension was added to
component A. Likewise, component B consisted of
PEG-MAL, silicate NP, and DMEM. To formulate
bulk gels, the two component mixtures were simply
mixed at pH 7.4 and heated to 37 �C. To prepare the
microgels, a drop of Component A was placed on a
plasma treated microwell mold. A small drop of
Component B was placed on a siliconized glass slide,
which was then aligned on top of the mold and allowed
to diffuse through a thin layer of Component A. A
25 g weight was placed on top of the slide to remove

FIGURE 1. Bio-adhesive, cell encapsulated IPN of PEG-MAL and gelatin-silicate nanoparticles (NP). (a) Schematic of bio-adhesive
cell supportive microenvironment consisting of 4-arm PEG-MAL crosslinked with DTT and coated with a stable IPN of gelatin with
silicate NP. The 4-Arm PEG-MAL undergoes a Michael-type addition reaction with thiol groups on DTT and gelatin forms an ionic
gelation complex with NPs at 37 �C and pH 7.4. The PEG component provides structural support for cells while the gelatin-NP
component provides adhesive ligands for cell spreading and signaling. Red spheres represent suspension cells and green cells
are anchorage-dependent. (b) Schematic representing microfabrication of bio-adhesive microgels. Component A consisting of a
well-mixed solution of gelatin with DTT and media with or without cells and poured onto a PDMS microwell mold. Component B
consisting of 4-arm PEG-MAL precursors were mixed with silicate NPs and media was placed on a Sigmacote-coated glass slide
and aligned with Component A on each micromold, allowing the polymers to diffuse and mix. After 1 min, glass slides were
removed leaving behind an array of cell encapsulated microgels.
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any excess solution. After 1 min the glass slide was
removed and the mold with the microgel was placed in
media. The siliconization prevented the hydrogel for
adhering to the glass slide. Hydrogels were prepared
according to the compositions in Table 1 and were
cured in growth media conditions for an hour.

Silicate Nanoparticle Cytotoxicity Assay

The effect of silicate NP on the metabolic activity of
human cells was determined using MTT assay
(ATCC� 30-1010K) according to manufacturer’s pro-
tocol. In brief, human mesenchymal stem cells were
cultured in 96 well plates with density of 2000 cells/
cm2. The pre-seeded cells were subjected to different
concentration of nanoparticles (10 lg/mL to 10 mg/
mL). After 24 h, media was removed and was replaced
with 100 lL of fresh culture medium and 10 lL of
MTT solution. 4 h post incubation, lysis buffer was
added to each well and was allowed to incubate at
37 �C for 2 h and absorbance was measured at
570 nm.

Hydrolytic Swelling/Degradation and Enzymatic
Degradation

50 lL PEG-MAL hydrogels with or without gelatin
and silicate NP were prepared in a 500 lL tube. After
gelation, hydrogels were weighed and transferred to a
2 mL tubes. Each tube was filled with 200 lL of either
PBS (pH 7.4) or 4 mg/mL collagenase IV solution
(reconstituted in PBS) for hydrolytic or enzymatic
degradation studies, respectively. These hydrogels were
incubated at 37 �C on a slow speed rocker. Weight
measurements were taken at 0, 8, 12, 24, 48, and 72 h for
both hydrolytic and enzymatic degradation sets. Addi-
tional weight measurements were taken at 96, 120, 144,
and 168 h for the hydrolytic degradation set. After each
measurement, fresh PBS or collagenase solution was
replenished into each respective tube. Swelling (weight)
ratio of these hydrogels was determined using the fol-
lowing relation as reported earlier by us44:

Qm ¼
Weightðt>0Þ
Weightðt ¼ 0Þ

Dry weight measurements were also performed to
determine decrease in polymer mass with hydrogel
degradation.14,17 50 lL hydrogels were prepared for
t = 0 and 48 h for both hydrolytic and enzymatic deg-
radation groups. The hydrolytic and enzymatic gels
were soaked in PBS and 4 mg/mL collagenase IV solu-
tion respectively. All groups at t = 0 were immediately
dried in an oven at 60 �C and weighed. The t = 48 h
groups were dried and weighed after possible degrada-

tion after 48 h. The degradation wasmeasured as a ratio
between the initial dry weight and final dry weight.

