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Abstract

Selecting the number of different classes which will be assumed to exist in the population is an

important step in latent class analysis (LCA). The bootstrap likelihood ratio test (BLRT) provides

a data-driven way to evaluate the relative adequacy of a (K −1)-class model compared to a K-class

model. However, very little is known about how to predict the power or the required sample size

for the BLRT in LCA. Based on extensive Monte Carlo simulations, we provide practical effect

size measures and power curves which can be used to predict power for the BLRT in LCA given a

proposed sample size and a set of hypothesized population parameters. Estimated power curves

and tables provide guidance for researchers wishing to size a study to have sufficient power to

detect hypothesized underlying latent classes.

In recent years, latent class analysis (LCA) has proven to be an important and widely used

statistical tool in the social, behavioral, and health sciences. This technique, a form of finite

mixture modeling (see McLachlan & Peel, 2000), can be used to identify underlying

subgroups in a population. LCA can identify subgroups characterized by the intersection of

particular behaviors, risk factors, or symptoms (e.g., Bucholz, Hesselbrock, Heath, Kramer,

& Schuckit, 2000; Keel et al., 2004; Lanza et al., 2011; Rindskopf & Rindskopf, 1986;

Uebersax & Grove, 1990), such as symptoms of psychosis (e.g., Shevlin, Murphy, Dorahy,

& Adamson, 2007), nicotine withdrawal symptoms (e.g., Xian et al., 2005), or adolescent

risk behaviors (e.g., Collins & Lanza, 2010). Despite the benefits of the measurement model

provided by LCA, several difficulties in applications of this method remain. One critical

issue is that of model selection, especially selection of the number of classes, sometimes

called “extraction” of classes (e.g., Nylund, Asparouhov, & Muthén, 2007). The

interpretation of all model parameters depends on the assumed number of classes.

Simulations done to examine the performance of model selection tools in class extraction
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(e.g., Dziak, Coffman, Lanza, & Li, 2012; Nylund et al., 2007; Wu, 2009; Yang, 2006) have

shown that having too small a sample often leads to choosing too few classes to adequately

describe the data-generating model. However, to the best of our knowledge there is no

information in the literature about how to predict specifically how large a sample size N is

actually needed to avoid such underextraction in practice.

In LCA, the failure to identify a substantively important, but perhaps not highly prevalent,

latent class may lead to a violation of the local (conditional) independence assumption of

LCA (i.e., the latent class variable is no longer adequate to fully describe the population

covariance between the items; see Collins & Lanza, 2010). It may also cause a loss of

important scientific information. For example, in the Shevlin et al. (2007) study, wrongly

collapsing the “hallucination” (hallucinations only) and “psychosis” (multiple severe

symptoms) classes together might give a misleadingly simplistic picture of the distribution

of psychotic symptoms. Thus, statistical power for detecting latent classes can be as

important to the LCA user as statistical power for detecting significant effects is to the user

of regression models. Although statistical power has been studied in the context of ANOVA

and regression (e.g., Cohen, 1988) and in some covariance structure models (e.g.,

MacCallum, Browne, & Sugawara, 1996; MacCallum, Lee, & Browne, 2010; MacCallum,

Widaman, Zhang, & Hong, 1999; Preacher & MacCallum, 2002; Satorra & Saris, 1985;

Yuan & Hayashi, 2003), little is known about statistical power for detecting classes in LCA.

In this study we attempt to address this gap. First, we briefly review the bootstrap likelihood

ratio test (BLRT), a very helpful procedure for testing hypotheses about the number of

classes for LCA (see Nylund et al., 2007). Second, we briefly review how simulations can

be used to construct power estimates for the BLRT given assumptions about the true

population structure. Third, we propose effect size formulas based on the Cohen’s w and

Kullback-Leibler discrepancy measures. These formulas can be used in generalizing the

results of our power simulations to new scenarios. Next, we provide extensive simulation

results that show the usefulness of these effect size formulas. Finally, we provide tables and

formulas for predicting required N for the BLRT in LCA and demonstrate their usefulness

with additional simulations based on published latent class models. This work may help

researchers decide how large a sample should be in order to have sufficient statistical power

in tests for LCA class extraction. To our knowledge, power resources of this kind for the

LCA BLRT were not previously available.

Choosing the Number of Classes in LCA

The LCA model for categorical observed items can be defined as follows. Let yj represent

element j of a response pattern y. Let I(yj = rj) equal 1 when the response to item j is rj, and

0 otherwise. Then

(1)
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where γc is the probability of membership in latent class c and ρj,rj|c is the probability of

response rj to item j, conditional on membership in latent class c (see Lanza, Collins,

Lemmon, & Schafer, 2007). The γ parameters represent the latent class membership

probabilities. The ρ parameters represent item response probabilities conditional on latent

class membership. The γ and ρ parameters can be estimated by maximum likelihood using

the EM algorithm (Dempster, Laird, & Rubin, 1977).

The parameters of Model (1) cannot be estimated or interpreted without specifying a value

of K. Sometimes theoretical reasons for choosing a particular K are available, but more often

researchers wish to use the data to guide their choice. They wish to avoid both

underextraction (choosing a K that is too small) and overextraction (choosing a K that is too

large). One approach is to compare models with 1, 2, 3, … latent classes, comparing the fit

of each model to that of its predecessor using either a significance test or some relative fit

criterion. If a K-class model fits significantly better than a (K −1)-class model, then the true

population is assumed to have at least K classes.

The (K −1)- and K-class models can be compared by their best fitted log likelihoods. A

naïve approach involves comparing the likelihood ratio test (LRT) statistic 2ℓH1 −2ℓH0,

where ℓ denotes the fitted log likelihood, to a χ2 distribution with degrees of freedom df =

dH1 − dH0, where d denotes the number of parameters in the model. However, p-values from

this test are not valid because the usual asymptotic theory for the likelihood ratio statistic

does not apply for comparing mixture models with different numbers of components. The

parameter spaces of these models are not nested in the usual way,1 and, as a result, p-values

from this naïve test are not accurate (see Lin & Dayton, 1997; Lindsay, 1995; McLachlan &

Peel, 2000). A more valid test can be obtained by the parametric bootstrap likelihood ratio

test (BLRT), as further described by Feng and McCulloch (1996) and McLachlan and Peel

(2000) and advocated by Nylund, Asparouhov, and Muthén (2007). The BLRT uses the

same test statistic as the naïve test, but it does not make the problematic assumption that the

statistic has a χ2 distribution under the null hypothesis. Instead, it uses an empirical estimate

of the null hypothesis distribution.

