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Intuitively, extrapolating object trajectories should make
visual trackingmore accurate. This has proven to be true in
many contexts that involve tracking a single item. But
surprisingly, when tracking multiple identical items in what
is known as ‘‘multiple object tracking,’’ observers often
appear to ignore direction of motion, relying instead on
basic spatial memory. We investigated potential reasons
for this behavior through probabilistic models that were
endowedwith perceptual limitations in the range of typical
human observers, including noisy spatial perception.When
we compared a model that weights its extrapolations
relative to other sources of information about object
position, and one that does not extrapolate at all, we found
no reliable difference in performance, belying the intuition
that extrapolation always benefits tracking. In follow-up
experiments we found this to be true for a variety of
models that weight observations and predictions in
different ways; in some cases we even observed worse
performance for models that use extrapolations compared
to a model that does not at all. Ultimately, the best
performing models either did not extrapolate, or
extrapolated very conservatively, relying heavily on
observations. These results illustrate the difficulty and
attendant hazards of using noisy inputs to extrapolate the
trajectories ofmultiple objects simultaneously in situations
with targets and featurally confusable nontargets.

Introduction

Multiple object tracking (MOT; Pylyshyn & Storm,
1988) is among the most popular and productive
paradigms for investigating the underlying nature of
visual cognition. In a typical experiment, a set of
featurally identical objects moves about a display
independently, and the task is to track a subset of the
objects that were initially identified as targets (Figure
1). This task demands sustained effort; it cannot be
accomplished via eye movements that shadow the
motion of all targets; and basic display factors such as
speed, duration, and the numbers of targets and
nontargets afford direct and intuitive manipulations of
task difficulty. The MOT paradigm has proven
remarkably useful for identifying general properties of
visual processing, such as the utility of inhibition
alongside selective attention (Pylyshyn, 2006), the
reference frames over which visual cognition operates
(Liu et al., 2005), and the underlying units of selective
attention (Scholl, Pylyshyn, & Feldman, 2001).

Recent advances have added a further dimension to
the study of MOT by characterizing the computational
problems at the core of the task. Specifically, visual
tracking of multiple objects can be formalized as a
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correspondence problem that requires identifying noisy
measurements of objects in the current moment with
noisy representations inferred a moment ago, a
problem frequently described in the context of motion
perception more generally (e.g., Dawson, 1991).
Tracking errors can arise from incorrect correspon-
dence inferences, in particular when a nontarget is
mistakenly identified with a target (Bae & Flombaum,
2012; Franconeri, Intriligator & Cavanagh, 2001;
Franconeri, Jonathan, & Scimeca, 2010). Two reports
have explored computational models that adopt a
probabilistic approach to representations of object
position and correspondence (Ma & Huang, 2009; Vul,
Frank, Alvarez, & Tenenbaum, 2009). These models
employ Bayesian inference to infer moment-by-mo-
ment positions from noisy measurements, and to infer
object correspondences between current positions and
those in memory. This inchoate line of work provides a
framework for understanding the representations and
computations involved in tracking at the algorithmic
level.

In the current study, we push this line of research
forward by utilizing a similar framework, one that is
common in computational applications for visual
tracking, the Kalman filter. We use the model to
investigate a basic but perplexing aspect of human
performance. Specifically, we investigate the role and
algorithmic mechanisms of velocity extrapolation to
support tracking. As we discuss below, extrapolation
has been explored behaviorally for some time in the

MOT literature, but with surprising and conflicting
results. Computational models can be useful here
because they force one to specify the algorithms that
would support extrapolation, and they supply an
opportunity to evaluate their accuracy and utility with
respect to the task. Here, they will allow us to ask
varieties of questions that can be difficult to address
exclusively through behavioral experiments, in partic-
ular, whether observers should extrapolate—would it
actually help tracking performance?—and if they do,
how apparent would it be?

Do observers extrapolate when doing MOT?

‘‘Do observers extrapolate?’’ has been the question
addressed by several groups of investigators. This work
has been driven by the intuition that extrapolation
should assist in the process of moment-by-moment
correspondence inference. Put simply, if an observer
can project with reasonable certainty where each object
is headed, she should be able to use those projections in
the interpretation of noisy measurements of future
positions. But surprisingly, a fair amount of evidence
has suggested that observers may not extrapolate
(Fencsik, Klieger, & Horowitz, 2007; Franconeri,
Pylyshyn, & Scholl, 2012; Howard, Masom, & Hol-
combe, 2011; Keane & Pylyshyn, 2006).

The first study to directly examine extrapolation—
and to obtain negative evidence—was conducted by
Keane and Pylyshyn (2006). They introduced a global
interruption in the middle of typical MOT trials. After
a few seconds of tracking, the whole display became
blank for 307 ms. When the stimuli reappeared,
participants were asked to identify the targets. To
motivate extrapolation, the authors used trajectories
with nearly perfect inertia, trajectories in which objects
almost always maintain their speed and direction (in a
way that is not typical of the broader MOT literature,
as discussed further below). Nonetheless, observers
were better able to identify targets when they remained
stationary during the global interruption compared to
when the objects reappeared at positions that were
consistent with their trajectories prior to the interrup-
tion. Fencsik et al. (2007) replicated this finding,
strengthened it with novel controls, and concluded that
if participants do successfully use any motion-related
information, they only do so when tracking one or two
objects.

Similarly, Franconeri et al. (2012) investigated
extrapolation through occlusion, as opposed to global
interruption. It has been demonstrated in a number of
studies that observers can track objects through
moments of occlusion with seemingly no cost to
performance (Flombaum, Scholl, & Pylyshyn, 2008;
Scholl & Pylyshyn, 1999). This study explored how

Figure 1. Sequence of events in a typical multiple object

tracking (MOT) experiment. (1) A group of featurally identical

objects appear, and a subset flash, identifying them as targets

for tracking. (2) All objects move independently through the

display for a duration typically lasting between 6 and 20 s. (3)

The objects stop moving, and the participant must identify the

targets (with a mouse or via keypress).
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participants identify targets on one side of an occluder
with targets on the other side. The authors compared
performance for objects that appeared at expected
disocclusion locations with objects that emerged
following hidden trajectory perturbations. Across
several experiments, a clear but counterintuitive pattern
emerged. Observers identified disoccluding objects with
occluded ones based only on spatial proximity, as
though they expected objects to appear as close as
possible to where they disappeared regardless of their
specific motion trajectories prior to occlusion.

In addition to investigations utilizing interruptions, a
few studies have shown that performance in standard
MOT trials is relatively insensitive to differences
between predictable and unpredictable trajectories. Vul
et al. (2009) demonstrated that performance is not
affected by changes in object inertia—that is, how
likely an object is to maintain its current bearing.
Similarly, Howe and Holcombe (2012) discovered that
participants do not perform better when tracking four
objects that move along straight paths, as opposed to
objects that alter their direction every so often; though
they did find a performance difference in trials with
only two targets. In that study, objects always
maintained the same speed, a feature that was not
present in Vul et al.’s experiment (2009). Thus
experiments manipulating object inertia suggest that
observers only utilize extrapolation successfully when
tracking fewer than four objects, and only when object
speeds and bearings do not change. Finally, Howard et
al. (2011) supplied evidence to suggest that represen-
tations of location during MOT tend to lag behind
objects’ true positions, perhaps indicating a conserva-
tive extrapolation strategy.

The picture that emerges from these results is that
under many circumstances, especially those including
more than two targets, human observers either do not
extrapolate or do not benefit from their forward
predictions of object positions. But alongside these
findings, related experiments have shown that observers
could extrapolate, and perhaps do so in some contexts.
In particular, several studies have shown that human
observers possess the raw materials necessary for
extrapolation. They can report (albeit with noise) the
direction of a target’s motion in an MOT trial
(Horowitz & Cohen, 2010; Iordanescu, Graboweky, &
Suzuki, 2009; Shooner, Tripathy, Bedell, & Öğmen,
2010). One study even demonstrated that a moving
pattern within an object can impair tracking if it moves
against the object’s trajectory, suggesting an automatic
encoding of bearing (St. Clair, Huff, & Seiffert, 2010)
and a cost caused by signals that make this encoding
difficult.

Moreover, two studies supply evidence that observ-
ers extrapolate when tracking only one or two objects
in the MOT paradigm. Using their global interruption

paradigm, Fencsik et al. (2007) found improved target
identification when objects underwent hidden motion
during an interruption that was preceded by motion,
compared to a case in which static objects preceded the
interruption. They could and did utilize trajectory
information in a comparative sense in this particular
circumstance. But even this effect only obtained with a
tracking load of two or fewer. Similarly, Howe and
Holcombe (2012) found improved tracking perfor-
mance for two targets in trials with reliable speeds and
bearings, compared to trials where those parameters
could randomly change. But like Fencsik et al., they
observed no such advantage for trials with more than
two targets.

In addition, a broader literature has demonstrated
conclusively that observers effectively utilize trajectory
predictions when tracking moving targets outside the
context of the MOT paradigm, for example when
tracking a ball in a variety of sports (e.g., Bennett,
Baures, Hecht, & Benguigui, 2010; Diaz, Cooper,
Rothkopf, & Hayhoe, 2013; Spering, Schütz, Braun, &
Gegenfurtner, 2011). An important caveat is that this
literature almost always involves tracking a single
object in situations without featurally identical non-
targets. Nonetheless, it demonstrates that the relevant
trajectory information can be acquired by the human
visual system, and that it can be used to generate
effective predictions.

Taken together then, the existing research on the
subject of extrapolation in object tracking and MOT is
puzzling. Why do observers who can encode velocity,
can be biased by it, and can even extrapolate when
tracking only one or two objects, not seem to
extrapolate in a setting that involves the tracking of
larger numbers of targets among featurally identical
nontargets? Our goal is to address this question by
interrogating the underlying assumptions that have
motivated previous studies. In particular, we focus on
the assumption that extrapolating would benefit
performance in MOT.

To make the assumption more concrete, consider the
global interruption experiments. Objects in the relevant
conditions always appeared exactly where they should
have given their trajectories prior to interruption. But if
participants were extrapolating, is it safe to assume that
they would extrapolate to exactly the right positions?
Perhaps observers did make predictions, but the
predictions were relatively inaccurate, such that the
post-interruption positions did not conform to ob-
servers’ expectations in practice (i.e., did not conform
any better than the positions at which the objects were
most recently perceived). More importantly, in the
context of MOT specifically, for predictions to have an
impact on task performance, predictions would need to
help observers discriminate targets from nontargets.
Predictions would have to have discriminatory power
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precise enough to have a marginal impact on the
instances when targets and distractors tend to become
confused.

Assuming noisy knowledge of bearing—especially
noisy knowledge that appears to decline with tracking
load (Horowitz & Cohen, 2010)—how accurate could
human extrapolations have been? From a rational
perspective, an observer should only use extrapola-
tions in proportion to their precision and utility. The
possibility that observers should extrapolate only
under very limited circumstances, or extrapolate
somewhat conservatively when tracking multiple
objects, might help to account for the mixed results in
the literature. Accordingly, we sought to investigate
how accurately we should expect human observers to
extrapolate—and whether it would benefit them—
given noisy inputs.

The current study

Whether extrapolation benefits tracking perfor-
mance clearly depends on the fidelity with which
observers can predict object motion given the infor-
mation that they receive from a display (together with
their implicit assumptions about trajectories). In other
words, it depends on whether observers really can
extrapolate very well in the context of MOT. Given
known limitations associated with human perception
and memory, particularly in the spatiotemporal do-
main and with large tracking loads (Anstis, 1974;
Gegenfurtner, Xing, Scott, & Hawken, 2003; He,
Cavanagh, & Intriligator, 1996; Intriligator & Cav-
anagh, 2001; Latour, 1967; Lichtenstein, 1961; Sperling
&Weichselgartner, 1995; White & Harter, 1969), highly
accurate extrapolation may not be possible. Note, by
highly accurate, here, we mean accurate enough to
impact MOT performance—to aid in target non-target
discrimination.