Hydrogel Contraction Studies

For matrix contraction studies we used mouse
embryonic fibroblast (MEF) cells8,11 as stromal cell
model. MEFs were typsinized, centrifuged, and re-
suspended in DMEM at 29108 cells/mL. Cell-laden
hydrogels with 5 lL total volume were prepared with
0, 50,000, and 100,000 MEF cells. High cell densities13

were chosen to maximize contraction in the gels. As
previously, component A and component B were
combined and allowed to polymerize. Hydrogels were
cured for 10 min before DMEM media was added into
the well. Images of the whole gel were taken using an
EVOS microscope (Life Technologies) at t = 0, 24, 48,
and 72 h. The area of the 2D projection of the gels
were measured using ImageJ.

Rheology

250 lL hydrogels of various compositions were
prepared in 500 lL Eppendorf tubes and incubated
overnight in PBS at 4 �C. Prior to rheology measure-
ments using the Discovery Hybrid Rheometer from
TA Instruments (New Castle, DE), each gel was
incubated at 37 �C for 5 min. The storage and loss
moduli were measured as a function of frequency that
varies from 0.1 to 100 rad/s using 25 mm 2.021� cone-
plate geometry.

Cytocompatibility and Spreading of Cancer Cells

TF-1a (ATCC� CRL2451TM) leukemia suspension
cells and anchorage-dependent cervical cancer HeLa
cells were a gift from Prof. Brian Kirby at Cornell
University. Cervical cancer HeLa cells were typsinized,
centrifuged, and re-suspended at a concentration of
2 9 108 cells/mL in DMEM with 10% FBS and 1%
Penicillin/Streptomycin. 20 lL microgels with 400,000
encapsulated cells were prepared according to the
procedure above. Separate sets of gels were made for
t = 0, 24, 48, and 72 h for each studied composition.
The gels were stained with Calcein-AM and Ethidium
Homodimer-I and imaged using a Nikon TE 2000U
florescence microscope. Live and dead cell counts as
well as cell spreading measurements were performed
using ImageJ. Briefly, both live and dead images were
stacked in ImageJ and the stacked images were ana-
lyzed for Maxima function that determines the local
maxima in a rectangular section of image (i.e., each
well) and marks one cell per maximum. This tool
counts the number of local maxima of brightness
outside a given tolerance, or the number of ‘‘bright

PATEL et al.



spots’’. For spreading, the images were preprocessed
using a band-pass filter to reduce any noise. Area and
circularity (½circularity� ¼ 4p area½ �= perimeter½ �2) mea-
surements were performed using the analyze particles
function in ImageJ. Samples were also imaged using
confocal microscopy to determine the distribution of
the cells.

Co-encapsulation of Adhesive and Suspension Cells

TF-1a leukemia suspension cells and anchorage-
dependent cervical cancer HeLa cells were co-encapsu-
lated in microgels using the method described above.
Molecular Probes� CellTrackerTM fluorescent probes
wereused to study the co-encapsulationof these cells.TF-
1a cells were re-suspended in RPMI media and stained
with Cell TrackerTM Orange CMTMR at 37 �C for
30 min. The cells were then centrifuged and re-suspended
twice in DMEM to remove excess dye. Adherent HeLa
cells were stainedwith CellTrackerTMGreen CMFDAat
37 �C for 30 min. A mixture of 1 9 108 TF-1a cells/mL
and 5 9 107 HeLa cells/mL in DMEM was prepared.
20 lL micro gels encapsulated with 200,000 TF-1a and
100,000 HeLa cells were prepared according to the pro-
cedure above. The gels were imaged on a Nikon TE
2000U florescence microscope at t = 0, 24, and 48 h.

Cell Proliferation and Metabolic Activity

For cell proliferation studies, cell numbers and
volume was adjusted to fit within the linear range of
the metabolic activity assay standard curve over the
6 day study. Three sets of cell combinations were tes-
ted: 5,000 HeLa cell, 5,000 TF-1a cells, and 5000 HeLa
cells with 5,000 TF-1a cells. A set of microgels for each
time point (t = 0, 1, 3, and 6 days) was prepared and
placed in a 96 wells plate with 100 lL of RPMI med-
ium. For control, bulk and microgels of the studied
compositions were prepared without cells. At pre-
determined time points, CellTiter 96� AQueous One
Solution Cell Proliferation assay solution (Promega,
20 lL reagent/100 lL medium) was added to each well

and incubated for 4 h at 37 �C and 5% CO2. The fluid
was transferred to a new well plate and centrifuged.
Supernatant was analyzed using a BioTek plate reader
at 490 nm. Proliferation was evaluated using the fold
increase in the measured absorbance.