The LCA BLRT can be performed as follows. First, fit the null ((K −1)-class) and alternative

(K-class) models to the observed dataset, and calculate the test statistic for each. Model

identification must be examined for each latent class model being compared. In practice this

requires multiple starting values. Next, using the parameter estimates from the null model,

generate B separate random datasets. Simulation evidence in McLachlan (1987) suggests

that B should be at least 99 to obtain optimal power; we use B = 100 in this paper.2 Now fit

the null and alternative models to each generated dataset and calculate the log likelihood for

1We think of the (K − 1)- and K-class models as conceptually nested, in that the former can be expressed as a special case of the latter
(if any two classes have all ρ parameters equal or if any γ is zero). However, because of the lack of a unique representation of H0 in
the H1 space, and because the H0 values are on the boundaries of the space (e.g., a zero γ), classic asymptotic results for nested
models do not hold (Lindsay, 1995; Lin & Dayton, 1997; McLachlan & Peel, 2000).
2We calculated the p-value as the proportion of bootstrap datasets having a likelihood ratio test statistic greater than the corresponding
statistic for the observed dataset. Because we used 100 bootstrap datasets, we appropriately reject H0 if p ≤ .05 for α = .05. If we had
used 99 bootstrap datasets instead, which was recommended instead by Boos (2003), then it would have been appropriate instead to
reject H0 if p < .05 rather than p ≤ .05. The distinction is important for maintaining the proper nominal Type One error rate, because
bootstrap p-values are fractions rather than continuous quantities.
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each null and alternative model. Calculate the test statistic 2ℓH1 − 2ℓH0. In order to improve

the chances of finding the global maximum likelihood solution for each model, multiple

starting values should be used for each model here also.3 The empirical distribution of the B

test statistics derived from the generated datasets can now serve as a reference distribution

from which to calculate a critical value or a p-value for the test statistic obtained from the

observed dataset.

In particular, let b be the number of generated datasets having calculated test statistics larger

than the observed test statistic for the real dataset. Then the bootstrap p-value is calculated

as b/B or (b + 1)/(B + 1) (see Boos, 2003). The intuition is that if H0 is true, then the

observed dataset will closely resemble the artificial datasets simulated under H0; otherwise,

it will be significantly different. Unlike the naïve test, this test generally is approximately

valid; that is, it empirically provides a true Type I error rate of approximately the specified

nominal α or below when the null hypothesis is correct. Depending on the situation and the

implementation of the test, it is possible for even a bootstrap test to have true Type I error

rates slightly higher than nominal in some situations (e.g., see simulation results in

McLachlan & Peel, 2000, p. 199) but it still does much better than than a naïve test would

do (see Nylund et al., 2007, p. 554). There have been two main barriers to greater use of the

BLRT. First, until recently, few software packages have provided it. However, it is

implemented in Mplus (Muthén & Muthén, 2007), and a SAS macro for performing the

BLRT in simple models using PROC LCA (Dziak, Lanza, & Xu, 2011; Lanza et al., 2007)

is also available at http://methodology.psu.edu/downloads/sasbootstrap. Second, the BLRT

can be computationally intensive. The LCA model must be fit multiple times (for different

starting values) to each of B separate datasets, which may take minutes or even hours.

Nonetheless, the BLRT is of special interest as the only widely used test for class extraction

to provide a valid, known α level, so in this paper we focus on the power of the BLRT.

The valid α level suggests that the risk of erroneously extracting too many classes can be

controlled: that is, if the true number of classes is K and Model (1) holds, then size K will

only be rejected 5% of the time or less in an α = .05 test of size K versus size K + 1.

However, even when a test is valid (i.e., controls Type One error), it may still have low

power (fail to control Type Two error). In the context of LCA, this means that although the

BLRT is usually not very likely to extract too many classes (since its Type One error

probability for a given comparison is very close to, or below, 5% for an α = .05 test; see

Nylund et al., 2007, p. 554) it is still likely that it may extract too few classes if the sample

size is insufficient (see p. 555). In the context of a test, underextraction of classes can be

viewed as a lack of statistical power.

3The minimum number of random starts needed in each sample or each bootstrap sample is not known. Using many starting values
increases computational time, but using too few starting values, especially for the H1 fits during the bootstrapping, can lead to invalid
results due to suboptimal H1 fits. In fact, if the H1 estimates are based on a local maximum of the likelihood that is far from the global
maximum, then the calculated likelihood ratio may occasionally even have a nonsensical negative value, indicating that the H0 model
space contains a higher likelihood peak than the larger H1 space which includes it. If this problem were to occur frequently in
simulations then the power might be poorly estimated. With this in mind, we chose to use 50 random starts for H0 and for H1 in each
of our simulations, both for the original simulated datasets and for each of their bootstrapped datasets. For the pseudo-population LCA
used in calculating effect size, we used 200 random starts because this analysis seemed to be one in which precision was especially
important, and because it only had to be done once per model and not separately for every simulated dataset.
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Consider the comparison of two models: a (K −1)-class model and a K-class model. By

analogy to classic techniques, one could call the (K −1)-class model the null hypothesis and

the K-class model the alternative hypothesis:

(2)

The latent classes are assumed to be defined as in Model (1). Thus we are considering Type

I error here to denote choosing the K-class model when the (K −1)-class model is true, and

Type II error to mean choosing the (K −1)-class model when the K-class model is true. Also

by analogy to classic tests, the “α level” can be operationally defined as the probability of

choosing the K-class model given a true (K −1)-class model, and “power” as the probability

of choosing the K-class model given a true K-class model (i.e., one minus the Type II error

probability). In an exploratory context, a comparison of a smaller to a larger model is likely

to be done several times in sequence (1 vs. 2, 2 vs. 3, etc.) but for convenience we focus on a

single step in this process.

An Example of Simulated Power for the BLRT

As in classical settings (Cohen, 1988), power depends on N, as well as on the assumed

parameters under both H0 and H1. However, no theoretical formula, such as Cohen (1988)

had for predicting the power of simpler tests, is available for predicting the power of the

BLRT in LCA. Therefore, determining power here requires simulation. Consider the

following example. Suppose that five forms of drug use (e.g., perhaps alcohol, tobacco,

inhalants, cocaine, and prescription drug abuse) are being considered in a study of a

particular population of at-risk youth, and participants are to be asked whether or not they

had used each substance during the past year. These five questions corresponds to five

dichotomous items in a LCA. Suppose furthermore that in truth there are three classes.

Members of the first class (“low use,” 60% of the population) have an independent 10%

chance of endorsing each item. The second (“selective use,” 30%) has a 90% chance of

endorsing the first three items, but only 10% of endorsing the last two. The third class (“high

use,” 10%) has a 90% chance for each item. A researcher gathers a sample of size N from

this population, without knowing the true class structure, and tests the (false) null hypothesis

that there are two classes in the population versus the (true) alternative hypothesis that there

are three. What would the power be for this test given N, or what N is required to obtain

adequate power to select the true 3-class model?