To investigate the effectiveness and utility of
extrapolating, we compare tracking performance across
models that are endowed with human-like perception
and memory limits, but that differ with respect to the
weight that extrapolations bear in the inferential
processes involved in tracking. Specifically, there are
known limits on how quickly human observers can
sample visual inputs (Howard, Masom, & Holcombe,
2011; Landau & Fries, 2012; White & Harter, 1969),
and it is also known that they represent object positions
and velocities imprecisely (Adelson & Bergen, 1986;
Bays & Husain, 2008; Bouma, 1970; Burr & Thomp-
son, 2011; Gegenfurtner, Xing, Scott, & Hawken, 2003;
Intriligator & Cavanagh, 2001; Stocker & Simoncelli,
2006). These noisy inputs could lead to relatively
imprecise and possibly misleading extrapolations.
Moreover, human observers may possess resource

constraints in the form of limited memory or attention,
potentially impairing them further with greater track-
ing loads (Bays, Catalao, & Husain, 2009; Mazyar, van
den Berg, & Ma, 2012; Vul, Frank, Alvarez, &
Tenenbaum, 2009). Such limits could make extrapola-
tion computations less effective, and potentially even
detrimental if they consume limited resources. In the
case of a resource-limited observer, whether to extrap-
olate or not should depend on whether doing so
produces a marginal performance advantage. Without
a performance advantage, dispensing with extrapola-
tion could produce resource savings that can be
allocated to other processes.

The computational experiments described below
utilize the Kalman filter as a tool for investigating the
effectiveness and utility of extrapolation given noisy
inputs. The Kalman filter is a basic framework for
recursively estimating the values of unknown variables
from noisy measurements. It is applied frequently in
computer vision applications for tracking (BarShalom,
& Fortmann, 1988; Boykov & Huttenlocher, 2000), and
it supplies the main framework for two prior modeling
efforts in MOT (Ma & Huang, 2009; Vul, Frank,
Alvarez, & Tenenbaum, 2009). Using the Kalman filter
as a computational foundation, we begin by imple-
menting three models of multiple object tracking, one
that does not utilize extrapolated predictions, and two
models that weight extrapolations in different ways. We
endow all of the models in the current study with
perceptual limits in the range of human observers.
Specifically, we test each model under three different
levels of spatial uncertainty about object position, and
with three visual sampling rates spanning the fast and
slow ends of previously measured human capabilities.

One tangential contribution of the current research
involves the implementation of this sampling limit. The
two previous MOT modeling studies mentioned as-
sumed that inputs to tracking are sampled at the frame-
rate of the relevant experimental displays and under-
lying code. We return to this issue in the General
discussion, noting here that temporal uncertainty in the
form of a limited temporal sampling rate should
hamstring extrapolation algorithms, just as spatial
uncertainty should. The current work makes several
additional contributions, pushing forward what ap-
pears to be a productive future for modeling human
object tracking with Kalman filter-like algorithms. We
discuss these contributions in detail in the General
discussion.

In addition to comparing the performance of three
different kinds of models, we test the models across a
wide range of trajectory types and tracking loads
commonly utilized in studies of human MOT ability.
Importantly, we also test the models on trajectories in
which objects tend to maintain their speeds and
bearings—trajectories that are less common in the
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experimental literature, but which should supply the
greatest opportunity for extrapolation to confer an
advantage. Studies interested in extrapolation have
often utilized these kinds of trajectories; although
studies focused on other issues typically utilize trajec-
tories with frequent and unpredictable speed and
bearing changes. We test with both kinds of trajectories
because it is not safe to assume that a human observer
in an MOT experiment would know whether the
trajectories she faces are predictable or not. If an
observer wanted to make predictions only when faced
with very dependable trajectories, she would first need
to infer that a given display includes those trajectories.
Thus the consequences of extrapolating in displays with
unpredictable motion are relevant to understanding
how and when observers extrapolate in more reliable
settings. Large costs to extrapolating at the wrong time
may make it advantageous to be conservative all the
time, that is, for an observer who does not know in
advance whether it is the right or wrong time to
extrapolate.

The organization of what remains is as follows.
Model details are described in the General methods.
We then present data from human participants who
were tested on a subset of trials that the models were
also tested on. This is to demonstrate that our models
generally perform within the range of human observers.
We then turn to two initial computational experiments.
Computational Experiment 1 compares a Kalman filter
with a model that does not utilize extrapolations at all.
The Kalman filter makes adaptive extrapolations based
on previous experience accumulated over the course of
a trial. Computational Experiment 2 compares a model
that utilizes extrapolated predictions in a relatively
more rigid way with a model that does not extrapolate
at all. After discussing the results of these two
experiments, we report several replications of Experi-
ment 1 using variations of the models, which were
designed to examine slightly different approaches to
making predictions. Finally, in Computational Exper-
iment 3 we test the Kalman filter model and the
nonextrapolating model on the signature interruption
experiment used by Fencsik et al. (2007) and Keane and
Pylyshyn (2006).

General methods

Computational framework for MOT

The computational experiments described below
utilize three models of multiple object tracking. Each of
these models is a formal proposal about how the task of
multiple object tracking is performed. This task, and

the associated components of the model observers, can
be usefully decomposed as follows:

1. Measurement. At each moment in time, the
observer receives noisy measurements of the
positions of all objects in the display (targets and
nontargets). The inclusion of nontarget measure-
ments is critical, as the typical MOT task would
be trivial if the observer knew which portions of
the moment-by-moment stimulus were due to
targets. All of the observations are corrupted by
independent noise; as is standard in Bayesian
approaches to perception, we assume that the
observer is aware of her own noise variance (e.g.,
Girshick, Landy, & Simoncelli, 2011; Kersten,
Mamassian, & Yuille, 2004; Lee & Mumford,
2003; Ma & Huang, 2009; Maloney, 2002; van
den Berg, Shin, Chou, George, & Ma, 2012; Vul,
Frank, Alvarez, & Tenenbaum, 2009; in the case
of motion, specifically, see Sekuler, Watamaniuk,
& Blake, 2002; Warren, Graf, Champion, &
Maloney, 2012).

2. Correspondence. After receiving a set of noisy
position measurements, the observer must assign
measurements to objects that are being tracked.
This is known as the correspondence or data
association problem for tracking (Cox, 1993; Oh,
Russell, & Sastry, 2004). Because there are no
non-spatial features that distinguish the items in
a typical MOT experiment, all of the models
attempt to solve the correspondence problem
with a simple positional heuristic: Measurements
are assigned to objects in a way that minimizes
the total (Euclidean) distance between the
predicted and observed positions. (Some models
and applications include tracking of nontargets,
with labeling of targets as such. Our models
track only targets, however, reflecting common
assumptions in the literature concerning the
selection of targets via attentional mechanisms;
e.g., Drew, McCollough, Horowitz, & Vogel,
2009; Pylyshyn, 2006).

3. Position inference. Once each target has been
assigned a measurement, its current position is
inferred according to Bayes’ theorem. This
inference combines two sources of information,
the current measurement and the predicted
(Bayesian prior) position of the object, each with
its own degree of uncertainty. Because predictions
are derived from previous inferences and obser-
vations, they will always be noisier than new
observations, inclining a rational observer to
weight new observations more highly than prior
predictions.

4. Extrapolation (velocity inference). At this point, it
is worth drawing a distinction between extrapo-
lation and prediction (as we use them in this
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paper). Specifically, we will use extrapolation to
refer to an expectation about an object’s future
position based entirely on recent inferences of its
velocity. In contrast, we use prediction to refer to
any expectation about future position, however it
is derived. The models that extrapolate do so, in
our analysis, on the basis of combining consec-
utive observations of position with a prior
distribution on velocity. In particular, if z(t� 1) is
the position measurement assigned to an object at
time t � 1, and z(t) is the position measurement
assigned to the same object at the immediately
subsequent time t, then the vector z(t) � z(t � 1)
provides a measurement of the velocity (change in
position per unit time) of the object. We assume
that this velocity measurement is corrupted by
noise that is independent of that for spatial
position and due to the properties of velocity
channels (Burr & Thompson, 2011; Stocker &
Simoncelli, 2006). Bayes’ theorem is used to infer
the velocity at time t from this measurement and
the velocity prior.

5. Prediction of position and velocity. The corre-
spondence and inference steps above depend on
prior predictions about position and velocity.
These predictions are in turn based on measure-
ments and inferences made earlier in the course of
tracking. The three initial models evaluated here
differ primarily in the way that predictions are
computed (see further discussion below). Discus-
sions of extrapolation in MOT have implicitly
assumed that an appropriate prediction method
would be to simply add inferred velocity vectors
to previous positions. In addition to exploring
such a model, we examine one that places
predictions closer to previously perceived posi-
tions than would be expected under pure extrap-
olation.

Tracking with the Kalman filter

The Kalman filter is a Bayesian model that tracks
stochastic linear dynamical systems observed through
noisy sensors. It operates on a stream of noisy input
data to produce a statistically optimal moment-by-
moment estimate of the underlying system state (i.e.,
positions and velocities). The Kalman filter is a
recursive estimator, which means that it makes
successive predictions and then corrects these predic-
tions in light of new observations. This amounts to a
form of feedback control: The model predicts the
system state at some time and then obtains feedback in
the form of (noisy) measurements. Accordingly, equa-
tions for the Kalman filter can be classified as either
prediction equations or measurement equations. Pre-

diction equations use probabilistic beliefs about the
current state and recent past to obtain prior estimates
for the immediate future. Measurement equations are
responsible for the feedback—for using new measure-
ments to obtain posterior state estimates that may
differ from the priors. In the description below we
adopt standard notations so that readers can refer to
widely available sources deriving and describing the
Kalman filter more exhaustively (Kalman, 1960;
Murphy, 2012; Welch & Bishop, 2006; Yilmaz, Javed,
& Shah, 2006).

Measurement

Suppose some number of targets, NT, and non-
targets, ND, adding up to a total number of objects, NA.
At a given moment in time t, zm

t denotes the mth
observation of position—including vertical and hori-
zontal coordinates—from an object in the display, m¼
1,. . .,NA. An observation is derived from the object’s
true position, denoted lm

t , the position of object m at
time t,, as follows:

zm
t ¼ lm

t þ rm
t : ð1Þ

Here rm
t is noise, assumed to be zero-mean Gaussian

white noise with measurement noise covariance
Rm

t ¼ r2
zI2. We tested models with three different values

for r2
z , derived from relevant literature and intended to

reflect a reasonable range of human spatial precision in
location perception (Bays & Husain, 2008). (Here and
throughout I2 stands for the identity matrix of size
two.)

