Table 1. Prior densities available for regression coefficients in the BGLR package.
| Model (prior density) | Hyperparameters | Treatment in BGLRa |
|---|---|---|
| Flat (FIXED) | Mean (μβ) | μβ = 0 |
| Variance | ||
| Gaussian (BRR) | Mean (μβ) | μβ = 0 |
| Variance | ||
| Scaled-t (BayesA) | Degrees of freedom (dfβ) | User specified (default value, 5) |
| Scale (Sβ) | Sβ ∼ Gamma | |
| Double exponential (BL) | λ2 | λ fixed, user specified, or λ2 ∼ Gamma, or b |
| Gaussian mixture (BayesC) | π (prop. of nonnull effects) | π ∼ Beta |
| dfβ | User specified (default value, 5) | |
| Sβ | Sβ ∼ Gamma | |
| Scaled-t mixture (BayesB) | π (prop. of nonnull effects) | π ∼ Beta |
| dfβ | User specified (default value, 5) | |
| Sβ | Sβ ∼ Gamma |
Further details are given in the supporting information (Section A of File S1).
This approach is further discussed in de los Campos et al. (2009b).