Power curves can be estimated by simulating data for a range of Ns and comparing the

results. For each sample size in N = 50, 100, 150, we simulated 1000 datasets. In each, we fit

the 2-class and 3-class models and compared them using a bootstrap test with B = 100 and α

= .05. For comparison, we also show the proportion selecting the three class model as better

than the two-class model if each of four other approaches are used: BLRT at a different α

level, Akaike’s Information Criterion (AIC; Akaike, 1973), Schwarz’s Bayesian Information

Criterion (BIC; Schwarz, 1978), or adjusted BIC (see Sclove, 1987). The proportion

selecting the three-class model under each condition is shown in Table 1, which suggests

that for the BLRT at a standard α = .05, a power of about 80% would be achieved when N is
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slightly over 100. As expected, a higher or lower α is also associated with higher or lower

power for the BLRT, respectively. The rejection probability for the two-class model using

AIC is comparable to that of the α = .05 bootstrap test in this case, and the rejection

probability for the BIC is much lower. However, the rejection probabilities of the IC’s

cannot really be interpreted as “power” here, because the ICs are not intended as null

hypothesis tests.

Of course, it is wise to consider multiple possible scenarios when planning a study. Thus,

suppose we still assume a true H1 with K = 3, but we are not sure about the class

probabilities or the class-specific item response probabilities. Thus, we consider that the

class memberships may be either approximately equal (34%, 33%, 33%) or unequal (60%,

30%, 10%). We also allow the class-specific responses to be .90 for high and .10 for low (a

condition which we think of as strong measurement, or strong class separation), .80 and .20

(medium measurement), or .70 and .30 (weak measurement). This leads to six scenarios

arranged in a factorial design as shown in Table 2. The simulated power for each, with N =

100, shown in Table 3, suggests that measurement strength and relative class size both have

drastic effects on power (Dziak, Min, & Lanza, 2009). Unequal class sizes and poor

measurement led to a power of only 4% for the α = .05 BLRT at N = 100, while the same

test had a power of 99% under strong measurement and equal class sizes.

Effect Size Formulas

The findings in Table 3, as well as prior simulation work (e.g. Collins, Fidler, Wugalter, &

Long, 1993; Lin & Dayton, 1997; Nylund et al., 2007; Wu, 2009), show that sample size

requirements in LCA depend on several factors, such as relative class size and measurement

strength. However, it is not clear how to use these ideas to generate a recommended

minimum N for a particular situation. In general, estimation of power requires some

assumptions about the true characteristics of the population or process being studied. For

some simple tests, this is classically expressed in terms of an effect size measure (as in

Cohen, 1988). An effect size measure can be useful both for prospective power analysis and

perhaps also for quantifying the practical significance of obtained results. This simple idea

may generalize to more complicated models.

For example, in the context of structural equation modeling (SEM) with multivariate normal

data, it is known that for a given null hypothesis about the population covariance matrix,

there can often be infinitely many sets of parameter values for H1 offering exactly the same

power against a given H0 (MacCallum et al., 2010). This is a result of the higher

dimensionality of the space in which the alternative hypothesis is defined (see MacCallum et

al., 2010). However, although the situation appears more complicated than the hypotheses

about single parameters considered by Cohen (1988), one can nevertheless still estimate

power using a discrepancy measure based on the population difference in likelihood

functions for the two population models. Such a population discrepancy measure is

analogous to an effect size for a classic test, in that it can be used to solve for the power of

the likelihood ratio test once df, N, and α are specified (MacCallum et al., 1996; MacCallum

et al., 2010; Satorra and Saris, 1985). The term “effect size” as we use it here is not intended

to be interpreted as meaning the “effect” of an exogenous variable; we simply mean that it is
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a single number which can act as a working definition of how far the null hypothesis is from

the alternative hypothesis, for the sake of describing results or predicting power. We now

seek such an effect size for the LCA BLRT as well, despite the lack of multivariate

normality and the presence of a mixture structure in LCA.

Cohen’s w

We first propose that w, an effect size measure that Cohen (1988) proposed for classic

Pearson χ2 tests of hypotheses about contingency tables with m cells, may be used in a

modified way for LCA as well. For a contingency table, let

(3)

where P0i represents the probability of the ith cell, calculated under H0, and P1i represents

the probability of the ith cell, calculated under H1. Then w2 has a form like a Pearson χ2 test

statistic, except that it uses assumed population proportions instead of sample proportions,

and it does not directly depend on N. For an LCA model, the set of possible response

profiles can be viewed as cells in a contingency table. For example, if there are 6

dichotomous items y1, …, y6, then there are 26 possible response profiles y = y1,…, y6, and

the probability of each of these profiles can be calculated using Model (1) for H0 and H1

separately. Thus, w can be calculated given the hypothetical γ and ρ parameter values for the

models corresponding to H0 and H1.

For a classic χ2 test of fit or of independence, without latent variables, Cohen’s w is directly

a function of the χ2 noncentrality parameter and thus of power for a given df. Thus, in that

specific context, if one knows N, df, the α level of the test, and the value of w, and if the

asymptotic assumptions for the χ2 test are met, power can be computed directly with no

additional information required. For LCA applications, in which classic χ2 tests are not

necessarily applicable, some information may be lost by condensing all of the many γ and ρ

parameters for H1 and H0 into the single value w, but as we later show, w is a fairly good

predictor of approximate power.

The Kullback-Leibler Discrepancy

Similarly, we also propose the Kullback-Leibler (KL; Kullback & Leibler, 1951)

discrepancy between H0 and H1 as another useful effect size measure for the LCA BLRT.

KL is a nonparametric measure of how different two fitted probability models are fromeach

other. Denoting the models as Ma and Mb, the KL discrepancy can be written as

(4)

where L is the fitted likelihood and EMa denotes the expectation computed under Ma. For

many kinds of models, KL can be used to express how well a likelihood ratio test will be
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able to detect the difference between the models, since it is the expected value of the log

likelihood ratio (see Ferguson, 1996; van der Vaart, 1998). Using H1 for Ma and H0 for Mb,

Expression (4) becomes

(5)

In calculating w or KL, we add a small constant such as 10−30 to each P0 and P1 to avoid

dividing by 0 or taking a logarithm of 0 in the case of sparse data, although if the data is

very sparse there may still be some numerical instability. Expression (5) cannot be re-

expressed as a function of Expression (3), or vice versa; therefore, power predictions based

on the two different effect size measures cannot be expected to match exactly. However,

each measure is based on the degree of difference between the P0 values and the P1 values,

and a value of zero for one effect size measure implies a value of zero for the other. w and

KL are related to two classical ways of measuring the discrepancy between two probability

models (the Pearson and Kullback-Leibler discrepancies, respectively, are further described

in Zucchini, 2000), and they also closely resemble the Pearson χ2 and likelihood or deviance

G2 LCA fit statistics (see Collins et al., 1993; Dayton, 1998), respectively. A brief outline of

a convenient approach to calculating the w and KL effect size measures, requiring only a

proposed set of γ and ρ parameters under H1, is given in Appendix 1. We implement this

approach in a SAS macro available at http://methodology.psu.edu/LcaEffectSizes.