Position inference

Given an observation that has been assigned to a
particular target m at time t, the model estimates a
posterior for the target’s current position, denoted bl m

t.
This estimate is obtained by the weighted combination
of a prior position estimate assigned to time t, el m

t , and
the observation:bl m

t ¼ ðI2 � Km
t Þel m

t þ K m
t z k

t : ð2Þ
Note that the index for the observation, z k

t , need
not be the same as that of the object (i.e., the observer
may have associated the wrong measurement with a
target being tracked). Km

t is the weight matrix, also
called the Kalman gain, which determines the relative
weight of the prior and the current observation in
determining the posterior estimate. The value for Km

t
is selected to minimize the error covariance in the
posterior, denoted bPm

t (Jacobs, 1993). Similarly, ePm

t

denotes the error covariance in the prior at time t. Km
t

and bPm

t are thus obtained via the following pair of
equations:
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Km
t ¼ ePm

t ðePm

t þ Rm
t Þ
�1 ð3Þ

bPm

t ¼ ðI2�Km
t ÞePm

t : ð4Þ

Prediction of position and velocity

To understand how the model obtains prior esti-
mates, consider time tþ 1. The expected position of
the object should depend on basic motion kinematics,
projecting forward from the posterior estimated at
time t,bl m

t , and utilizing a posterior estimate of velocity,
also obtained at time t, denoted bvm

t . Additionally, the
model weights the prior to some degree towards its
current posterior to reflect discrepancies between priors
and observations in the past, and with the intention of
reducing such discrepancies over time. We will call this
the adjusted prior. Accordingly, an adjusted prior for
time tþ 1, denoted asel m

tþ1, is obtained via the following
equation:el m

tþ1 ¼ ð1� bm
t Þðbl m

t þ bvm
t Þ þ bm

t
bl m

t : ð5Þ
Here, bm

t is the average of the main diagonal value in
the Kalman gain matrix of target m, K m

t . A high bm
t

value draws the adjusted prior closer to the most recent
posterior so that it relies less on the velocity estimate. In
contrast, a value of one would amount to not adjusting
the prior at all. The value b encodes the relative weight
of extrapolation assigned by the model. As will be clear
in Computational Experiment 2, fixed b models do not
perform as well as the model presented here.

When the model makes a prediction about an
object’s future position, it also projects forward an
expected error covariance in the prior (utilized in
Equations 3 and 4), which is denoted as ePm

tþ1, to be used
at time t þ 1. This estimate is derived from the
difference between the prior and the posterior position
estimates at the previous time point (Bishop, 2006):

ePm

tþ1 ¼ bPm

t þ bl m

t �el m

t

h i bl m

t �el m

t

h iT
: ð6Þ

Because this variance is estimated from quantities
themselves derived from noisy observations, priors and
adjusted priors will always be noisier than new
observations, inclining an observer to value new
observations more when inferring new posteriors. We
discuss this point in the General discussion in the
section Why doesn’t extrapolation help?

Velocity inference

The estimate bvm
t is obtained in a way similar to

the position estimate bl m

t , that is, by Bayesian inference
dependent on a prior expectation about velocity and an
observation of velocity. Observations of velocity are

derived by subtracting the two most recent position
observations assigned to a target, and adding error to
this value to reflect independent noise in human
velocity perception channels1:

zm
t �zm

t�1þovm
t : ð7Þ

Here ovm
t is drawn from a noise distribution for

velocity, assumed to be zero-mean Gaussian white
noise with covariance r2

vI2. The value of r2
v was derived

from relevant literature on the precision of velocity
perception (rv ¼ 0.288s�1; Gegenfurtner, Xing, Scott, &
Hawken, 2003). With this observation value, the
posterior for velocity is calculated as follows:bvm

t ¼ ðI2 �Gm
t Þevm

t þGm
t ðzm

t � zm
t�1 þ ovm

t Þ: ð8Þ
Here Gm

t is the Kalman gain for velocity, again
derived by Bayes’ theorem to minimize the error
covariance in bvm

t .
In Equation 7 the prior on velocity for target, m, evm

t ,

is the difference between the posterior position
estimates at moments t and t-1, bl m

t �bl m

t�1 with the
addition of perceptual noise:

evm
t ¼bl m

t �bl m

t�1þpvm
t : ð9Þ

Again, pvmt is drawn from a distribution assumed to
be zero-mean Gaussian white noise with covariance r2

v
I2 intended to reflect error within velocity channels.

Correspondence

In typical computer vision applications, the corre-
spondence problem—the problem of linking measure-
ments with objects being tracked—is not solved on a
purely spatiotemporal basis. This is because only one
object is tracked, or knowing the identity of an object is
not important for the task, or because differences
among objects in surface appearance (such as color or
shape) can be utilized. In the MOT paradigm, however,
the identities of multiple objects are important (at least
at the level of the target vs. nontarget distinction), and
perceptual differences other than position are not
available to inform correspondence inferences.

Our models address correspondences in the follow-
ing way. We denote pðT m

t ¼ kÞ as the probability that
the kth observation at time t corresponds to target m.
The model attempts to solve the correspondence by
assuming that a new observation for target m will be
drawn from a Gaussian distribution centered on the
adjusted prior expectation about the position of m, el m

t .
Thus:

pðTm
t ¼ kÞ ¼ Nðzn

t ;
el m

t Þ;1 � k � NA; 1 � m � NT:

ð10Þ
Assuming that the new observations are generated

independently, and incorporating the principles of
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mutual exclusivity and exhaustive association for
targets, the optimal correspondence can be obtained by
maximizing the probability in Equation 11.

kmj1 � m � NTf g ¼ argmax
1�km�NA

Y
1�m�NT

pðTm
t ¼ kmÞ

" #
:

ð11Þ
This is equivalent to minimizing the sum or product

of the Mahalanobis distances (equivalently, the Eu-
clidean distances) of new observations and the expected
positions of the targets they are assigned to. There are
other heuristic approaches to the correspondence
problem, based on nearest neighbor matching or
specific validation regions (BarShalom et al., 2009;
Murphy, 2012), that could be explored in future
models.

To compare with the Kalman filter described above,
we implemented two additional models, one that we
will call the spatial working memory model, and one
that we will call the 50/50 prediction model. The
reasons for implementing each of these models will
become clear during the discussion of each individual
experiment.

Technically, however, each model variant can be
derived by setting the Kalman gain of Equation 2 and
the associated weighting term b in Equation 5 to fixed
values. For the spatial working memory model, we set
the Kalman gain matrix to 0 (hence b is fixed to 0),
meaning that correspondence decisions at time tþ 1 are
based entirely on the posterior position estimates
obtained at time t. Similarly, in the 50/50 prediction
model, the Kalman gain was fixed at 0.5 (hence b is
fixed to 0.5); in this model, correspondence decisions
are based on adjusted priors that are always an equal
mixture of pure extrapolations (unadjusted priors) and
previous posterior positions. Additionally, for this
model, the Kalman gain for velocity was permanently
set to 0.5, such that all posterior estimates of velocity
were an average of the most recent prior and an
observational value. (Note that we use bold type to
indicate matrices, for example 0.5 is the 2 · 2 matrix
with 0.5 on the diagonal).

Model parameters

Several parameters and variables play critical roles in
the overall performance of these models. First, the
variance of spatial measurements received by the model
should clearly constrain performance and influence
extrapolation. In previous MOT and spatial working
memory research it has been proposed that human
precision (inverse variance) declines as more items are
stored or tracked (Bays & Husain, 2008; Vul, Frank,
Alvarez, & Tenenbaum, 2009). This issue is outside the

scope of the current project, because we sought to
identify general features of extrapolation that apply
across the range of human precision. Accordingly, we
compared models with three different standard devia-
tions intended to capture the range of reported
psychophysical performance with small and large
tracking/memory loads: 0.28, 0.4358, and 0.68 (Bays &
Husain, 2008). Similarly, observers should possess
uncertainty about the time differences between mea-
surements of objects, and they obviously do not engage
the display frame-by-frame at the rate that the monitor
refreshes. To capture human temporal limits, we tested
models that sampled at three different rates thought to
reflect the low to high end of human ability (5 Hz, 12
Hz, and 20 Hz, Howard, Masom, & Holcombe, 2011;
Landau & Fries, 2012; Latour, 1967; Lichtenstein,
1961; VanRullen & Koch, 2003; White & Harter, 1969).
We also used a value of 0.288�1 (Gegenfurtner, Xing,
Scott, & Hawken, 2003) as the standard deviation of
velocity observations; this was previously shown to be
an average human discrimination threshold for an
object moving at a speed of 48s�1, the average speed at
which objects moved in these trajectories (and fre-
quently in other MOT studies).

Trajectories

The models were tested with a variety of trajectory
types typical of the wider literature on human MOT
abilities. Each trial began with two to eight target disks
(0.438 radius) and an equal number of nontargets. No
object could begin a trial closer than 1.258 to any other
object (measured center to center). Each object began
moving 48s�1 in a randomly determined direction. On
each frame, each object had an independent probability
of changing its speed by 60.138s�1. An object’s speed
could never move below 18s�1 or above 78s�1, and as an
object’s speed approached these limits, changes were
more likely to adjust toward the starting speed of 48s�1.
The probability of a speed change on each frame was
fixed in a trial at either 0, 0.25, 0.5, 0.75, or 1, with
equal numbers of trials in each condition. Similarly,
each object had an independent probability of changing
its bearing on each frame of a trial. Bearing changes
could take on any value within 3598 relative to the
original bearing. The probability of a bearing change
on any given frame was fixed within a trial at 0, 0.02,
0.04, or 0.06, with equal numbers of trials in each
condition. When objects collided with the boundary of
the display or with the center point of the display they
deflected according to Newtonian principles. When
objects came within 1.258 of one another, they each
changed their bearing randomly to avoid colliding.
Each trial lasted 10 s. The display as a whole subtended
278 · 208.
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A total of seven tracking loads (2–8), five speed
change conditions, and four direction change condi-
tions resulted in 140 conditions. We generated 10 trials
for each of these conditions (1,400 total). When a
model was tested, it performed each trial 10 indepen-
dent times, performing differently each time because of
randomly generated measurement noise. (This method
of testing is parallel to the one used by Girshick,
Landy, & Simoncelli, 2011, though we use fewer
simulations for reasons elaborated below.)

Analysis

In Experiments 1 and 2 we analyze results by treating
each trial as a subject. By simulating each trial 10 times,
we obtain the average performance of each subject.
Because we generated 10 different trials for each
specific condition, we end up with 10 simulated subjects
for each condition (similar to the number of measure-
ments we typically obtain with human participants).
Because all of the models are tested on the same set of
trajectories, model type is treated as a within-subject
factor, and target load is treated as a between-subject
factor. We evaluate main effects of model type and
target load with split-plot factorial analysis of variance
(ANOVA) for each combination of temporal resolution
and spatial standard deviation separately.

Behavioral results: Comparing
model and human performance

Because the purpose of the computational experi-
ments was to compare models with the same psycho-
physical limits, but with different approaches to
extrapolation, we first sought to validate empirically
that the range of psychophysical limits imposed on the
models produces performance in the range of human
observers. To do this, we tested human observers in a
subset of representative trajectories intended for use in
the computational experiments. (This subset included
trials with perfect inertia). We then compared simu-
lated model performance (obtained as described in the
General methods) with that of the human observers.

Methods

Participants

Ten Johns Hopkins University undergraduates
participated for course credit. All had normal or
corrected-to-normal visual acuity. The protocol of this
experiment was approved by the Homewood Institu-
tional Review Board of Johns Hopkins University.

Apparatus

Stimuli were presented on a Macintosh iMAC
computer with a refresh rate of 60 Hz. The viewing
distance was approximately 60 cm so that the display
subtended 39.438 · 24.768 of visual angle.

Stimuli and procedure

Stimuli were generated and presented with MAT-
LAB and the psychophysics toolbox (Brainard, 1997;
Pelli, 1997). The trajectories were a subset of those used
in the computational experiments. They included only
target loads of three to eight. In order to cover
trajectories with a range of inertia, while conducting an
experiment of reasonable length, we included trials with
the following four combinations of parameters: (a)
trials with perfect inertia (probability of both speed and
bearing change at zero); (b) 0.75 probability of speed
change, zero probability of bearing change; (c) zero
probability of a speed change and 0.04 probability of a
bearing change; (d) 0.75 probability of a speed change
and a 0.04 probability of a bearing change. Trials were
randomly selected for each target load and setting
combination producing an experiment that comprised
120 trials for each participant.