Statistics

Analysis of variance (ANOVA) statistical analyses
were performed using GraphPad Prism 9.1 software
with Tukey’s test for pairwise comparisons. For cell
spreading analysis across Different time points, AN-
OVA was performed with Bonferroni correction. For
studies involving effect of hydrogel mechanical prop-
erties on cell survival, ANOVA was performed with
Tukey’s correction. A p value of less than 0.05 was
considered significant. All studies were performed in
triplicates unless otherwise noted. All values are
reported as mean ± SE.

RESULTS AND DISCUSSION

Approaches to fabricate cell encapsulated PEG-
based microgels using Michael-type addition reaction
have been few2,18 and arrays of bioadhesive PEG-
MAL microgels with IPNs of adhesive proteins dem-
onstrating cell encapsulation have not been reported.
We have developed an array of bioadhesive PEG-
MAL microgels using a simple microwell approach
(Fig. 1b). These microgels present a cell supportive
microenvironment with adhesivity and tunable swell-
ing, mechanical, and degradation properties. We
identified that addition of silicate NP in gelatin solu-
tion at 37 �C results in formation of a hydrogel that
prevents liquefaction of gelatin at 37 �C (Fig. 2a).
Polyampholytic gelatin, containing positively and
negatively charged regions, strongly interacts with the
anisotropically distributed opposite charges on the
synthetic silicate NPs (20–30 nm in diameter and
~1 nm in thickness), as an outcome of which gelatin
remains stable and does not liquefy at 37 �C.

TABLE 1. Hydrogel compositions.

Composition PEG-MAL (w/v %) DTT (w/v %) Gelatin (w/v %) Silicate NP (w/v %)

5PEG+2.5G+1.5NP 5 0.07 2.5 1.5

5PEG+0.5G+0.3NP 5 0.07 0.5 0.3

5PEG+0G+0NP 5 0.07 0 0

2.5PEG+2.5G+1.5NP 2.5 0.03 2.5 1.5

2.5PEG+0.5G+0.3NP 2.5 0.03 0.5 0.3

2.5PEG+0G+0NP 2.5 0.03 0 0

0PEG+2.5G+1.5NP 0 0 2.5 1.5

0PEG+0.5G+0.3NP 0 0 0.5 0.3

These hydrogel compositions were examined in the various experiments performed in this study. They are referred to by the names given in

the first column.
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The gelatin-NP hydrogel was used as an adhesive
IPN with a PEG-MAL network cross-linked with DTT
(Fig. 2b), which otherwise is non-adhesive in nature. In
these studies, composite hydrogels of PEG-MAL and
gelatin-NP were called IPNs.45 Gelatin silicate hydro-
gels without any PEG-MAL component or vice versa
were not considered IPNs. The rationale for using
DTT was that the di-thiols provide an easy and fast
reacting cross-linker that is non-degradable and pre-
vents any cell spreading if no other degradable matrix
is present.26 Previous studies have demonstrated that
DTT incorporated hydrogels with DTT concentrations
up to 70 mM do not cause significant cytotoxicity.36 In
our studies we used DTT at a maximum concentration
of 4.5 mM. Another potential concern was the cyto-
toxicity of silicate NPs. As indicated in Fig. 2c, the
freely available nanoparticles were readily taken up by
the human cells, indicating the cytocompatible
behavior and maintained >80% cell viability up to
1000 lg/mL concentration (Fig. 2d). In our studies,
the concentration of nanoparticles was below this
threshold limit. Our results are in good correlation
with previously reported findings by Gaharwar et al.15

that silicate nanoparticles are cytocompatible.

We explored the effect of network composition,
presence and absence of gelatin-NPs within PEG-
MAL networks on hydrolytic swelling and degrada-
tion. We compared bulk gel compositions consisting of
5% PEG-MAL and 2.5% PEG-MAL with varying
weight percentages of gelatin-NP (Figs. 3a and 3b). As
expected for hydrogels containing no gelatin-NP, 5%
PEG-MAL hydrogels swelled significantly more than
2.5% PEG-MAL gels (p< 0.05), with swelling ratio
(Qm) 3.17 and 1.5, respectively. This difference in
swelling can be attributed to higher proportions of
hydrophilic PEG in 5% gels compared to 2.5% PEG-
MAL gels. Similarly, 2.5% PEG-MAL with gelatin-
NP swelled significantly less than their 5% counterpart
(p< 0.05), irrespective of gelatin-NP percentages.
Within the same w/v % of PEG-MAL, no significant
difference in swelling ratio was observed with incor-
poration of gelatin-NP. Hydrogels containing only
gelatin-NP showed significantly higher degradation
than PEG containing gels, losing approximately half
their weight within 48 h. These experiments were
continued for 7 days with no significant change
in normalized weight ratios compared to 48 h time
point.