Two Simpler Effect Size Formulas

Both the w and the KL measures described above include an expected cell proportion P0 in

the denominator for each possible cell. When there are J items, there are at least 2J cells, so

some expected cell proportions, and hence some denominators, will be extremely small.

This raises questions about numerical stability and accuracy. Thus we next consider a

measure based on the “index of dissimilarity” goodness-of-fit measure mentioned by Dayton

(1998, p. 20). Revised somewhat for comparing two proposed population models rather than

one proposed population model and a sample, it would be

(6)

All three criteria considered so far involve P0i and P1i, the fitted probabilities for each cell

of the contingency table under each hypothesized model. This is reasonable because these

probabilities are the values that LCA models are intended to predict, in the same way that

factor analysis models seek to predict covariance matrix entries (see Collins et al., 1993).

However, it is inconvenient in that there are many such probabilities (up to 2J if each item is

dichotomous, and more otherwise), some of which may be at or near zero. In a different

context, sparse contingency tables are known to pose difficulty in interpreting X2 and G2 fit

statistics, which similarly involve a sum of ratios of tiny quantities over many cells (Collins

et al., 1993; Muthén, 2008; Wu, 2009). Thus, one might wish for an effect size measure that

would not directly involve the P0is and P1is.
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From Wu (2009) and from Table 3, we know that having one or more extremely small

classes (low γ values) and/or having one or more pairs of classes with similar response

probabilities (similar ρ values), reduces power. Thus, among different possible parameter

sets for a given model size (i.e., within a given combination of the number of items J and the

number of H1 classes K),  and  should each be

positively related to power. Presumably, if one or more of the two similar classes was also a

rare class, then there might be an even stronger tendency to lump the rare class into its more

common neighbor. Thus, perhaps an ad-hoc measure of class separability such as

might be well correlated with power. This would be easier to calculate since it does not

require P0 or P1 values. However, as we show later in our simulations, neither ID nor SEP

works as well for predicting power as w or KL.

Simulation Experiment 1: Performance of the Effect Size Formulas

For the proposed effect size measures to be useful, they must first be shown to be predictive

of power. Therefore, we did a simulation experiment as follows. For each of the 3 ×2 = 6

combinations of J = 5, 9, or 13 dichotomous items and of K=3 or 5 classes, we created 10

random sets of γ and ρ parameters, each defining a possible joint population distribution of J

dichotomous LCA items with no covariates. The probability ρ of a yes response on each

item was generated as an independent uniform random variable for each class. Random γ

parameters were generated such that for k = 1, …, K,  where the ej are

independent from an exponential distribution with mean 1. For the simple case of K = 2, this

method would let γ1 be uniformly distributed between 0 and 1 (Casella & Berger, 1990;

Jambunathan, 1954), and so γ2 would be uniformly distributed as well because γ2 = 1 − γ1.

Also, random ρ parameters for the yes response were randomly drawn from a uniform

distribution from 0 to 1. After this, to prevent extreme scenarios, parameter draws having

any γ or ρ values less than .05 or ρ values greater than .95 were replaced with new random

draws.

Within each of these 3 ×2 ×10 random sets of parameters, we generated 100 datasets with N

= 500 each and 100 datasets with N = 1000 each, with the exception that in conditions with J

= 13 and N = 1000 only 50 datasets per parameter set were generated in order to save

computation time. We also generated an extra 10 random sets of γ and ρ parameters for the J

= 5, K = 3 condition, the J = 9, K = 3 condition, and the J = 9, K = 5 condition to obtain

additional information; for each of these additional parameter sets we generated 50 datasets

with N = 500 and 50 datasets with N = 1000 per parameter set. These three conditions were

of special interest because they were neither near-saturated like the J = 5, K = 5 condition,

nor computationally burdensome like the J = 13 conditions. The total number of parameter
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sets was 200, and counting all of the 50 or 100 datasets per parameter set, the total number

of datasets was 15000. For each of these datasets, we performed a BLRT to compare the

(false) H0 that there were K −1 classes to the (true) H1 that there were K classes. Since each

BLRT involved the original dataset plus 100 bootstrap samples, and for each bootstrap

sample the null and alternative model were fitted with 50 random starts each, the process

required 15000 ×(100 + 1) ×(50 + 50), or over 150 million LCA models to be fitted. The

total computational cost was about 278 days distributed over several Linux processors.

The upper four panels of Figure A1, in the online appendix, show scatterplots of the

relationships of the four effect size measures considered (w, KL, ID and SEP) with power in

the J = 5, K = 3 case. Both w and KL seem to be strongly related to power. The other two

measures are much poorer predictors of the power of the BLRT and are therefore not

considered further. Figure A1 also shows scatterplots of power against the Ramaswamy

rescaled entropy statistic (Muthén, 2004; Ramaswamy, DeSarbo, Reibstein, & Robinson,

1993) for H0 and H1.4 The entropy statistic measures how clearly or confidently a model

classifies the subjects in terms of posterior probabilities, but from the figure it is clear that

neither H0 entropy nor H1 entropy by itself is a good effect size measure for a test; these

plots appear to be mostly noise, with little or no systematic relationship with power.

Within each combination of J and K, the w and KL measures were strongly but not perfectly

correlated (r > .95), except for the J = 13, K = 3 condition in which r = .78 due to an outlier.

The outlier may have been due to a poorly calculated w caused by a near-zero denominator

for one of the responses in one parameter draw. The range of values of w and KL which

were observed differed by J and K. Because of the independent random ρ values, each item

provided at least some evidence against H0 (i.e., there were no items with exactly the same ρ

value for two or more classes), so higher J was associated with higher w and KL and thus

higher power. Also, roughly speaking, the larger K was, the more closely a (K −1)-class

model could approximate a K-class model, so the effect size was lower.

It would be possible to interpolate the points for N = 500 or for N = 1000 in order to get a

point estimate of power for any value of the effect size measure (within the observed range)

assuming the given value of N. However, it would be impractical to have to simulate

separate power curves for each possible value of N. It would be more useful if the N = 500

and N = 1000 curves could be combined with a single x-axis and a single fit curve, allowing

for interpolation and some extrapolation to new values of N. It seems plausible to assume

additivity (e.g., that 500 independent observations from an H1 with a discrepancy of KL =

4To apply the idea of Ramaswamy entropy to a population model, we used the formula

, where yj is any of the 2J possible response vectors,

 is a weighted average of the probability of yi across all classes calculated
using the true parameters, and P (uc|yi) is the posterior probability of being in class c for an individual with data yi. (uc here is an
indicator for belonging to class c.) The usual Ramaswamy entropy formula in a sample is

 where the P̂ (uc|yi) are the posterior probabilities using the estimated
parameters and where the yi are observed values from each subject. This is a reverse-signed and rescaled measure of entropy in the
classical sense (Shannon, 1948), that is, of − ΣΣ P̂ (uc|yi) log P̂ (uc|yi), so that higher Ramaswamy entropy means less
unpredictability.
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0.02 from the H0 would provide the same amount of evidence against H0 as would 1000

independent observations from an H1 with KL = 0.01 from the H0). Thus, perhaps N × KL

can replace KL on the x-axis of the plots and separate curves are not needed. The same

approach may work with w, although it is necessary to square w before multiplying by N,

because of the square root over the sum in Model (3). Figures 1 and 2 show that additivity

seems to apply, just as it would in a classic LRT.