All stimuli were presented in a black square
subtending 25.388 · 19.988. Each trial started with six
to 16 blue discs (diameter 0.948) along with a white
fixation cross (0.478 · 0.478) in the center (which
remained present throughout a trial). After 0.5 s, a
subset of between three and eight discs turned yellow
for 1.5 s, indicating that these were the targets. Finally,
all discs turned blue again. After another 0.5 s, all of
the discs moved, following preselected trajectories (see
above) for 10 s. At the end of the motion, participants
were prompted to click on the discs that they thought
were the targets. When a participant clicked on a disc,
it turned yellow. After the participant selected as many
discs as there were targets, the true targets flashed in
red to provide feedback.

Results

We compared human and model performance in a
variety of ways. Figure 2 first displays general
performance as a function of tracking load for human
participants and the Kalman filter model. Human
performance clearly declines as a function of tracking
load. Similarly, Kalman filter performance generally
declines as a function of tracking load. More to the
point however, we plot performance for the model with
a 0.28 spatial resolution, as well as the model with a
0.4358 spatial resolution (in each case with a temporal
sampling rate of 12 Hz). Our intention was that this
range of resolution would allow us to capture the range
of likely human performance. Some have proposed that
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human performance declines as a function of tracking
load because spatial precision declines (Bays & Husain,
2008; Vul, Frank, Alvarez, & Tenenbaum, 2009). We
sought to remain neutral on the issue, instead hoping to
identify features of extrapolation that might be true
within the range of human ability, whatever the exact
causes of changes in ability might be (both between and
within individuals).

As will become clear in the forthcoming computa-
tional experiments, all the models we tested performed
relatively similarly to one another. Thus to the extent
that the Kalman filter’s performance traced the
boundaries of human performance as a function of

memory load, all the models performed in this range.
Moreover, our computational experiments included
models with 0.68 spatial precision and also with 5 Hz
and 20 Hz sampling rates (in addition to the 0.2/0.4358
12 Hz models shown). This ensured that any general-
izations about extrapolation obtained from the com-
putational experiments would apply across a relatively
wide range of baseline abilities, including those most
typically estimated for human observers.

To further investigate the relationship between the
models and human performance, we considered the
extent to which model performance correlated with that
of human participants on a trial-by-trial basis. Specif-
ically, trials generated randomly should vary randomly
in terms of their difficulty, because some trials should,
by chance, include more nearby interactions between
targets and nontargets of the sort that cause tracking
errors (Bae & Flombaum, 2012). Perhaps large enough
differences between trials leads to systematic variability
in performance that can be captured by the models.

In total, the 10 human observers completed 120 trials
that we could compare with model performance. Each
of the models completed each of these trials in 10
simulations. In this way we could correlate human
performance averaged across 10 observers for each trial
with model performance in each trial averaged across
10 simulations. Figure 3 shows the correlation between
human observers and the 0.4358 model. The correla-
tions were significant for all the models tested (largest p
¼ 0.002).

Some of this correlation likely arose from systematic
effects of target load on performance. Accordingly, we
recomputed correlations with target load as a control
variable. Correlation coefficients and corresponding p
values are listed in Table 1. All of the models showed
significant correlations, though not always strong ones.
This should be expected, because model errors (and, we

Figure 2. Comparison between performance of human observers (N¼ 10) and the Kalman filter model. Results from perfect inertia

trajectories (a) and all trajectories (b) are plotted separately.

Figure 3. Trial-by-trial correlation between tracking performance

of the Kalman filter model (shown with a spatial SD of 0.435)

and human observers (N ¼ 10).
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presume, those made by human observers) occur
probabilistically; an error is not necessarily made just
because a target and nontarget pass closely by one
another. To provide a sense of scale for the model
correlations with human performance, we split the
human data in half (based upon the order by which the
participants had arrived in the lab), and we correlated
trial-by-trial performance for the first five observers
with the remaining five. The correlation was significant
with a correlation coefficient of 0.563. Though larger
than the correlations with model performance, this
demarcates a kind of ceiling on the ability to predict
trial-by-trial variability, at least with this many
participants and trials.

Overall, the fact that the models correlated signifi-
cantly with observers on a trial-by-trial basis after
controlling for target load suggests that the algorithms
and assumptions built into the models characterize at
least some important aspects of the mechanisms
underlying human abilities, and afford a reasonable
tool for investigating the effectiveness of extrapolation
during multiple object tracking. Moreover, that all
three model incarnations (Kalman filter, spatial work-
ing memory, and 50/50 prediction) produced similar
and significant correlations evidences their viability as
candidate models for capturing algorithmic aspects of
human tracking abilities. In general, we believe that
predictions of trial-by-trial variance in performance, as
opposed exclusive reliance on load-dependent variance,
should become a standard way of comparing models of
tracking in future work.

Computational Experiment 1: The
advantage of prediction?

In many ways, the main implication of the following
experiments is that extrapolations from noisy mea-
surements may not improve tracking performance in
MOT. Expecting extrapolations to be inaccurate has
not played a role in previous discussions of human
multiple object tracking. Many studies have sought
evidence of extrapolation in the form of exact and
accurate knowledge of where an object should be, for

example, in the interruption experiments described
earlier (Fencsik et al., 2007; Keane & Pylyshyn, 2006).

One of the models in the current experiment is a
Kalman filter that weights extrapolations and current
observations relative to one another. We contrast the
performance of this model with a spatial working
memory model that does not extrapolate, instead
tracking entirely on the basis of where objects were last
observed. As different as these models seem, in
principle, note that with the Kalman gain fixed to 0, the
Kalman filter model reduces to the spatial working
memory model; though the spatial working memory
model enjoys computational savings by dispensing with
the calculations associated with extrapolation. With a
Kalman gain fixed at 1, the Kalman filter model would
fully expect objects to appear at newly calculated
positions given currently available information about
velocity. Weights between 0 and 1 reflect the models’
confidence in its extrapolations. Accordingly, we can
ask two questions in the current experiment. Is there a
marginal advantage to using extrapolated predictions
in a dynamically weighted way? And if predictions are
made at all, how strongly should extrapolations be
weighted, given human-like perceptual uncertainty?

Results and discussion

Figure 4a displays the proportion of targets tracked
correctly by the Kalman filter model (drawn in red),
and the spatial working memory model (drawn in
blue), in only the trials with high inertia trajectories—
the trajectories in which objects did not change their
speed or bearing randomly. Figure 4b compares the
Kalman filter model with the spatial working memory
model, averaged across all trajectories tested (amount-
ing to 1,400 unique trials).

There was a main effect of target load on tracking
performance for all models with high inertia trajecto-
ries and in all other trajectories as well. (For high
inertia trajectories lowest F [6, 63] ¼ 3.81; for all
trajectories combined, lowest F [6, 1393]¼ 37.8; all p ,
0.05). For some parameter settings, there was also a
significant main effect of model type. Statistics for these
comparisons are shown in Tables 2a and 2b. Whenever

Spatial SD 0.28 Spatial SD 0.4358

Within

human

Spatial

working memory

Kalman

filter

50/50

prediction

Spatial

working memory

Kalman

filter

50/50

prediction

r 0.206 0.235 0.327 0.340 0.404 0.266 0.563

p 0.025 0.010 ,0.001 ,0.001 ,0.001 0.003 ,0.001

Table 1. Partial correlations between human performance and the performance of the three kinds of models investigated, on a trial-
by-trial basis and with target load as the control variable. All models shown include a sampling rate of 12 Hz. Results were similar for
all models investigated.
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there was a statistically significant effect, the Kalman
filter outperformed the spatial working memory model,
but as is clear from the figures and the tables, any
effects were small when present (largest mean difference
between models¼ 2.4%).

In summary, the Kalman filter model enjoyed a small
but significant advantage with some model parameters.
But practically, performance was mostly comparable
across model variants. Even for trials in which extrap-
olation should have conferred the greatest advantage
(Howe & Holcombe, 2012), the marginal advantage of
extrapolating—compared to just remembering where
things were—was extremely small (e.g., compared to
differences in performance as a function of target load).

The weights that the models placed on extrapola-
tions (to produce adjusted priors) make the reason for
these results apparent. Across all models, target loads,
and trajectory types—even those with perfect inertia—
the highest adjustment weight assigned (b) was 0.13,
and usually it was closer to 0.095. (Note that the
maximum possible weight is 1.0; the weights assigned
by the models are much closer to the minimum possible
value, which is zero). For illustrative purposes, Figure 5
graphs the weights assigned by the 12 Hz / 0.28 version
of the model. We selected the model with the smallest
SD tested because its predictions should have been the
most accurate, and as a result, the most highly
weighted.

Figure 4. Results of Experiment 1. Models tested differed in terms of their sampling rates (separated by panels left to right) and

spatial standard deviation (dotted lines¼ 0.4358 models, solid lines¼ 0.28 models). There were no large differences in performance

between the Kalman filter model (red) and the spatial working memory model (blue). This was true both for trajectories with perfect

inertia (a), and averaged across the wide range of trajectories tested (b). (For simplicity models with 0.68 precision are not shown,

though results were similar).

Spatial SD ¼ 0.28 Spatial SD ¼ 0.4358

Sample rate ¼ 5 HZ p , 0.001

D ¼ 0.60%

p ¼ 0.61

D ¼ 0.30%

Sample rate ¼ 12 HZ p , 0.001

D ¼ 0.90%

p ¼ 0.02

D ¼ 0.50%

Sample rate ¼ 20 HZ p , 0.001

D ¼ 0.11%

p ¼ 0.004

D ¼ 0.60%

Table 2b. p values for main effects of model type across all
trajectory types, F(1, 1393), along with mean differences in
performance (D ¼ Kalman filter model – spatial working
memory model).

Spatial SD ¼ 0.28 Spatial SD ¼ 0.4358

Sample rate ¼ 5 HZ p ¼ 0.03

D ¼ 1.4%

p ¼ 0.011

D ¼ 2.4%

Sample rate ¼ 12 HZ p ¼ 0.31

D ¼ 0.50%

p ¼ 0.71

D ¼ �0.30%
Sample rate ¼ 20 HZ p , 0.001

D ¼ 1.8%

p ¼ 0.76

D ¼ 0.30%

Table 2a. p values for main effects of model type with high
inertia trajectories, F(1, 63), along with mean differences in
performance (D ¼ Kalman filter model – spatial working
memory model).
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The results were similar for all variations tested. The
figure divides these results across four types of
trajectories: those in which speed and bearing remained
constant for an object throughout a trial, those in
which only speed could change, those in which bearing
could change, and those in which both speed and
bearing could change. Differences are very small but
instructive. Extrapolations were weighted less when
object bearings were subject to random changes. Recall
that the Kalman filter adjusted its own weights over
time (the weights shown are averages across trials and
time points). Thus the model responded differently to
trials with bearing changes in comparison to those
without; but it nonetheless assigned a low weight to
extrapolation—less than 10%—even for trials without
frequent bearing changes.

Computational Experiment 1b

To follow up on these results, we again compared
performance between the Kalman filter model and the
spatial working memory model in one new group of
trials. In particular, we were concerned that even our
high inertial trials were not high inertia enough, owing
to trajectory changes whenever objects approached one
another (to prevent overlaps and occlusion). We thus
generated a new set of 70 trials in which each object had
a 0% chance of changing speed or bearing, except when
colliding with one of the boundaries of the display.
When objects approached one another, they main-

tained their trajectories as though nothing were in the
way, essentially passing through one another.

Furthermore, for our Kalman filter model, which
made linear predictions, it is possible that collisions
with the boundary could also create confusion by
producing relatively sudden changes. Specifically,
collisions with the boundary in our trajectories
followed Newtonian principles, with the angle of
reflection equaling the angle of incidence. But at the
boundaries, the Kalman filter model continued to make
linear predictions, which were fundamentally useless
and practically put the model in the same position as
the spatial working memory model. We therefore ran
the simulations of the newly generated trajectories with
two changes to the Kalman filter model. First,
whenever the model made a prediction that placed an
object beyond the boundary of the display, those
predictions were automatically adjusted to conform to
the actual nature of the boundary collision mechanics.
No additional noise was injected into this process,
allowing the model to make predictions that were as
accurate as possible given only the noise that went into
the linear predictions it would have made otherwise.