FIGURE 2. Gelatin crosslinking with silicate nanoparticles. (a) Image indicates the injectability and stability of gelatin at 37 �C in
presence of NP while gelatin alone liquefies. (b) Image indicates representative bulk gels formed with DTT crosslinked PEG-MAL
with incorporated gelatin-silicate NPs. (c) Confocal images of cellular uptake of silicate NP. (d) Cell metabolic activity at increasing
dose of silicate NPs.
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Previous studies have demonstrated that matrix
metalloproteinase-mediated degradability of 3D cell
culture is desirable because it allows for matrix
remodeling, cell spreading, and migration within PEG-
based networks.1,37 Since gelatin is prone to degrada-
tion in presence of proteases like collagenase secreted
by cells, we assessed change in weight in bulk gels made
of 2.5% PEG-MAL with varying weight % of gelatin-
NP in presence and absence of enzyme. As indicated in
Fig. 3b, with 2.5% PEG-MAL hydrogels modified
with 0.5% gelatin and 0.3% NPs, we observed
approximately two-fold increase in hydrogel weight
when exposed to collagenase for 24 h compared to the

gels not treated with collagenase (p< 0.05). With 2.5%
PEG-MAL hydrogels containing 2.5% gelatin and
1.5% NPs, the increase in weight ratio was only 1.2-
fold (p> 0.05) compared to untreated counterparts,
which could be attributed to the presence of more
number of silicate NPs preventing degradation and
swelling. We anticipated this behavior because with
degrading gelatin network, the cross-linked architec-
ture would change causing an increase in absorption of
aqueous media.

To determine decrease in polymer mass because of
degradation, we performed dry weight measurements
on the hydrogels over 48 h exposure to PBS or

FIGURE 3. Hydrogel swelling and degradation. (a) Swelling and degradation profiles of various crosslinking network formula-
tions under hydrolytic conditions, (b) network degradation profile when enzymatically treated with collagenase. (*p < 0.05 with
respect to gels not exposed to collagenase, n = 3). (c) Ratio between dry weight at 0 and 48 h for various compositions under
hydrolytic and enzymatic conditions (n = 3).
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collagenase (Fig. 3c). With PBS, no significant change
in dry mass was observed for PEG only gels and 2.5%
PEG-MAL hydrogels containing 0.5% gelatin and
0.3% NPs. For hydrogels consisting only of gelatin-
NPs and no PEG component (called 0% PEG), a
significant decrease to 52% dry weight was observed
over 48 h (p< 0.05). This observation supports our
hypothesis that the composite bioadhesive hydrogels of
PEG-MAL with gelatin-NPs are more mechanically
stable than the ones without PEG, under hydrolytic
conditions.

With collagenase, a significant 30% decrease in dry
weight was observed for PEG-MAL hydrogels with
gelatin-NPs which could be attributed to the degra-
dation of gelatin component. In absence of PEG, gel-
atin-NP gels showed significant 50% degradation in
collagenase (p< 0.05) compared to PEG only gels but

was not significantly different than PEG-gelatin-NP
composite gels. It should however be noted that all
0.5% gelatin with 0.3% NP hydrogel were unstable in
absence of PEG and disintegrated into pieces demon-
strating mechanical instability of these gels.

Previous studies by Swartz and colleagues have
shown that culture of spread fibroblastic cells in a 3D
collagen-only matrices (2.5 mg/mL type I collagen)
contracted the matrix to 20% of its original size within
72 h making long-term culture difficult.46 Since our
goal is to establish a 3D-cell culture platform for long
term studies, we anticipated the gelatin-NP gels to
contract upon cell encapsulation. Based on swelling
studies, we expected the hydrogels to swell and the
presence of cells to counteract such swelling. As indi-
cated in Fig. 4a, 5% PEG-MAL with 0.5% gelatin and
0.3% NP and 2.5% PEG-MAL with 0.5% gelatin and