An appealing feature of Figures 1 and 2 is that it is possible to characterize what kind of

parameter set for H1 is likely to be associated with a BLRT power of a given value (e.g., .

80) at a given α for testing H0 against H1. In the J = 5, K = 3 scenario, for example, it

appears from Figure 1 that power of .80 would be obtained by parameter sets for which N ×

w2 > 18. Denoting this minimum N × w2 value as , the researcher could choose

(7)

as being likely to detect a given true discrepancy of w. Equivalently, a true discrepancy of at

least about  is needed to have 80% power to reject H0 with a sample size of

N.  translates to a requirement for N = 1800, N = 200, and N = 72, for w = .1, .3,

and .5, respectively, the “small,” “medium” and “large” benchmark values used (in a

different context) by Cohen (1988). A minimum N × w2 to obtain 90% power, although not

specifically marked on the plot, could be obtained similarly and denoted . Similarly,

minimum N × KL benchmarks, denoted  and , can be estimated from Figure 2,

and at least

(8)

is needed to obtain a power of at least .80 with a true discrepancy of KL of H1 from H0.

These estimates are shown in Table 4. However, w and KL were always near zero in the J =

5, K = 5 condition, because the H1 models were almost saturated (29 parameters for a 25 =

32-cell contingency table) and perhaps poorly identified, and so the values of ,

etc., could not be estimated for that condition.

It is clear from Table 4 that  depends on J and possibly also on K. The dependence of

power curves on model dimensionality is not surprising. The same holds for power in other

covariance structure models (see, e.g., MacCallum et al., 2010; Saris & Satorra, 1993). Even

in the simple case of a χ2 test of fit or of independence on a contingency table (i.e., without

latent variables, and with the assumption that N is adequate per cell for the appropriate χ2

asymptotics to hold), Cohen (1988) still had to provide separate power tables depending on

the df of the model. The underlying formula for the noncentrality parameter upon which the

power calculations were based was the same, but the reference noncentral χ2 distribution

depended on the df of the test.
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For the LCA BLRT there is no reference χ2 distribution. However, we can define an ad-hoc

df for the test, as the number of distinct, freely estimated parameters in H1 minus the number

of distinct, freely estimated parameters in H0. The number of free parameters in Model (1)

with dichotomous items is K −1 of γ parameters plus J × K of ρ parameters. Thus, for

comparing a H1 of K classes to a H0 of (K −1) classes, the difference is df = J + 1, i.e., 1

more γ parameter and J more ρ parameters. Recall that in a classic χ2 test with high N and no

latent variables, power can be computed using only N, w, and df (see Cohen, 1988).

Therefore, we next conducted further simulations to test whether, in the LCA case, power

could be adequately approximated using only N × w2 or N × KL and df (or equivalently J)

and tabulated simulation results.

Simulation Experiment 2: Constructing a Table of Benchmark Sample Size

Requirements

A thorough examination of the dependence of quantities such as  on the number of

items J and number of classes K requires additional simulations with more different values

of J and K. Therefore, we performed new simulations on each combination of J = 4, 5, 6, 7,

8, 9, 10, 11, 13, 15 and K = 2, 3, 4, 5, 6. It was hypothesized that the shape of the power

curves (i.e., the m values) would depend mainly on J and not K, although K might influence

a point’s position on the x-axis (i.e., the effect size). If this conjecture is true, it would

simplify the task of predicting power, since a useful reference table could be constructed by

merely tabulating m values for every J in a range of interest, and not for every combination

of J and K.

For each combination of J and K, we generated 10 random draws of parameters as described

earlier. For each of these sets of random parameters, we simulated 200 datasets each with N

= 750. For the easier scenarios (J > 2K), in which power might be high for every draw at N =

750, we additionally generated 200 more datasets having only N = 250 for each draw. In

order to make this large number of simulations feasible, we employed a computational

shortcut instead of doing the full BLRT each time. Resulting computational time was 554

days.5 Table 5 shows the median w and KL for the sets of parameters drawn under each

combination of J and K. Figures 3 and 4 show how w and KL, respectively, are related to

power within different values of J.

Fit curves were applied to Figures 3 and 4 using nonparametric smoothing. Estimates for the

m constants described earlier were obtained for each plot by simply recording where these

curves crossed .80 or .90. These estimates, considered as a function of J, were then

5For each J, K, N combination, we chose an estimated critical value as the average bootstrap critical value obtained from a preliminary
study using only 10 bootstraps for each of 50 simulated datasets within each of 10 preliminary random draws of parameters. Because
of the small number of bootstraps per dataset, p-values from these initial runs would be uninterpretable. However, we were only
interested in obtaining an average value for the LRT statistic under H0 for datasets and models of a certain size, not in a p-value from
each preliminary dataset. We then obtained a power estimate from each of the sets of 200 datasets by doing tests similar to naïve
LRTs, except for using the estimated critical values obtained in this way in place of the naïve χ2 quantile. The goal was to construct a
test hoped to have the same long-range power as the bootstrap test, although not necessarily the same result for a given dataset. This
shortcut was only used in Experiment 2, not Experiments 1 or 3. Because of the shortcut, the simulations for Simulation Experiment 2
required only 554 days of computational time despite being much more extensive than those of Simulation Experiment 1. Most of this
time was due to the larger models; specifically, if we had only implemented the conditions with J ≤ 6 and K ≤ 4, the total time would
have been only 12 days.
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smoothed in an attempt to reduce random error and allow interpolation to the J = 12 and J =

14 cases, which had been omitted to save computer time.6 The resulting estimates are shown

in the second part of Table 4.

Especially for KL, a single curve for each J did fairly well in summarizing the relationship

of effect size to power regardless of K. Although this does not prove that K does not affect

the power curve, it does suggest that a table of  constants indexed only by J may be

useful. The curve (i.e., the power for a given effect size) did not depend noticeably on K,

although the position of points on the curve (i.e., the effect size actually obtained) did

depend heavily on K. Table 5 shows that the effect sizes obtained depend jointly on J and K,

with highest effect sizes observed when J is large and K is small.