This adjustment amounts to what is perhaps an
unrealistic advantage compared to human observers.
That is, the model possessed perfect knowledge of the
rules that governed collisions in these displays.

The second adjustment made to this model involved
the uncertainty associated with the perception of
velocity. In the Kalman filter model, as we imple-
mented it initially, predictions were corrupted by noise
in both observations of object position and observa-
tions of velocity (Equation 7) This was done to capture
the possibility that there is independent noise in neural
channels associated with motion perception, which
could be involved in inferences about velocity (Burr &
Thompson, 2011, Stocker & Simoncelli, 2006). Out of
concern that this made the model excessively uncertain
about extrapolations in particular, the model imple-
mented in Experiment 1b did not include velocity noise.
Predictions concerning velocity where made on the
basis of Equation 7, but omitting the term ovmt .

With these two adjustments, the model still did not
outperform the spatial working memory model, as
shown in Figure 6.

To summarize Experiment 1b: We tested a model
with considerably less prediction uncertainty than the
model previously implemented, both by removing
independent noise in the perception of velocity and
endowing the model with advance knowledge about
how collisions with display boundaries should evolve.
Still, the pattern of results was similar to those in
Experiment 1. The Kalman filter model rarely outper-
formed its spatial working memory counterpart, and
when it did, effects were relatively minor and limited to
smaller tracking loads (see Figure 6). Again the

Figure 5. Results of Experiment 1. Weights assigned to

extrapolation by the Kalman filter model as a function of

trajectory type (and target load). For illustrative purposes, we

only show weights assigned by the 12 Hz version of the model

with a spatial standard deviation of 0.28 (but results were

similar for all model variations). Though differences were small,

higher weights were assigned to extrapolations in trajectories

without bearing changes compared to those with bearing

changes. In general, weights assigned to extrapolations were

between 9% and 13%.
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Kalman filter ultimately placed relatively low weights
on extrapolation. The 20 Hz / 0.28 model—in this case,
with no extra noise in velocity channels—arrived at the
highest value among all the models tested so far (15%).

Summary

Two insights follow from this first computational
experiment. The first is that extrapolation only appears
beneficial to a small extent and within a limited scope—
with very dependable trajectories and when tracking
few objects, perhaps only when tracking two. This is
consistent with the clearest evidence of extrapolation
found in behavioral work on MOT (Fencsik et al.,
2007; Howe & Holcombe, 2012).

By testing models known to employ different
strategies, and by comparing them across a wide array
of trials that included incrementally more trajectory
changes, we can add that in many contexts, extrapo-
lation may provide very little advantage. This is
important because in order to employ a strategy only
when trajectories are dependable, an observer would
need some way of determining that she finds herself in
the relevant context. How would she discover this?
How good can we expect observers to be at discrim-
inating between dependable and only slightly less
dependable trajectories?

Surely an observer would use the same noisy
inputs that form the basis of extrapolation to
determine the dependability of object trajectories.
Indeed, one can interpret the weights placed on
extrapolation as an estimate of how dependable an
observer thinks the trajectories are. An observer
might reasonably think that the context is reliable to
the extent that she can make reliable predictions.
From this perspective the low weights placed on
extrapolation by the Kalman filter on all occasions

evidences the difficulty of discriminating between
trajectory types. The just noticeable difference (JND)
for trajectory inertia, as it were, is apparently very
large. This is also consistent with previous behavioral
work wherein observers controlled object inertia from
trial to trial in an attempt to identify trials that felt
easiest. Responses were extremely noisy, and perfor-
mance was largely invariant with respect to inertia
(Vul et al., 2009).

The second insight is that even an observer who is
trying to extrapolate can behave a lot like an
observer who is not trying. This is what the Kalman
filter model did by weighting observations highly
relative to extrapolations. It is difficult to know
exactly what human observers do, as evidenced by
the mixed results in the behavioral literature. This is
perhaps because realistic psychophysical limits con-
strain the inputs to extrapolation, so that a rational
observer should severely bias any predictions she
makes towards her most recent observations. If
human observers employ an extrapolation strategy
that accounts for their own psychophysical uncer-
tainty, they could be trying to make predictions, but
still resemble observers who do not make predictions
at all. This is especially so in the context of MOT,
where a difference between predicting and not would
only appear if it precludes target and nontargets
confusions frequently enough to produce a noticeable
performance difference.

Computational Experiment 2:
Extrapolating rigidly versus not at
all

Perhaps continuous adjustment of one’s extrapola-
tion strategy is counterproductive in the context of

Figure 6. Results of Experiment 1b. Comparison between the Kalman filter model and the spatial working memory model. In these

simulations, the Kalman filter model made correct predictions about object deflections during collisions with the boundary, and it also

did not include any independent noise in velocity channels, only the noise resulting from observations of spatial position.
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MOT, excessive micromanagement? Perhaps one would
be better off behaving more rigidly—adopting a
strategy and sticking to it? From the perspective of
typical research on Kalman filters and related algo-
rithms, this seems unlikely. But as we noted before,
many such applications do not involve a correspon-
dence problem that relies exclusively on spatiotemporal
data. Accordingly, we investigated the performance of
a third tracking model, one that utilizes a rigid strategy
to rely on extrapolations. This rigid model is also closer
in spirit to typical discussions of extrapolation in the
MOT literature, which have not explicitly considered
the possibility of an adjustably weighted strategy (e.g.,
Fencsik et al., 2007; Keane & Pylyshyn, 2006; Vul et al.,
2009).

In particular, we test a model that permanently
weights observations and predictions equally, the 50/50
prediction model. This model is a special case of the
Kalman filter model, with the Kalman gain perma-
nently set to 0.5. (We did not test a model with gain set
to 1 because pilot experiments suggested that such a
model performs very poorly). Moreover, a 50/50 model
is probably a good choice for an inflexible strategy,
assuming one does not know the best weighting in
advance. With no a priori reason to weight one source
of evidence more than another, one should weight them
equally.

Overall, the question of interest was whether the 50/
50 prediction model would outperform the spatial
working memory model from Experiment 1, and by
how much. Small differences—or better performance
for the spatial working memory model—would suggest
that rigid extrapolation is not a good strategy in MOT,
and that the Kalman filter of Experiment 1 does not
suffer for adjusting its weights too much or too
frequently.

Methods

This experiment was identical to Experiment 1,
testing the 50/50 prediction model on all the same
trajectories as the two models described previously.

Results and discussion

Figure 7a displays the proportion of targets
tracked correctly by each tested model on only the
trajectories with very high inertia —the trajectories in
which objects did not change their speed or bearing
randomly. Green lines identify the 50/50 prediction
model and for comparison, blue lines identify the
spatial working memory model. The spatial working

Figure 7. Results of Experiment 2. Models tested differed in terms of their sampling rates (separated by panels left to right), spatial

standard deviations (dotted lines¼0.4358 models, solid lines¼0.28 models), and whether they extrapolated (green) or not (blue). The

spatial working memory model that did not extrapolate outperformed comparable 50/50 prediction models. This was true both for

trajectories with perfect inertia (a), and averaged across the wide range of trajectories tested (b). (For simplicity models with 0.68

precision are not shown, though results were similar).
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memory model outperformed at most tracking loads.
Figure 7b compares the same models, averaged
across all trajectory variations employed (amounting
to 1,400 unique trials). Here the pattern is very clear:
The spatial working memory models always outper-
formed their 50/50 counterparts by between 1% to
5% depending on the tracking load and spatial
precision.

Statistically, there was a main effect of target load on
tracking performance for all models with high inertia
trajectories and in all other trajectories as well. (For
high inertia trajectories lowest F [6, 63]¼ 4.5; for all
trajectories combined, lowest F [6, 1393]¼ 66.3; all p ,
0.05). For some parameter settings, there was also a
significant main effect of model type. Statistics for these
comparisons are shown in Tables 3a and 3b. Whenever
there was a statistically significant effect, the spatial
working memory model outperformed the 50/50
prediction model.

These results belie the intuition that extrapolation is
always beneficial. Even with relatively predictable
trajectories, using extrapolations almost never led to
improved performance. Instead, implementing a simple
proximity heuristic (Franconeri et al., 2012) seemed
equal to the task of accomplishing MOT, at least
compared to the rigid prediction model tested.

In retrospect, it seems clear why. Consider how the
50/50 model made predictions: it compared inferred
object positions at one moment in time with positions
at a previous moment in time to estimate speeds and
bearings. But these estimates were subject to noise in
observations of position, and as a result, they were
noisy as well. This is why the Kalman filter model in
Experiment 1 consistently reduced its reliance on
extrapolations. We will come back to this point in the
General discussion.

Replications of Experiment 1

The results of Experiment 1 were surprising,
though perhaps not in light of the mixed observations

in the experimental literature. In particular, it
appeared that making predictions about object
trajectories, even when those trajectories were linear
and highly reliable, did not improve tracking
performance very much, defined here as the ability to
tell apart targets and nontargets. Experiment 3 will
investigate whether these results can potentially
explain human behavior in a canonical extrapolation
experiment.

But first, we were concerned that the results of
Experiment 1 were in some way artifacts of the kinds
of choices one needs to make when building an
algorithm. Specifically, Kalman filters are not typi-
cally used in situations with more than one state to
estimate at a time, nor in situations where there is a
data association problem—what we have called a
correspondence problem—with respect to linking
noisy data and the states one wants to estimate. As a
result, we were forced to make choices in our
implementation, concerning which variable to use as
the basis for addressing the correspondence problem.
We decided on what we had termed an adjusted prior,
a prediction that was weighted by b, combining the
current posterior, and the extrapolated prior. We did
this for a number of reasons, among which was the
finding that fixed b models, like the one used in
Experiment 2, did not perform well. But the concern
is that the actual velocity estimate now used by the
model is a quantity derived outside of the standard
components of the Kalman filter, an adjustment on
what would otherwise be a straightforward subtrac-
tion of the most recent posterior estimates (Equa-
tions 7 and 8). Perhaps, as a result, our mongrel
Kalman filter is no longer optimized? More generally,
perhaps slightly different choices about how to
address state inference and data assignment in the
same algorithm would simply work more effectively?

To investigate these concerns, we implemented two
additional models, both of which extrapolated on the
basis of position and velocity covariance exactly as
typically done in a Kalman filter. The relevant
variables to consider in these models are the quantity
used to make correspondence assignments, and the

Spatial SD ¼ 0.28 Spatial SD ¼ 0.4358

Sample rate ¼ 5 HZ p ¼ 0.26

D ¼ 1.2%

p ¼ 0.74

D ¼ 0.30%

Sample rate ¼ 12 HZ p , 0.001

D ¼ 2.4%

p ¼ 0.007

D ¼ 3.1%

Sample rate ¼ 20 HZ p , 0.001

D ¼ 2.4%

p , 0.001

D ¼ 4.2%

Table 3a. p values for main effects of model type in high inertia
trajectories, F(1, 63) along with mean differences in perfor-
mance (D¼ spatial working memory model – 50/50 prediction
model).