FIGURE 4. Mechanical properties of composite hydrogels. (a) Cell-mediated contraction of hydrogels. The gels were formed, on a
24 well tissue culture plate, from varying proportions of the stock solutions and indicated number of cells. Bar graph represents
the percent of hydrogel bottom surface area remaining at day 3 (compared to day 0). *p < 0.05 compared to all other groups at a
particular cell density; $p < 0.05 compared to gelatin-NP only gels at a particular cell density; #p < 0.05 compared to 0.5G+0.3NP gels
at a particular cell density; ep < 0.05 for a group across different seeding density; n = 3. (b) The viscoelastic behavior of the PEG-
MAL and PEG-MAL composite IPNs was studied by measuring the G¢ and G¢¢ moduli of the gels as a function of frequency.
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0.3% NP showed no significant gel contraction
(p> 0.05) for all cell counts compared to hydrogels
with no cells. On the other hand, 2.5% gelatin and
1.5% NP with no PEG showed significant contraction
at 50,000 and 100,000 cell seeding density (p< 0.05).
As discussed earlier, the 0.5% gelatin and 0.3% NP
disintegrated into small pieces for all cell counts by day
3 independent of the cell count indicating mechanical
instability of the bulk gels. These studies demonstrate
that by incorporating minimal amount of gelatin-NPs,
we can control the swelling ratio, degradation kinetics,
as well as cell induced contraction of matrices.

We next examined the effect of gelatin-NP incor-
poration on stiffness of bulk PEG-MAL hydrogels. All
rheological measurements were performed on swollen
hydrogels equilibrated in PBS and the storage and loss
moduli were plotted as a function of angular frequency
(Fig. 4b). Rheological characterization of the adhesive
and non-adhesive hydrogels was performed with sim-
ilar PEG concentration to examine the effect of gela-
tin-NP incorporation on hydrogel stiffness. There was
no difference in the storage modulus with incorpora-
tion of gelatin-NPs indicating that incorporation of
adhesive components in the bulk PEG-MAL hydrogel
does not affect its viscoelastic properties. Furthermore,
the storage moduli of 5% PEG hydrogels were higher
than the 2.5% PEG hydrogels for the same amount of
adhesive ligands, indicating increased stiffness with
increasing polymer concentration, independent of
adhesive ligand incorporation.

The main aspect of this study was to transform the
PEG-MAL-based adhesive gels into microgels. We
next manufactured micron-scale hydrogels using a
simple microwell technique. Microgels were prepared
in a two-step process where Component A consisting
of gelatin, DTT, and DMEM media (with cells if
applicable) was poured onto the microfabricated
PDMS wells (Fig. 1b). Typically 3–4 microwell con-
structs each carrying 500 wells were placed on a glass
slide and Component B (PEG-MAL, silicate nano-
particle, and DMEM media) was slowly placed on top
of each construct with Component A. After 1 min the
glass slide was gently removed and the mold with the
microgels was submerged under growth media. All gels
formed in <5 min, even at the lowest concentration of
PEG-MAL and gelatin-NPs. We did not observe
overlapping regions of polymer gel network between
individual wells, except occasionally with gelatin-NP
formulations only (particularly at higher w/v % of
gelatin and NP).

To demonstrate the PEG-MAL (DTT) with gelatin-
NPs as a cytocompatible interpenetrating microenvi-
ronment for cell encapsulation, cervical cancer HeLa
cells were encapsulated in ECM mimetic hydrogels
using the 5 or 2.5 w/v % PEG-MAL formulation with

0.5% gelatin and 0.3% NP or 2.5% gelatin with 1.5%
NP. Following polymerization, the cervical cancer cell
laden microgels were cultured under standard growth
conditions, and cell viability was assessed at 24, 48 and
72 h using Live/Dead staining, which discriminates
dead cells (red) from viable cells (green) based on
membrane integrity (Figs. 5a). We analyzed 16 wells
per sample to determine percentage of live cells.
Quantitative analysis of images obtained from fluo-
rescence microscopy indicated excellent cell viability
84 ± 1.7% after 24 h in microgels formed with IPNs
of 5% PEG-MAL with 0.5% gelatin and 0.3% NPs,
which however was significantly reduced to 75 ± 1.7%
after 72 h (Fig. 5b). On the other hand, bioadhesive
microgels of 2.5% PEG-MAL with 0.5% gelatin and
0.3% NP composition indicated excellent 87 ± 0.09%
viability over 24 h and increased to 92 ± 0.7% over
72 h. 5 and 2.5% PEG-MAL microgels with no gelatin
and NPs demonstrated 89 ± 1.1 and 87 ± 1.3% viable
cervical cancer cells respectively. After 72 h, these
control PEG-MAL microgels without gelatin-NPs
demonstrated only 62 ± 1.2% viability with 5% PEG-
MAL, and 78 ± 1.4% with 2.5% PEG-MAL gels.
Finally, microgels containing only 0.5% gelatin with
0.3% NP showed nearly 80% viability over 72 h.
These differences in cell viability with PEG-based gels
could be explained based on the differences observed in
mechanical properties, degradability (allowing matrix
remodeling), and cell spreading behavior as discussed
in later sections. Confocal imaging further confirmed
that the cells remain well distributed inside the
hydrogel over 72 h (Fig. 5c).