Simulation Experiment 3: Validating Estimated Sample Size Requirements

Using Empirical Models

The plots from Experiment 2 provide sufficient information to make power predictions for a

wide range of LCA scenarios. However, there are still some reasons to be uncertain about

the performance of these predictions. First, they are based on a computational shortcut. The

m estimates for a given J (e.g., J = 9) in Table 4 seem to be slightly lower on average for

comparable conditions in Experiment 2 (with the shortcut) than in Experiment 1 (without the

shortcut). Thus, it is not clear whether the shortcut leads to underestimating the needed N.

Second, both Experiments 1 and 2 were based on randomly generating parameter values,

and therefore might not be well representative of the parameter values which would be

found in real-world research.

To address these concerns about validity, we performed a final set of simulation

experiments. For each of the six parameter sets in Table 2, and additionally for each of

seven empirical examples of fitted LCA models chosen from recent literature, we first

imagined that the proposed or estimated model was exactly true for the population. We

imagined that an investigator was planning to gather data from this population to test

whether there were K or K −1 classes, where K was the number of classes in the published

work. We used the following empirical examples. The alcohol model is taken from an

analysis in Lanza et al. (2007, p. 687) of data from Monitoring the Future (Johnston,

Bachman, O’Malley, & Schulenberg, 2004), original N = 2490. The delinquency model is

from Collins and Lanza (2010, p. 12), original N = 2087, based on Wave I data from the

National Longitudinal Study of Adolescent Health (Udry, 2003). The depression model is

from Lanza, Flaherty, and Collins (2003, p. 687), original N = 1892. The eating model is

from Lanza, Savage, and Birch (2010, p. 836), original N = 197. The health risks model is

from Collins and Lanza (2010, p. 39), original N = 13840, using Youth Risk Behavior

Survey (2005) data. The nicotine withdrawal model is from Xian and colleagues (2005, p.

414), original N = 4112. The psychosis model is from Shevlin and colleagues (2007, p. 105),

original N = 5893.7 Each of these models is based on dichotomous items, typically

6The nonparametric smoothing for the plots and for Table 4 was done using smoothing splines, implemented either with the R
function smooth.spline (R Development Core Team, 2010) or with the R function gam in library mgcv (Wahba, 1990; Wood, 2003,
2011, 2012).
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representing the presence or absence of some symptom or behavior, as is fairly common in

psychological and medical research.

For each dataset, we calculated w and KL based on the population parameters, and then

calculated the required N according to Table 4 to obtain a power of .80 at α = .05 for that w

or KL (i.e., we imagined that the hypothetical experimenter guesses the effect size exactly

right). We then simulated 1000 datasets of size N from this hypothetical population, and

performed the bootstrap test (without the computational shortcut) for each one. We did this

separately for Nw, the sample size obtained using w and Equation (7), and for NKL, the

sample size obtained using KL and Equation (8). Finally, we also did a set of simulations for

1.15NKL, for reasons described below. The total computational time required was 221 days.

Results are shown in Table 6.

Ideally, we would hope that the simulated power for each of these 13 scenarios would be

close to .80. This would indicate that the results of Experiment 2 were generalizable to

parameter sets other than those used in Experiment 2. Table 6 shows that the sample sizes

chosen to afford a power of .80 do obtain power reasonably near .80, although how near

seems to depend on the method as well as the scenario. Nw is seldom too small (providing

power of at least 0.77 for all of the models) but often needlessly large (power higher than .99

in one instance). NKL provides power which is is very close to .80 on average, and seems to

be a more precise estimate than the estimate from w. Thus, KL might potentially be a more

useful measure than w for sample size planning.

However, there is an important caveat: notice that NKL is sometimes too small (in one case a

power of only .69 is obtained for a target power of .80). In many cases, an underestimation

of the needed sample size may be more harmful than an overestimation (i.e., it is better to

err by expending slightly more resources than is needed to attain one’s goals, than to fail to

attain them at all by expending slightly too little). Thus, perhaps an unbiased estimate of the

required sample size is not really desirable, but instead it would be better to have an estimate

which is purposefully slightly biased in the direction of caution. This might be done by first

obtaining an N estimate from KL but then multiplying this estimate by some constant

slightly greater than 1. We found that the multiplier 1.15 seems to work well,8 in that the

selected N’s now provided simulated power ranging from about .8 to about .9. That is, using

1.15NKL gave power values that were never much lower than .80, although they were often

slightly higher.

The correct selection rates by other analysis methods besides the α = .05 bootstrap were also

observed, and are compared in Table 7. For simplicity we show only results using Nw since

relative patterns will be the same regardless. The values for the BLRT in Table 7 can be

considered to represent statistical power. The term “power” is not quite correct for AIC, BIC

7The ρ estimates in this article were provided as a plot rather than a table, so we estimated them by eye from the plot. We wished to
use this model partly because of its interesting composition: as an epidemiological survey of a severe condition, it had very
unbalanced class sizes (only 2% were in the severest class).

8We originally chose the value 1.15 partly because we observed that most of the  values from the upper part of Table 4
(obtained without the computational shortcut) were between 1.1 and 1.2 times their counterparts in the lower part of the table
(obtained with the shortcut), so that a multiplier of 1.15 might counteract any bias towards underestimation which may have been
caused by the shortcut.
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or adjusted BIC since they are not designed to be hypothesis tests with fixed α levels

(although they are being used like tests in this case, in that a larger model is being compared

to a smaller). However, it is still enlightening to compare their behavior. Decreasing α for

the BLRT from .05 to .01 noticeably reduces power, although increasing α to .10 does not

increase it as much. The rejection rates of the too-small model by the information criteria

varied, with AIC being the most liberal or sensitive (hence least likely to result in

underextraction) and BIC being by far the most conservative, parsimonious, or specific

(most likely to result in underextraction). Although this is important information, decisions

about what selection method to use should not be made on the basis of Table 7 alone, since

it only deals with the case in which H1 is true. If overextraction (the equivalent of Type One

error) were being considered, then the reverse would have been seen, with BIC becoming

more likely to be correct than AIC, and a BLRT with a low nominal α becoming more likely

to be correct than one with a higher one (see Dziak et al., 2012).

Recommendations

Using the results in Table 4, a predicted sample size requirement can be obtained for

powering a test to select the K-class model over the corresponding (K −1)-class model, at

least under the assumption that there are no more than K classes. This may be useful in

planning the needed N for observational studies based on consideration of one or more

hypothetical population structures. It may also be useful in evaluating the adequacy of

available datasets prior to doing an LCA analysis. Using KL seems to be a slightly better

choice than using w, but w also works fairly well. In order to err on the side of caution, we

recommend multiplying the estimated required N by 1.15.

As illustrated in Table 8, recommended N depends heavily on the assumed effect size.