Spatial SD ¼ 0.28 Spatial SD ¼ 0.4358

Sample rate ¼ 5 HZ p , 0.001

D ¼ 4.6%

p , 0.001

D ¼ 2.9%

Sample rate ¼ 12 HZ p , 0.001

D ¼ 3.1%

p , 0.001

D ¼ 2.7%

Sample rate ¼ 20 HZ p , 0.001

D ¼ 2.8%

p , 0.001

D ¼ 2.6%

Table 3b. p values for main effects of model type in all
trajectories, F(1, 1393) along with mean differences in
performance (D ¼ spatial working memory model – 50/50
prediction model).
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quantity combined with an assigned observation to
make inferences about an object’s current position—
to infer a posterior. The model from Experiment 1
used the adjusted prior for both. So here, we will call
it the AP-AP model, where the first AP refers to
adjusted prior for correspondence and the second for
posterior inference. The two new models we call AP-
P and P-P, referring, respectively, to adjusted prior
for correspondence, prior for motion inference, and
prior for both. Prior refers to the extrapolated
position of the object, without adjustment, on the
basis of a current, dynamic process. Thus the two
new models combine assigned observations and
unadjusted priors to infer new posteriors. Both of the
models are faithful to the standard Kalman filter
optimization. The difference between the two is only
in the quantity used to infer correspondences with
observations, a process not usually built into the
Kalman filter, and for which we are unaware of
relevant optimization theorems.2

Results and discussion

We replicated Experiment 1 with each of the new
models. The results are shown in Figures 8, 9, 10, and
11, for comparison, with the performance of the SWM
and the AP-AP models from Experiment 1b. Statistical
analyses revealed that the P-P model significantly
underperformed all others (p , 0.001 for all compar-
isons). In only one case (20 Hz / 0.28), the AP-P model
significantly outperformed the SWM and AP-AP
models, but by no more than 0.3%. These results
suggest that our main discovery—relatively similar
performance for a predictive filter and a non-predictive
one—is not the consequence of estimating position and
velocity separately, thus extracting the inference of
posteriors from the standard measurement-prediction
loop. This does not challenge previous work on
Kalman filter optimization however, because the filter

Figure 8. Performance comparison among models in trajectories with perfect inertia. All models presented possess the basic skeleton

from the main Kalman filter model in Experiment 1b. SWM refers to the spatial working memory model. AP-AP refers to the model in

Experiment 1b. The first position in each model name refers to the variable used to address correspondences and the second refers to

the variable that is combined with assigned observations to infer new posterior estimates. AP refers to adjusted prior, and P refers to

unadjusted prior. Figure 9 summarizes these results in terms of performance collapsed across target load.
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is not designed for situations with a correspondence or

data assignment problem in the first place.

Given the results of Experiments 1 and 2, and this

replication, the question arises, ‘‘why does extrapolat-

ing not seem to confer an advantage in MOT?’’ We

return to this issue in the General discussion after first

considering the models in a slightly modified MOT task

previously used to investigate the possibility that

human participants extrapolate.

Computational Experiment 3:
Identifying targets following a
global interruption

In the literature on human MOT abilities, the
intuition that observers should and do extrapolate was
initially tested using a global interruption paradigm
(Fencsik et al., 2007; Keane & Pylyshyn, 2006). In the

Figure 9. Comparison among models, collapsed across tracking loads (perfect inertia trajectories only). Dotted portions of each graph

designate performance of 0.4358 models, and solid portions that of 0.28 models.

Figure 10. Performance comparison among models in all trajectories.
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middle of a trial, the display became blank for a short
duration, and following the interruption, observers
were required to continue tracking, eventually identi-
fying the targets. The results of these studies have been
surprising. Participants perform better when objects
reappear at their disappearance locations compared to
when they reappear in their trajectory-determined
locations. This has been interpreted to suggest that
participants mostly do not extrapolate during MOT
(Fencsik et al., 2007; Keane & Pylyshyn, 2006).

The results of Experiments 1 and 2 point to a
potential explanation. These interruption studies have
sought evidence of extrapolation by placing objects
exactly where they should be given their trajectories
prior to an interruption. Recognizing that a human
observer starts with noisy inputs and that she would
not start with prior knowledge of the kinds of
trajectories employed, it becomes clear that expecta-
tions about where objects should appear next could
deviate considerably from where they actually appear.
Moreover, if they extrapolate by evaluating and then
weighting extrapolations, observers may ultimately
employ a strategy that looks quite a bit more like not
extrapolating, and which produces tracking perfor-
mance that is essentially indistinguishable—that is, if
they behave something like the models we implanted
that utilize an adjusted prior for correspondence
assignments. Of course an observer who does not
extrapolate would not perform better in a global
interruption experiment when objects reappear at new,
extrapolated positions compared to when they reappear
where last seen. But perhaps the same can be said of an
observer who does extrapolate, in particular an
observer who behaves like our adjusted prior models,
and learns to extrapolate conservatively?

In the current computational experiment, we used
the models from the previous two experiments to
replicate what was reported as Experiment 1 by Fencsik
et al. (2007) and Keane and Pylyshyn (2006). The
models tracked targets in trials with a global interrup-
tion. In one condition, the objects reappeared where

they disappeared. In the other condition, they reap-
peared at their trajectory-determined positions. Model
performance was compared across the two experimen-
tal conditions.

Recall that Experiment 1 included trials in which
objects always ended up where they were going —trials
with reliable trajectories. Yet the model that embodied
such an expectation did not perform better than the
model without it. In this experiment, we can again
compare models with different kinds of expectations.
But we can also compare the models to themselves in
different trial types. In the case of the Kalman filter this
allows us to ask whether an observer who does expect
objects to move where they are headed actually
performs better when the objects conform to this
expectation compared to when the objects do not.

Methods

We tested the apatial working memory model and
the Kalman filter model from Experiment 1. The
trajectories and conditions employed were nearly
identical to those used by Fencsik et al. (2007) in their
experiment 1.

Specifically, we used the same trajectories as in our
Experiment 1 with the following modifications to
match those in Fencsik et al. (2007). First, we only
included trajectories with perfect inertia—trajectories
in which objects did not change their speed or bearing
randomly. Second, we used a total tracking duration of
5 s for each trial. At a random point in each trial, all of
the stimuli disappeared for 307 ms (this was at least 2 s
after tracking started, and at least 1 s before it ended).
There were two conditions in the experiment governing
where the objects reappeared following this gap. In half
of trials, the objects appeared exactly where they
disappeared (no move condition). And in the remaining
half, they appeared exactly where they should have,
had they maintained their pre-gap trajectories (move
condition).

Figure 11. Comparison among models, collapsed across tracking loads (all trajectories together). Dotted portions of each graph

designate performance of 0.4358 models, and solid portions that of 0.28 models.
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Because we tested models, we were able to generate
both move and no move versions of each individual
trial, testing the model on each, and affording trial-
based comparisons. The models performed a total of 10
trials at each target load, doing a version of each trial
that ended with the move condition, and a version that
ended with a no move condition. The models did each
trial by condition combination 10 times. Note that the
Kalman filter model adjusted its Kalman gain at each
sampling step in each trial. Thus there was no
relationship between the weights set in move compared
to no move trials, and a model could, in principle, have
selected meaningfully different values.

Results and discussion

As previously found for human observers (Fencsik et
al., 2007; Keane & Pylyshyn, 2006), the spatial working
memory model performed better in the no move
compared to the move condition. Figure 12 graphs
performance as a function of target load for the spatial
working memory model that utilized a spatial standard
deviation value of 0.4358 and a sampling rate of 12 Hz
(results were similar for other model variations), the
comparable Kalman filter model, and for comparison,
the performance of human observers in the study by
Fencsik et al. (2007).

Statistically, we analyzed these data by treating each
trial as a subject, producing a simulated experiment
with 10 subjects in each target load by condition.
Because there were identical versions of each trial that
ended with either a move or a no move manipulation,
we treated reappearance position as a within-subject
factor, and target load as a between-subject factor.
Average model performance over 10 runs on each
individual trial by condition was the dependent
measure. A 2 · 7 split-plot factorial ANOVA revealed

a significant main effect of reappearance position, F(1,
63)¼ 4.394, p , 0.05. There was also a significant main
effect of target load, F(6, 63) ¼ 10.629, p , 0.001. But
there was no significant interaction between the two,
F(6, 63)¼ 1.437, p . 0.05. Although the effects here are
not very large—between 2% and 5% depending on the
target load—they are comparable to those reported in
the human literature. Fencsik et al. (2007) only tested a
tracking load of four targets in their experiment 1 and
obtained a difference of about 4% (Figure 12c). In
Figure 12a the difference at tracking load four is 3.5%.

The Kalman filter model also performed better in no
move compared to move trials (Figure 12b), but the
difference was not significant, F(1, 63) ¼ 0.528, p .
0.05. These results are certainly consistent with the
theory that human observers use only spatial working
memory during MOT (Franconeri et al., 2012; Keane
& Pylyshyn, 2006). But we do not encourage the use of
this computational experiment to draw that conclusion.
Note that performance differences for the Kalman filter
model were in the right direction and even close in
magnitude to those observed in humans. But we tested
a wider range of tracking loads than have been
explored with human observers. Ultimately, using these
models to make confident inferences about what
humans do would require models that are known to
perform similarly to humans across even a wider range
of testing conditions. In particular, extrapolation
weights and performance depend on the spatial
precision parameters and sampling rates used, factors
that will vary by individual within a group of
participants. We compared ranges of parameter values,
but without between subject individual differences, and
with the same parameter values across tracking loads.
This was done so that our results would not apply
narrowly to any selected or fit values. But the tradeoff
is that the computational experiments lack the kind of
between-subject variability found in a behavioral

Figure 12. Results of Experiment 3. Performance of the spatial working memory model (a) and the Kalman filter (c) in a replication of

experiment 1 from Fencsik et al. (2007). Results only shown for model variations with a spatial standard deviation of 0.4358 and

sampling rate of 12 Hz (but results were similar for all models). For comparison, (b) shows behavioral results redrawn from Fencsik et

al. (2007; experiment 1). That experiment only included a tracking load of 4/10.
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experiment. Future work should include model fitting,
individual differences within a (modeled) experimental
group, and/or effects of tracking load on precision and
sampling rate, which would be better suited to
identifying an effect of a specific experimental manip-
ulation on tracking performance.

The point to emphasize, however, pertains to the
possibility of a difference between internal algorithm
and outward behavior. Specifically, the experiment
demonstrates that an observer who does extrapolate
could perform similarly to one who does not in the
relevant experiment. The Kalman filter model in this
experiment was extrapolating. It expected objects to
end up where they were going.

Yet it was no worse off when the objects did not
conform to this expectation. Comparing Figures 10a
and 10c it is also clear that the Kalman filter performed
no differently with respect to tracking success than the
spatial working memory model in either type of
interruption condition. Like in Experiment 1, there
were no significant performance differences between
the two models: move condition, F(1, 63)¼ 0.018; for
no move condition, F(1, 63) ¼ 2.79; both ps . 0.1.

Thus a model that was trying to extrapolate failed to
outperform a model that did not try, even when
unobservable moments of motion conformed to ex-
pectations that only the Kalman filter possessed.
Practically, the experiment illustrates the challenge of
seeking evidence of extrapolation in MOT by looking
for performance advantages when objects maintain
trajectory. Those advantages could fail to materialize,
even when extrapolation is employed. Extrapolating
conservatively as a response to noisy measurements can
produce behavior that closely resembles not extrapo-
lating at all.

General discussion

Whether or not human observers extrapolate when
performing multiple object tracking has been a recent
focus of research. But results have led to mixed
conclusions (Atsma, Koning, & van Lier, 2012;
Franconeri et al., 2012; Iordanescu, Graboweky, &
Suzuki, 2009; Keane & Pylyshyn, 2006; St. Clair et al.,
2010). In an attempt to better understand these results,
we investigated an algorithm by which extrapolation
could be implemented given noisy inputs, which in turn
allowed us to address two important and related
questions: (a) Is there an advantage to extrapolating?
(b) How highly should an observer weight extrapola-
tions in order to use them effectively? Succinctly,
should an observer extrapolate, and if so, how? These
questions may have been difficult to answer via an
experimental approach; it would be challenging to

compare human performance while extrapolating or
not given that it remains unclear whether extrapolation
is ever used under typical MOT conditions.

