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When Are Results Too Good to Be True?
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SCIENCE is in crisis. Many published studies appear to be
irreproducible (Prinz et al. 2011; Begley and Ellis 2012).

What can be done? How concerned should we be?
Is the reproducibility crisis something new? Suppose we

randomly sampled studies from the past 100 years of sci-
entific literature and attempted to replicate their findings.
I expect that many of these studies would fail to replicate.
We must be careful not to conflate “irreproducible” with
“false.” The experiments may require specific conditions that
are difficult to reproduce; the original studies may have been
underpowered; or they may have addressed a hypothesis
that turned out to be false. “False” studies are part and
parcel of the scientific method in which falsifiable hypothe-
ses are repeatedly put to the test. Many potentially trans-
formative studies have been published and later discredited
(e.g., Fleischmann and Pons 1989); others have stood the
test of time and have become integrated into the fabric of
knowledge (e.g., Luria and Delbruck 1943).

Something has changed, however: the industry of science
has grown exponentially, at a rate of �4% per year as mea-
sured in the number of articles published (Larsen and Von
Ins 2010). At this rate of growth, the doubling time is �15
years, which means that very soon more scientific publications
will have appeared in the 21st century than in all of prior
history. This growth has resulted in fierce competition for cov-
eted spots in high-profile journals. Being good, or even very
good, is no longer good enough. One also needs to be lucky.

Nature magazine receives �10,000 submissions annually
and (necessarily) rejects .90% of them. Suppose that all of
the 10,000 studies submitted to Nature in a year had evalu-
ated false scientific hypotheses. The p-values reported would
be uniformly distributed between zero and one1. Some of

these would be significant by chance. If the Nature editors
evaluated these studies based solely on the reported p-values,
the probability that at least one of these lucky papers would
report “p , 0.0001” is 67%. Of course, it takes more than an
impressive p-value to be published in Nature. A truly outstan-
ding article will have something novel, even surprising, to say.

To understand the impact of the novelty criterion, con-
sider the following three experiments (see Greenhouse 2012).
In the first experiment, a music expert claims that she can dis-
tinguish a score written by Mozart from one written by Haydn.
Presented with 10 scores in a double-blinded and randomized
order, she identifies each one correctly. In the second experi-
ment, a tea-drinking lady claims that she can tell if the milk or
the tea was poured first into the cup. Given 10 carefully pre-
pared cups of tea in randomized order, she correctly identifies
each one. Finally, an inebriated customer at a bar claims he
can predict the outcome of a coin toss. He proceeds to toss the
coin and calls heads or tails correctly 10 times in a row.

The p-value in each case is 0.001 (1/210). But what con-
clusions are we to draw? Here we cannot avoid our subjective
opinions about the prior plausibility of each claim. In my opinion,
the music experiment was not really necessary because the
claim is believable a priori. In the case of the tea-drinking lady,
while I may have initially doubted this unusual talent, the
evidence is convincing and I would consider the matter set-
tled. As for the drunken coin tosser, after carefully examining
the coin, I would ask him to do it again.2 This claim is just too
hard to believe; a higher standard of evidence seems justified.

Which of these studies, if properly vetted by review,
would make an exciting paper? My vote is with “Alcohol in-
duces clairvoyance.” Experiments based on hypotheses that
are a priori implausible can be potentially groundbreaking,
but are also the most likely to be false (Ioannidis 2005). Can
we determine which are which?

The shortcomings of p-values as a measure of evidence
are well documented (Berger and Sellke 1987) and continue
to inspire debate (Nuzzo 2014). Imagine, then, a statistic

1By definition, under the null hypothesis a p-value is randomly and uniformly distributed
between zero and one. But for this hypothetical exercise, you must suspend your
disbelief about the audacity of the scientists who submitted their nonsignificant findings
for publication.

2Bear in mind that every day one-in-a-million events will happen to �7000 people
(Littlewood 1986).
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that provides an optimal and objective measure of evidence
based only on the experimental data at hand without recourse
to prior beliefs and opinions. Let us call it the “o-value.” Using
the o-value as our criterion for publication, we would still
publish false conclusions. Otherwise, we would have to be
so stringent in our evaluation that an excessive number of true
findings would be rejected or our requirements for evidence
would be so prohibitive that progress would grind to a halt.

A paradoxical consequence of having access to an optimal
measure of evidence is the impossibility of distinguishing
a true claim from a false one. If that were possible, it would
follow that there is additional information in the data, which
contradicts our stipulation that the o-value is optimal. We
could use that extra information to create an improved o-value,
but we would end up in the same conundrum. Even with an
ideal measure of evidence, it is impossible to objectively
establish truth or falsehood of a claim based solely on the
available data. This is a troubling reality.

The Case of Dias and Ressler

A recent publication in Nature Neuroscience (Dias and Ressler
2013) put forward a provocative hypothesis that epigenetic
inheritance can be modified by olfaction. The paper under-
standably drew a great deal of attention. In this issue of
GENETICS, we publish a critique by G. Francis who argues
that the evidence presented is “too good to be true.” Francis
claims that the study could not plausibly have been as successful
as reported and that some of the experiments reported should
have failed to reject the null hypothesis. These concerns are
reminiscent of Fisher’s claim that Mendel cooked his data (Hartl
and Fairbanks 2007). While Mendel’s data may remain the sub-
ject of debate, Mendel’s laws—appropriately modified to con-
form to subsequent observations—have stood the test of time.

The post hoc power analysis provided by Francis is enlight-
ening, but the evidence required to evaluate the study is en-
tirely contained in the reported p-values (Hoenig and Heisy
2001). If the same analysis were applied to a randomly se-
lected study, it might cast doubt on the integrity of the study.
But the Dias and Ressler study was selected from among thou-
sands of studies competing for limited publication space by an
evaluation process that selects papers with inflated p-values.
“Extraordinary claims require extraordinary evidence.”3 Skep-
tical reviewers are going to balk at any sign of weakness in
a controversial manuscript. And yet, extraordinary evidence
can occur by chance. This suggests that improbable p-values
are to be expected in controversial, high-profile papers.

Opinions play an important role in deciding what gets pub-
lished. As illustrated in our hypothetical example of three ex-
periments that produce identical statistical evidence, subjectivity
plays a crucial role in our interpretation of that evidence. The
proposal that epigenetic inheritance can bemodified by olfaction
stretches the imagination, but it is not outside the realm of
possibility. Expert scientists vetted the experimental procedures,

and we must assume that the data reported are accurate and
complete. But is the claim true? Without further study, it is
a matter of opinion.

Progress in science requires an influx of new ideas balanced
by skepticism that compels us to re-examine the evidence. When
we seek more evidence to corroborate or refute hypotheses,
some will prove to be wrong. We should not subvert this process
by reaching for an unattainable ideal of perfectly reproducible
studies. Ironically, statistical evidence presented in the original
study may be of little help in determining which hypotheses will
hold up. Dias and Ressler have proposed an intriguing hypoth-
esis, and they have reported their evidence to support it. Of
course, the study should be repeated—perhaps by using differ-
ent approaches and methods that address the same hypothesis
from different angles. The findings of Dias and Ressler warrant
further study, and the scientific method compels us to try to top-
ple this hypothesis. Is it true or too good to be true? Only time—
and further investigation—will tell.

Note added in proof: See Dias and Ressler 2014 (pp. 453)
and Francis 2014 (pp. 449–451) in this issue for a related work.
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