Cohen (1988) provided benchmarks of .1, .3, or .5 for low, medium or high w, but these

were for a classic χ2 fit test, not for LCA. We are unaware of any similar benchmarks for KL

at all. The average values in Table 5 could be used, but these estimates might be too

pessimistic because they are based on random numbers rather than interesting and well-

measured real-world datasets.

Table 6 may provide a better guide to reasonable effect size values than Table 5, since it is

based on published estimates rather than random data. However, in some cases it might be

better for a researcher to construct one or more scenarios deemed reasonable for the true

parameters, as in Table 2, and then calculate w or KL from each of them using the pseudo-

population approach described earlier in the paper; a macro for doing this is provided at

http://methodology.psu.edu/LcaEffectSizes/.

In summary, the required sample size for an LCA BLRT can be estimated as follows. First,

specify an estimated effect size (either w or KL). One way to obtain such an estimate is to

specify a H1 model (including the number of items, supposed number of classes, and

supposed γ and ρ values), and calculate the effect size for testing this model against the H0

number of classes (a SAS macro is available for easily doing so in the case of comparing a K

versus K −1 class model). A conservative approach would be to consider several reasonable

models and choose the smallest effect size among them. After obtaining the effect size, one
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can use expression (7) or (8) to estimate the required N without needing to do simulations. If

desired, one could optionally justify this estimate further by simulating datasets with that N

and calculating the power as we did in Experiment 3.

Discussion

In this paper we empirically addressed the question of how large a sample size is needed to

avoid underextraction when using the BLRT test to choose a number of classes in LCA. We

proposed a method for doing so, based on first specifying a proposed effect size in terms of

w or KL, and then using the tables compiled from our simulations to calculate the power

needed to detect that effect size with adequate probability. Our simulations involved

generating many scenarios with random characteristics, calculating the effect size measures,

and empirically estimating the power of the BLRT on many simulated datasets for each

scenario. This provided a feasible, though time-consuming, way to get around the lack of an

analytic power formula for the LCA BLRT: namely, empirically plotting simulated power

against simulated effect size in order to tabulate the required sample sizes. The tables can

now be used by investigators without having to do simulations themselves. We studied only

the case of dichotomous items, but the approach may be extended in the future to more

general datasets.

An obvious limitation of the current paper is that we considered only a fairly simple

application of LCA, involving dichotomous items and no covariates. Our study of even this

simple case required a very large investment of computation time, so it is not clear how

future research on more complicated models should be done. It is not known how

polytomous items would affect power. It is reasonable to expect that informative covariates

might improve power (Wu, 2009, p. 116), but this would require further study, as would the

question of predicting power to detect relationships between covariates and the latent class

variable.

Another important caveat is that the results in this paper are better used for prospective

planning prior to doing an analysis, and may not be meaningful if applied in a post hoc way

after doing an LCA (just as with classical power and sample size formulas; see, e.g., Hoenig

& Heisey, 2001; Lenth, 2007). For example, in Table 6, the required N was always

calculated as less than the N that was used in the original study. However, this cannot be

interpreted as evidence that the original studies successfully found “all” of the classes of

interest in their population, even if the classes are considered to be real phenomena and not

just convenient abstractions in a model. Similarly, it cannot be interpreted as evidence that

past LCA studies have used large enough N, or too large N, according to some objective

standard. Either conclusion would involve circular reasoning, since by doing the

computation we had already assumed that the results of the original study were accurate.

Thus, although our results may be useful in planning empirical studies, or even in deciding

whether to do an LCA analysis on an existing dataset, they should not be used to attempt to

quantify confidence in a fitted LCA model.

Also, although we have treated model selection as closely related to testing, they are not the

same (see, e.g., Burnham & Anderson, 2002). By focusing on testing in this paper, we gloss
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over some complications, especially the possibility that neither model might be correct. This

is relevant even in classic significance testing but is very obvious in the context of class

extraction. Nonetheless, the familiar paradigm of the power of a statistical test provides a

simple and tractable way to begin to explore required N. In practice, researchers might take a

stepwise approach to LCA model selection, such as comparing a 1-class solution to a 2-

class, then a 2-class solution to a 3-class, and so on. If a researcher compares each pair of

model sizes with a penalized likelihood criterion such as AIC (Akaike, 1973) or BIC

(Schwarz, 1978), choosing the best one according to this criterion, then this is algebraically

exactly the same as comparing each pair of models using a naïve likelihood ratio test, with

an α level determined indirectly by the penalty weight of the criterion (see Foster & George,

1994; Leeb & Pötscher, 2005; Teräsvirta & Mellin, 1986). Thus, our approach based on

ideas of hypothesis testing seems to be reasonable. However, there is not enough

information to comprehensively compare approaches such as the information criteria to the

BLRT. In Tables 1, 3, and 7, it is clear that AIC has a much higher probability of rejecting

the inadequate model than BIC does. Reliance on the BIC is likely to result in the choice of

overly simple models if N is not large.9 However, we do not necessarily recommend AIC as

a substitute for BIC, because that might replace the underextraction problem with an

overextraction problem. It is known that when using AIC or BIC to choose between two

models, AIC will be more likely to overfit and BIC will be more likely to underfit (Dziak et

al., 2012; Lin & Dayton, 1997). Rather than choosing one extreme or the other, it might be

better to consider both AIC and BIC together (Collins & Lanza, 2010). Using BIC alone,

however, involves a serious underfitting risk.10

We have only explored tests of the form (2), i.e., K −1 classes versus K classes, and have not

explored what would happen if we replace H0 in (2) with “The population consists of K −1

or fewer latent classes.” However, there might not be much of a difference. That is, if a (K

−2)-class model is not rejected by the BLRT against a K-class alternative, then a (K −1)-

class model should not be rejected either, assuming enough random starts have been used to