The experiments compared several nearly identical
models, including one that did not extrapolate at all,
one that extrapolated in a relatively rigid way, and ones
that extrapolated in a computationally flexible way,
weighting predictions in light of feedback. In Experi-
ment 1, we discovered that weighting extrapolations
confers a relatively small advantage, at best, and
generally only in trials with very dependable object
trajectories. We also replicated this result several times
with slightly different models in terms of the variables
that they treated as predictions with respect to
assigning correspondences and estimating new poste-
riors. In Experiment 2 we discovered that extrapolating
rigidly comes at a cost to performance compared to not
extrapolating at all.

With respect to the second question—concerning
how to weight extrapolations—we discovered that
extrapolations should be weighted very modestly
compared to recent observations. Expectations about
object positions—even if they include a component
driven by extrapolations—should be biased heavily
toward recently observed positions. In retrospect this is
at least partially obvious, because if extrapolations are
derived from noisy observations, their expected noise
cannot be less than the noise expected of a new
observation.

These results stand to reconcile mixed previous
results with respect to prediction and multiple object
tracking. More broadly, they illustrate the computa-
tional complexities of the MOT task given psycho-
physical limitations and they illustrate the value of
using algorithmic computational models to investigate
tracking. We discuss these implications below, after
first discussing potential explanations for the primary,
counterintuitive result, that extrapolating seems not to
confer an advantage in multiple object tracking.

Why doesn’t extrapolation help?

Frankly, we initiated this study with the expectation
that extrapolation would support tracking perfor-
mance, but only under very limited circumstances and
only with very high temporal and spatial resolution.
But what we found was that in MOT, it seems not to
help across a wide range of model variations and
psychophysical parameters. Upon reflection, we suspect
that there are two broad reasons for this.

The first reason amounts to a kind of lesson about
MOT: that it is won and lost at the margins. What we
mean by this is that inevitably, some tracking errors
will be unavoidable, and caused by the fact of noisy
target and nontarget representations, regardless of
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prediction quality. Consider two situations, as exam-
ples, schematized in Figure 13—both situations in
which possession of a perfectly accurate prediction
would not preclude a tracking error. In Panel A,
suppose an observer made the correct prediction about
where the target would appear at time T on the basis of
perfectly accurate knowledge of time T-1. The noisy,
and unlabeled samples received from the target and
nontarget at time T would still be indistinguishable. In
Panel B, the sample from a nontarget just happens be
closer to the target’s true position, and thus the
nontarget sample is more likely to be labeled as the
target, even assuming a perfect prediction. Importantly,
situations like this should arise reliably by chance, that
is, situations in which the signal from a target is on the
noisier end of the spectrum. The purpose of these
contrived schematics, which of course rely on the
construct of a noisy sample, is to illustrate that
prediction will only help in MOT if it helps one to tell
targets and nontargets apart when they are close
enough to become confused (see also Bae & Flom-
baum, 2012). If a good portion of typical MOT errors
arises in situations that are genuinely ambiguous for
probabilistic reasons, then even accurate predictions
will have relatively thin margins to impact.

This perspective is consistent with experimental
work demonstrating that speed effects in MOT are
largely a function of the number of close encounters
between targets and nontargets (Bae & Flombaum,
2012; Franconeri et al., 2010). And it is consistent with
our empirical observation that trial-by-trial correla-
tions in performance between participants had a
ceiling close to 0.5. All trials should include occasions
wherein targets and nontargets are more or less likely
to be confused because of their arrangements. But if

whether or not they become confused is largely
determined by chance—unusually bad signals, un-
usually well-placed wrong signals, lapses of attention,
or blinks and saccades at just the wrong time—then
between subject error correlations will have a rela-
tively low ceiling, and even excellent predictions will
not save the day.

The second reason that extrapolation may not help
has to do with the critical role of velocity, and bearing
in particular, for generating accurate predictions. With
an inaccurate bearing, a prediction will become
increasingly farther from accurate as object speeds (or
the lag between encounters) increases. So without
accurate representation of bearing, it is not possible to
make good predictions.

Figure 14 attempts to schematically make these
points, illustrating how a prediction based on noisy
inputs can deviate considerably from actual outcomes,
and how in the context of MOT, it could lead to
correspondence errors.

We further conducted a small set of simulations to
make this point. Specifically, we utilized the P-P model
from our replications of Experiment 1 (because it is
most faithful to a standard Kalman filter). The model,
recall, makes predictions by comparing its most recent
posterior position estimates, and then projecting the
resulting vector forward. The model performed 100
simulations of one trial in which there was only a
single, perfect inertia object to track (and no non-
targets). Figure 15a plots the average Kalman gain of
the model over the simulations, and as a function of
temporal sampling rate and spatial precision. The
Kalman gain is the relative weighting of a prior and a
new observation when inferring a current posterior.
The weight on priors was always 10%–17%. The

Figure 13. Two schematic situations in which perfect prediction would not preclude a tracking error. The true locations of a target

(blue) and a distractor (gray) are shown, together with unlabeled samples (yellow). (Note that in MOT, the targets and nontargets

share the same color). (a) Noisy observations lead to two potential correspondences (one correct and one incorrect) with equal

probability. (b) Noisy observations lead to an incorrect correspondence appearing more likely.
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challenge here was not to keep targets and nontargets

distinct, just to generate good expectations about target

position. But when these expectations relied on bearing

estimates derived entirely from noisy observations of

position, they were not very accurate. (Note that this

model did not include independent velocity noise, and

it computed expected covariance following the stan-

dard Kalman filter approach).

We then conducted the same set of simulations

again, but this time, with a model that we endowed

with the correct velocity estimate. It still received noisy

observations of position, it still inferred posteriors by

combining priors and observations, and it still gener-

ated priors by projecting its velocity estimates from its

most recent posterior estimate. Only the velocity

estimates were perfectly accurate. As shown in Figure

Figure 14. Schematic diagram of target and nontarget motion over three moments, contrasted with potential noisy samples and

predictions of an observer. The diagram is meant to illustrate how noisy predictions can deviate from true outcomes, and how they

could lead to correspondence errors in the MOT task. Objects in the top row indicate the actual positions of a target (blue) and a

nontarget (gray) at three successive moments, in addition to their actual and stable motion vectors. Small yellow circles (bottom row)

designate noisy samples received by an observer from the target at Moments 1 and 2. The red arrow at Time 2 designates the most-

likely motion vector an observer would infer on the basis of those samples, and the larger red circle at Time 3 designates the best

prediction the observer would make, as a result, about the object’s expected position at Time 3.

Figure 15. Weights assigned to priors (compared to new observations) when inferring a posterior. Comparison is between the P-P

Kalman filter model (a; see Replications of Experiment 1) and a new model (b) that was endowed with accurate knowledge of

velocity. Results are from 100 simulations of a single trial including only a single target to track and no nontargets.
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15b, this model ultimately placed weights between 20%
and 25% on priors. Moreover, unlike the P-P model, on
average this model’s priors at a given point in time (T)
were closer to the target-linked observation received at
that point in time (T) than were the model’s most recent
posterior estimates at T-1. This is the definition of a
good prediction. The model did acquire better expec-
tations about the future than the mere assumption that
it should look like the past. But the same was not true
of the P-P model (Figure 16).

Making good predictions requires a mechanism for
acquiring accurate measurements of velocity. As we
discuss below, in the context of the wider literature on
extrapolation, it is likely that humans possess such
mechanisms, and ones that are independent from
mechanisms that estimate position. But they may only
be available in the context of tracking a single object,
and they may rely on eye movements.

Do human observers extrapolate in MOT?

In an effort to understand mixed behavioral results
concerning whether human observers extrapolate in
MOT, we investigated how extrapolation could be
implemented at the algorithmic level. We discovered
that noisy inputs could lead an observer to extrapolate
conservatively, expecting objects to be found closer to
where they were recently perceived than to where they
are headed. And we also discovered that such an
observer would not outperform an observer who does
not make predictions, under many trajectory types, in
an interruption experiment (like that of Fencsik et al.,
2007), and especially with more than two or three
targets to track. Because this was primarily a compu-
tational study, we cannot conclude that human

observers make predictions similarly to one of our
adjusted prior models. But we can propose an
alternative to the binary framing of the question that
has prevailed in the literature. The expectation has
generally been that observers extrapolate fully, and
perhaps accurately, or not at all. The alternative is that
they try to extrapolate, but in a measured way,
ultimately conservatively, and perhaps somewhat in-
accurately. This possibility is not only important as a
viable alternative. It also stands to reconcile the mixed
findings in previous work.

Specifically, making conservative predictions is
consistent with work demonstrating that observers are
sensitive to and can report object bearing accurately,
on average, but with a great deal of noise in many
situations (Horowitz & Cohen 2010; Shooner et al.,
2010; St. Clair et al., 2010). At the same time, we have
shown that using noisy estimates of velocity, especially
if derived entirely from estimates of position over time,
would not lead to a performance advantage (at least
not with more than two or three targets) in MOT, in
conditions with entirely reliable object trajectories
(perfect inertia). Howe and Holcombe (2012) found no
advantage among human observers for such trajecto-
ries, compared to more unreliable ones, except when
tracking only two objects. Similarly, we showed that
making weighted predictions to accommodate noisy
estimates would lead an observer to preform similarly
in interruption conditions in which objects do or do not
proceed along their paths (Experiment 3). Fencsik et al.
(2007) and Keane and Pylyshyn (2006) found similar
effects among human observers. (Indeed, we utilized
their experimental design.) Finally, Howard, Masom,
and Holcombe (2011) asked observers to localize
tracked targets, and they found that knowledge of
object positions lagged behind true positions, but ahead
of recent ones. And two studies that have shown
attentional biases in the direction of target motion, one
via probe detection while tracking (Atsma et al., 2012),
and one via localization responses following an
abruptly ended trial (Iordanescu, Graboweky, &
Suzuki, 2009). By placing low weights on extrapola-
tion—biasing expectations towards recent observa-
tions—the adjusted prior models naturally stay ahead
of recent positions while lagging behind actual trajec-
tories.

Importantly, our findings can also be reconciled with
evidence suggesting that people do extrapolate advan-
tageously in some MOT settings, and the larger
literature on accurate extrapolation more generally
(e.g., Bennett et al., 2010; Diaz, Cooper, & Hayhoe,
2013; Diaz, Cooper, Rothkopf, & Hayhoe, 2013; Howe
& Holcombe, 2012; Spering et al., 2011; Warren et al.,
2012). The crucial factor in that work, from our
perspective, is that it has been concerned with tasks and
situations involving only a single target, and without

Figure 16. Average distance between prior at time T and

observation at time T (gray bars) and between posterior at time

T-1 and observation at time T (white bars), for the P-P Kalman

filter model and the correct velocity model, respectively. Results

are from models with a 0.28 spatial resolution and 12 Hz

sampling rate. Patterns were the same for models with other

parameters. The correct velocity model made predictions that

were closer to new observations than the most recent posterior.

But for the P-P model, the opposite was true.
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nontargets (e.g., Bennett et al., 2010; Diaz, Cooper, &
Hayhoe, 2013; Diaz, Cooper, Rothkopf, & Hayhoe,
2013; Spering et al., 2011; Warren et al., 2012). In those
settings, the utility of extrapolating is not measured in
terms of distinguishing targets and nontargets, but
instead, in terms of the effectiveness of actions that
require anticipation, such as catching or striking. If an
observer has a more accurate sense of where an object
just was than where it is going, she should still act on
her sense of where it is going. You can’t catch a ball
where it just was. In MOT, in contrast, extrapolation
may be carried out more conservatively (or avoided)
because of a small or no marginal utility in terms of
task-specific performance.