Interestingly, when cultured in 2.5% PEG-MAL
microgels with same mechanical strength (based on
bulk gel analysis), cell survival significantly increased
with incorporation of adhesive ligand (Fig. 6). When
the ligand density was kept same (0.5% gelatin with
0.3% NP), increase in hydrogel stiffness from 550 to
1100 Pa with increasing PEG% resulted in significant
reduction in cell survival. The enhanced survival in
2.5% PEG gels with adhesive ligands could be attrib-
uted to integrin mediated cell adhesion and lower
crosslinking density of the polymer compared to 5%
PEG gels. These finding are further supported by our
observations that 5% PEG-MAL gels with no adhesive
ligand showed significantly lower cell survival than 5%
PEG-MAL with adhesive components. Therefore,
these composite microgels could be used to study
independent effect of stiffness and ligand density on
cell survival and functioning.

We next evaluated the effect of bioadhesive micro-
gels on cell spreading by measuring the average cell
area and average circularity of micro-encapsulated
HeLa cells (Fig. 7a). As mentioned earlier, one of
the rationale for using DTT as a cross-linker was to
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prevent any matrix-degradation mediated spreading of
cells. At t = 0, the encapsulated cells were spherical in
shape. At t = 48 h, we did not observe any spreading
in PEG-MAL microgel (p> 0.05) and marginal
spreading in 0.5% gelatin with 0.3% NPs microgels
(no PEG-MAL, p> 0.05) compared to their respective
day 0 average cell spreading areas (Fig. 7b). Notably,
it was only the microgels formed with 2.5% PEG-
MAL with 0.5% gelatin and 0.3% NP that showed
significant spreading (p< 0.05) compared to day 0
cells in the same microgels and compared to all other
groups at day 2. Importantly, when compared across
all formulation, microgels made of 2.5% PEG-MAL
with 0.5% gelatin and 0.3% NP clearly demonstrated a
superior microenvironment that supported cell
spreading and survival. Cell spreading is supported by
favorable mechanical properties, bioadhesivity, and
enzymatic degradability of gelatin components allow-

ing niche remodeling. Our observations are further
supported by previous studies by Fairbanks et al.,12

where spreading of anchorage-dependent cells in lower
crosslinking density PEG hydrogels was significantly
affected by the concentration of adhesive moiety RGD
and gel degradability. We further evaluated the circu-
larity of these cells with lower circularity indicative of
cell spreading. As indicated in Fig. 7c, microgels made
of 2.5% PEG-MAL with 0.5% gelatin with 0.3% NP
demonstrated significantly lower (p< 0.05) average
cell circularity values further confirming that this par-
ticular compositions supports cell spreading. These
results clearly demonstrate the significant effect of gel-
atin incorporation and hydrogel remodeling on HeLa
cell spreading and survival. This spreading behavior
is not unique to HeLa cancer cells and we observed
similar spreading behavior with encapsulated mouse
embryonic fibroblasts suggesting the cell supportive