9Nylund and colleagues (2007) concluded from their simulations that BIC usually performs better than AIC, especially when N is
large. However, our results suggest that BIC sometimes performs extremely poorly with modest N because of a very high probability
of extracting too few classes. A partial explanation of the difference between the findings is in the models considered: the models
considered by Nylund and colleagues had very good measurement and class separation. In the context of our paper, they used rather
large effect sizes: the effect sizes for the four categorical-outcome LCA examples in their Table 2 were w = 0.80, 0.44, 3.97, 0.66
respectively or KL = 0.23, 0.10, 1.31, 0.13 respectively, higher than most of the values in our Tables 5 or 6. In a sense, this gave BIC
an unfair advantage in Nylund and colleagues (2007), since models were not considered in which the K − 1 class model was somewhat
wrong but not grossly wrong (i.e., in which there was a true but subtle effect to which AIC would be more sensitive). On the other
hand, our simulations admittedly gave AIC an unfair advantage over BIC because they considered only the possibility of
underextraction and not of overextraction, while the Nylund paper considered both (see their Table 7).
10Whether it is desirable to have high power when effect sizes are very small is a deeper question; that is, whether one should wish to
reject models that have statistically significant lack of fit but are practically interpretable, in favor of models that quantitatively
describe the population covariance structure slightly more accurately but are harder to interpret (see Dziak et al., 2012; Raftery, 1995).
This would depend on the researcher’s goals. We have assumed that Model (1) was literally true, and hence that the classes were truly
distinct “real” groups, not just summaries of an underlying continuum; this was necessary in order to have an unambiguous true value
of K in the simulations. However, it is often unclear whether latent constructs should be seen as categorical or continuous, and this
might depend on the context (see, e.g., Bauer & Curran 2003, with responses and rejoinder; Collins & Lanza, 2010; Walters, 2011). If
the indicators are really a function of a continuous rather than categorical latent variable then Model (1) will presumably be rejected
for high enough N, at any K < 2J, since its local independence assumption would not be precisely true at any reasonable number of
classes. The idea of a correct K could perhaps be replaced by optimizing some quantitative measure of estimation quality, but the best
would then grow with larger due to a changing bias-variance tradeoff, and would likely to represent a less parsimonious and
interpretable model than might otherwise be wished; AIC might be more appropriate than BIC or the bootstrap under this alternative
viewpoint (see Burnham & Anderson, 2004, Dziak et al., 2012). However, if a small and easily interpreted model were desired, then
BLRT or BIC might point out a better model size than AIC.
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find a global optimum likelihood for each size. A more fundamentally different case is what

to do if one wishes to test broader alternative hypotheses. For example,

(9)

Such hypotheses may be of interest in confirmatory or goodness-of-fit analyses with LCA.

However, the approach taken in the current paper does not apply well to them because of the

lack of a specific H1. The test in (9) is best viewed as a test of goodness of fit of the K − 1

class model, that is, of whether the local independence assumption implicit in Model (1)

holds (see Collins et al., 1993; Collins & Lanza, 2010; Vermunt & Magidson, 2004, 2005),

rather than as a comparison of two specific candidate values of K. Thus, since the test is

different, the appropriate procedure for power or sample size planning would presumably

also have to be different, and might be based on trying to determine the power to detect a

certain amount of residual correlation.

Despite these limitations, in this study we have found that two proposed effect size

measures, w and KL, were strongly related to the power of the LCA BLRT across thousands

of simulated datasets. Based on this, we have compiled power tables for LCA class

extraction, which has not been done before to our knowledge. We hope that this will help

applied researchers in planning studies when latent classes are posited to exist.
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Appendix 1. Calculating the Effect Size Measures

Formulas (3) and (4), for the w and KL effect size measures, suggest that to calculate effect

size one needs to calculate P0 and P1 values for each of the cells in the contingency table of

possible responses (of which there are 2J if J dichotomous items are being analyzed).

Fortunately, this is not as burdensome as it sounds. All that is required are proposed

theoretical values for the class sizes γ and response probabilities ρ for H1. All of the P0 and

P1 can then be calculated as outlined below. For dichotomous items, this can be done

automatically using a SAS macro provided at http://methodology.psu.edu/LcaEffectSizes/,

but we provide an outline and the rationale for the procedure below.

1. Take a set of proposed γ values and a set of proposed ρ values provided by the

investigator. These values specify the K-class H1 model which is assumed to be

true for calculating power.

2. Given theseH1 parameters, calculate P1 for each of the cells using expression (1).

3. Create a synthetic dataset having size approximately P1 for each cell. We do this by

first creating a dataset with one line for each cell (e.g., [1, 1, 1, 1, 1], [1, 1, 1, 1, 2],

etc.) and then giving each cell a frequency weight proportional to the P1 for that

cell. This dataset now represents the population probability distribution specified

by H1, and could be considered a “pseudo-population.”

4. Do a (K − 1)-class LCA on the pseudopopulation (even though the

pseudopopulation was generated under a K-class model). Do this LCA very

carefully (with many random start values) to try to find the global maximum

likelihood solution. Intuitively, the γ and ρ parameters from this solution now

provide a fitted (K − 1)-class model which approximates the fit of the true K-class
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model about as well any (K − 1)-class model can do. This in turn approximates the

bootstrapped distribution used by the BLRT.

5. Using the calculated best H0 parameters, calculate P0 for each of the cells by again

using expression (1).

6. Now that P0 and P1 values are available for all cells, the effect size can be

calculated directly using Formulas 3 and 4.

In the outline above, one might ask why we calculate the H0 probabilities indirectly from the

H1 probabilities, instead of asking the investigator for γ and ρ values for H0 as well. In other

words, why are H0 and H1 being treated so differently, and why is the elaborate step of

constructing a pseudopopulation necessary? The answer is that this corresponds to the way

the BLRT test is done in practice. When doing a BLRT in practice, the bootstrap H0 datasets

are simulated not from a pre-specified set of parameters, but from the best fitting (K − 1)-

class parameters to the observed data. Thus, to be realistic, after we propose a particular

assumed set of H1 parameters for calculating P1, we should not also propose another

arbitrary set of H0 parameters for calculating P0. Instead, we need to find the set of H0

parameters which give P0 values which are, in general, as close as possible to P1. This

sounds difficult but is easy: as described above, one can just use existing LCA software to fit

a (K − 1)-class model to a sample of fake data having cell proportions equal to the P1. Since

these steps are automated, the process is actually much simpler for the user than having to

specify separate theoretical values for both the H0 model and the H1 model.

Appendix 2

Appendix 2 is provided online at http://methodology.psu.edu/media/LcaEffectSizes/

AppendixDziakLanzaTan.pdf.
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Figure 1.
Scatterplot of N × w2 and simulated power for each simulated combination of number of

items J and number of classes K. Empty circles represent N = 500 scenarios and solid circles

represent N = 1000 scenarios. The fit curves are obtained from a smoothing spline with

roughness penalty coefficient chosen subjectively. A vertical dotted line marks the estimate

of , which we denote as the value of N × w2 for which power exceeds .80.
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Figure 2.
Scatterplot of N × KL and simulated power for each simulated combination of number of

items J and number of classes K. Empty circles represent N = 500 scenarios and solid circles

represent N = 1000 scenarios. The fit curve is obtained in a similar way to that of Figure 1.

A vertical dotted line marks the estimate of , which we denote as the value of N × KL

for which power exceeds .80.
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Figure 3.
Scatterplot of N × w2 and simulated power for models based on different random parameter

draws in Experiment 2. The plot symbols for each simulated model are numerals

representing the number of classes for that model. The fit curves are obtained from a

smoothing spline with roughness penalty coefficient chosen subjectively. A vertical dotted

line marks the  estimate.
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Figure 4.
Scatterplot of N × KL and simulated power for models based on different random parameter

draws in Experiment 2. The plot symbols for each simulated model are numerals

representing the number of classes for that model. The fit curves are obtained from a

smoothing spline with roughness penalty coefficient chosen subjectively. A vertical dotted

line marks the  estimate.
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