Moreover, mechanistically, tracking only one
object makes it possible to use eye-movements and
even smooth pursuit. Many studies of sports (which
always involve only one ball) suggest that smooth-
pursuit eye movements are beneficial for extrapola-
tion (along with controlled, saccadic eye movements),
for example, in baseball, basketball, cricket, squash,
volleyball, and table tennis (Bahill & LaRitz, 1984;
Lee, 2010; Land & Furneaux, 1997; Land & McLeod,
2000; McKinney, Chajka, & Hayhoe 2008; Ripoll,
Bard, & Paillard, 1986). Target-referenced eye
movements are generally thought to be the starting
point for effective extrapolation. It is also known
that smooth pursuit eye movements enhance predic-
tion of visual motion in a laboratory-based task
(Spering et al., 2011). And beyond improving visual
acuity with respect to a moving target (Bahill &
LaRitz, 1984), advantages are thought to accrue
from an eye-motion signal generated internally by the
occulomotor system. Similarly, saccades to future
ball positions—in racquetball, for instance—are
known to enhance performance, to arise spontane-
ously in observers (Diaz, Cooper, & Hayhoe, 2013;
Diaz, Cooper, Rothkopf, & Hayhoe, 2013), and to
enhance predictions about the timing of contact
between a target and other objects (Bennett et al.,
2010).

The problem for MOT is that target-directed eye
movements cannot be referenced with respect to more
than one object at a time. They may be used during
multiple object tracking, but their effects should be
weakened. This is probably why no evidence for
accurate extrapolation has been found in MOT with
more than two targets in the display. With two or
fewer, however, eye movements may be beneficial. The
two studies that have shown evidence of extrapolation
did not enforce or monitor eye fixation. Thus there
remains a distinct possibility that the presence of
effective extrapolation in those studies reflects the
benefits of target-directed eye movements (either
saccades or smooth pursuit).

One final potential point of contact between our
results and the broader literature on eye-gaze mediated
extrapolation comes from the simulations we reported
in the preceding section, demonstrating that extrapo-
lations become accurate when they utilize independent
and accurate knowledge of bearing, even while
obtaining noisy observations of position and imperfect
posterior estimates. Fixating a target, and potentially
tracking it with one’s eyes may supply a channel for
acquiring independent and relatively speaking, less
noisy estimates of bearing, perhaps by taking advan-
tage of both higher and lower level motion systems
(Cavanagh, 1992; Lu & Sperling, 2001), and perhaps
through estimates derived from internal signals (Sper-
ing & Montagnini, 2011). Future work in the context of
well-understood and effective extrapolation should
investigate effects of increased tracking load, and the
precision of velocity estimates.

As we already noted: we are hesitant to conclude
that what observers do is weight extrapolations in
exactly the way our adjusted prior models do. For the
time being, the implication of our results is that
extrapolating while weighting by reliability can look
very similar to not extrapolating at all. The mixed
evidence in the prevailing literature may reflect this
state of affairs. Our results also suggest that one of the
major barriers to effective extrapolation in MOT is the
difficulty of acquiring accurate velocity estimates about
multiple objects at once, consistent with highly noisy
bearing estimates reported in a previous MOT exper-
iment (Horowitz & Cohen, 2010).

The Kalman filter: A computational framework
for multiple object tracking

Twenty-five years of behavioral research has pro-
duced a great deal of data, and a good understanding
of the basic mental and neural resources involved in
carrying out multiple object tracking. For example, we
know that attention appears importantly involved in
tracking (Scholl, 2009), that working memory plays a
role as well (Postle, D’Esposito, & Corkin, 2005;
Zhang, Xuan, Fu, & Pylyshyn, 2010), that eye
movements are not necessary for tracking (Intriligator
& Cavanagh, 2001)—but can facilitate performance if
used strategically (Fehd & Seiffert, 2008; Fehd &
Seiffert, 2010)—and that the difficulty associated with
tracking load can be mapped to neural activity (Drew,
Horowitz, & Vogel, 2013).

But computationally, these effects, phenomena,
and results have not been incorporated into algo-
rithmically explicit models. Actually, relatively few
computational models have been implemented in the
first place; we are aware of only one oscillator model
(Kazanovich & Borisyuk, 2006) and two Bayesian
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models (Ma & Huang, 2009; Vul et al., 2009). These
models have been designed to capture basic aspects
of performance and, to a certain extent, assumed
features of neural implementation. But they have not
yet been built to incorporate the full suite of
mechanisms known to be involved in multiple object
tracking. Another way to put this is that a complete
model will ultimately accommodate not only the fact
that human performance declines with memory load,
but also the role of attention, the role of working
memory, the possibility of utilizing eye movements,
and so on.

Our models are certainly not complete in this
regard. But they reaffirm the potential for using the
Kalman filter as a modeling framework. Specifically,
we extended previous models in three important ways.
First, the models reported here contended with limited
sampling rates, between 5 and 20 Hz. Previous models
(Ma & Huang, 2009; Vul et al., 2009) sampled the
relevant displays at the rate of presentation. As a
result, those models were limited in terms of their
spatial resolution, but not in terms of their temporal
resolution. Temporal resolution is known to be limited
in human observers (Landau & Fries, 2012; Latour,
1967; Lichtenstein, 1961; VanRullen & Koch, 2003;
White and Harter, 1969), and in the case of MOT
specifically several behavioral studies have investigat-
ed the impact of limited temporal sampling (Hol-
combe & Chen, 2012; Holcombe & Chen, 2013).
Sampling rate is a parameter with which the Kalman
filter framework can incorporate the implications of
this work.

Second, the models discussed here tracked only
targets. That is, the models only sought correspon-
dences for target objects when they received unlabeled
samples from all of the items in the display. In previous
work, models either dealt with a different tracking task
that does not involve nontargets (Ma & Huang, 2009),
or they tracked all items in a display, labeling targets
and nontargets categorically (Vul et al., 2009). While
this is the optimal approach—benefiting from mutually
exclusive correspondence decisions when unlabeled
samples are received—it does not comport intuitively
with the pervasive opinion that MOT involves selective
attention to targets (and the extensive data corrobo-
rating this opinion; e.g., see Cavanagh & Alvarez, 2005;
Pylyshyn & Annan, 2006; Scholl, 2009). Moreover, it is
a challenging assumption for theories that also assume
architecturally limited tracking capacity of either a
fixed or continuous nature (e.g., Alvarez & Franconeri,
2007; Pylyshyn & Storm, 1988; Vul et al., 2009),
because presumably tracking nontargets consumes
those resources and human performance declines when
the number of targets increases but the total number of
objects remains constant. Via selective tracking, the
Kalman filter supplies a vehicle for implementing

selective attention within a computational framework.
We implemented selective attention as tracking of all
targets to the exclusion of all nontargets. But one could
easily explore variants that would capture features of
alternative theories, for instance, by incorporating a
fixed capacity limit on the number of items tracked or a
serial selection strategy (Drew et al., 2013; Oksama &
Hyönä, 2008).

Finally, and most directly relevant to the topic of
this investigation, our Kalman filter model imple-
mented extrapolation in importantly different ways
than the only other Bayesian model to address MOT.
(Other kinds of modeling approaches have not
implemented extrapolation directly). Specifically, Vul et
al. (2009) implemented prediction by including a global
inertia parameter in their model: the model made an
assumption about how much object trajectories
changed in general, and it applied this general
assumption to all objects equally on each frame. In
their initial simulations, Vul et al. endowed the model
with the true inertia term; to the extent that object
trajectories were more or less dependable, the model
knew exactly how so in advance. This is importantly
different from our model, which made no assumptions
about trajectory dependability a priori. Instead, the
Kalman filter that we implemented weighted new
extrapolations relative to recently inferred conclusions
about each individual object’s position, in a sense,
developing its own theory about the dependability of
the trajectories.

These contributions jointly constitute a more
general framework for tracking than those described
previously. And they intuitively supply the best
chances for a model to perform better when making
extrapolations. In a series of computational experi-
ments, Vul et al. (2009) found that with prior and fixed
expectations about object inertia, models that ex-
pected object positions to change slowly performed
better than models that expected fast changes. Our
results in Computational Experiment 2 converge with
their conclusions. The model that placed a fixed
weight of 0.5 on extrapolation performed worse than
the spatial working memory model. Experiments 1
and 3 demonstrate that even a model that can change
is weights will have a difficult time outperforming a
simple spatial working memory approach, and also
that a model can discover on its own to prefer
conservative predictions. A model that can discover
on it is own how to make predictions provides a
foundation for studying related tracking tasks, for
example those which involve circular, orbiting, and
other forms of regular—i.e., dependable—but non-
linear motion (Holcombe & Chen, 2012; Tombu &
Seiffert, 2011). Future research should investigate the
Kalman filters and related applications in these
contexts.
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Conclusion

In many ways, the main implication of the reported
computational experiments is that the challenge in
multiple object tracking is not predicting the future, so
much as interpreting the present. Telling targets and
nontargets apart is difficult because they are perceived
noisily. As a result, making predictions and not making
them can appear very similar in outward behavior and
performance.

Keywords: multiple object tracking, Kalman filter,
attention, spatial working memory
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Footnotes

1Experiment 1b utilizes a model that omits this step
to ensure that the addition of independent noise does
not account for the main results of the study.

2Note that in Equation 5, Ĩtþ1
m denoted what is

actually the adjusted prior, because Experiment 1
employed the AP-AP model that only uses that
quantity. The AP-P model is unique in these experi-
ments because it uses both an adjusted and unadjusted
prior. Both are computed from Equation 5, but for
calculating the unadjusted prior b is set to zero.
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Oksama, L., & Hyönä, J. (2008). Dynamic binding of
identity and location information: A serial model of
multiple identity tracking. Cognitive Psychology,
56, 237–283.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10, 437–442.

Postle, B. R., D’Esposito, M., & Corkin, S. (2005).
Effects of verbal and nonverbal interference on
spatial and object working memory. Memory and
Cognition, 33, 203–212.

Pylyshyn, Z. W. (2006). Some puzzling findings in
multiple object tracking (MOT): II. Inhibition of
moving nontargets. Visual Cognition, 14, 175–198.

Pylyshyn, Z. W., & Annan, V. (2006). Dynamics of
target selection in multiple object (MOT). Spatial
Vision, 19(6), 485–504.

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking
multiple independent targets: Evidence for a
parallel tracking mechanism. Spatial Vision, 3, 179–
197.

Ripoll, H., Bard, C., & Paillard, J. (1986). Stabilization
of head and eyes on target as a factor in successful
basketball shooting. Human Movement Science, 5,
47–58.

Scholl, B. J. (2009). What have we learned about
attention from multiple object tracking (and vice
versa). In D. Dedrick & L. Trick (Eds.), Computa-

Journal of Vision (2014) 14(12):12, 1–30 Zhong et al. 29

http://www.ncbi.nlm.nih.gov/pubmed/20053066
http://www.journalofvision.org/content/9/11/3
http://www.ncbi.nlm.nih.gov/pubmed/22685337
http://www.journalofvision.org/content/12/6/10
http://www.journalofvision.org/content/8/6/111


tion, Cognition, and Pylyshyn (pp. 49–78). Cam-
bridge, MA: MIT Press.

Scholl, B. J., & Pylyshyn, Z. W. (1999). Tracking
multiple items through occlusion: Clues to visual
objecthood. Cognitive Psychology, 38, 259–290.

Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001).
What is a visual object? Evidence from target
merging in multiple object tracking. Cognition,
80(1/2), 159–177.

Sekuler, R., Watamaniuk, S. N., & Blake, R. (2002).
Perception of visual motion. Stevens Handbook of
Experimental Psychology, 1.

Shooner, C., Tripathy, S. P., Bedell, H. E., & Öğmen,
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