FIGURE 5. Live/Dead cytotoxicity studies. (a) Fluorescent micrograph of a representative microgel array at t = 0. Individual
panels for each microgel group represents live (green) and dead (red) cells on day 3. Scale Bar = 200 lm. (b) Scatter plot of cell
viability profiles for each microgel formulation over a period of 72 h. All samples were seeded with 4 3 105 cells at t = 0. Data
represents % survival normalized to t = 0. *p < 0.05 compared to all other groups at 72 h; $p < 0.05 compared to 5% PEG-MAL only
gels (red) at 72 h. n = 16. (c) 3D reconstruction of a whole 2.5P+0.5G+0.3NP microgel with individual z-sections at indicated depth.
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FIGURE 6. Effect of hydrogel stiffness on cell survival. Box plot represents percent cell survival of HeLa cells after 72 h of culture
in microgels with approximately 550 and 1100 Pa storage modulus, as determined from bulk gels analysis at 10 kHz frequency.
n = 16. *p < 0.05 compared to non-adhesive hydrogels with same 500 Pa modulus; $p < 0.05 compared to adhesive hydrogels with
1000 Pa modulus. All adhesive hydrogels were composed of equivalent amount of adhesive ligand.

FIGURE 7. Anchorage-dependent cell spreading. (a) Fluorescence micrographs represent spreading behavior of encapsulated
HeLa cells in representative microgel formulations. (b) Bar graph represents average cell spreading for each microgel group,
normalized to day 0 spreading areas. *p < 0.05 compared to all microgel groups on day 2. n = 5. (c) Bar graph represents average
cell circularity indicative of change in cells shape and spreading. *p < 0.05 between compared all other microgel groups. n = 6.
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microenvironment could support other anchorage-
dependent cell types.

The final aspect of this study was to explore the
potential of PEG-MAL hydrogels with gelatin-NPs for
co-encapsulation of suspension and anchorage depen-
dent cells. Such co-culture supportive microenviron-
ments are relevant for bone-marrow and lymphoid
tissues. For proof of concept, we co-encapsulated TF-
1a leukemia suspension cells and anchorage-dependent
HeLa cervical cancer cells that could possibly mimic
the rare occurrence of cervical cancer in patients with
leukemia.31 Co-encapsulation results (Fig. 8a) clearly

indicate successful encapsulation of both cell types
with uniform distribution. These cells were viable over
48 h and in some samples we observed HeLa cell
spreading at day 2, however further investigation is
required to establish the effect of co-encapsulation on
cell adhesivity and integrin-mediated signaling. Similar
to our previous observations, 2.5% PEG-MAL with
gelatin-NP outperformed other groups. We finally
assessed whether the encapsulated cells in co-culture
were metabolically active and proliferative compared
to individual cell cultures. As indicated in Fig. 8b, all
three cell cultures demonstrated significantly (p< 0.05)

FIGURE 8. Suspension cell co-encapsulation and long term metabolic activity. (a) A suspension of 2 3 105 TF-1a leukemia and
1 3 105 adhesive HeLa cells, pre-stained with Cell TrackerTM Orange and Cell TrackerTM Green, respectively, were co-encapsulated
inside each microgel. Scale Bar = 200 lm. (b) In vitro cell proliferation (metabolic activity) was assessed in microgels using
CellTiter 96� AQueous One Solution Cell Proliferation assay solution. *p < 0.05 compared to nonadhesive microgel groups. n = 3.
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higher proliferation rate over a week in bioadhesive
microgels as compared to non-adhesive PEG-MAL
only gels (cross-linked with DTT) or PEG-MAL with
gelatin but no silicate NP (allowing liquefaction of
gelatin at 37 �C). Taken together, these studies dem-
onstrate the feasibility to co-encapsulate suspension
and anchorage-dependent cells together in a growth
supportive microenvironment where the both cell types
remain metabolically active.

CONCLUSION AND FUTURE DIRECTIONS

In summary, this study presents a facile approach to
micro-manufacture arrays of bio-adhesive PEG-MAL
microgels using Michael-type addition reaction and
IPNs of adhesive protein, gelatin, such that gelatin
remains stable and provides a cell supportive micro-
environment under normal cell culture conditions. The
ease of fabrication, cytocompatible reaction condi-
tions, tunable swelling, enzymatic degradation, and
mechanical properties render this microgel platform
useful for a wide range of cell and tissue engineering
applications. Future investigation will focus on evalu-
ating the ability of these gels to promote primary cell
survival and growth as well as for therapeutic delivery
of bioactive molecules. Use of 4-arm PEG-MAL could
further allows for conjugate addition of thiolated
growth factors to one of the PEG arms to engineer cell-
instructive matrices for controlled cell programming as
well as differentiation. Silicate nanoparticles have been
shown to preferentially induce osteogenic differentia-
tion of human mesenchymal stem cells, therefore, we
anticipate that such matrices could also provide suit-
able 3D niches for stem cell differentiation.
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