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ABSTRACT Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only
a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current
statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning
framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying
assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new
statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability
of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable
assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple
causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal
variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data
from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly
available online at http://genetics.cs.ucla.edu/caviar/.

ALTHOUGH genome-wide association studies (GWAS)
reproducibly identified thousands of risk loci (Hakonarson

et al. 2007; Sladek et al. 2007; Zeggini et al. 2007; Yang et al.
2011a,b; Kottgen et al. 2013; Lu et al. 2013; Ripke et al. 2013),
only a handful of causal genetic variants (i.e., variants that
biologically alter disease risk) have been found (Altshuler
et al. 2008; Manolio et al. 2008; McCarthy et al. 2008), thus
prohibiting the mechanistic understanding of the genetic
basis of common diseases. The linkage disequilibrium (LD)
(Pritchard and Przeworski 2001; Reich et al. 2001) structure of
the human genome has greatly benefited GWAS in interrogating
only a subset of all variants to assay common variation across
the genome. Unfortunately, LD hinders the identification of
causal variants at risk loci in fine-mapping studies as at each
locus, there are often tens to hundreds of variants tightly linked
to the reported associated single-nucleotide polymorphism

(SNP) (Malo et al. 2008; Maller et al. 2012; Yang et al. 2012).
In a continued effort to identify causal variants, many fine-
mapping studies that assess genetic variation at known GWAS
risk loci are currently underway (Bauer et al. 2013; Coram et al.
2013; Diogo et al. 2013; Gong et al. 2013; Marigorta and
Navarro 2013; Peters et al. 2013; Wu et al. 2013).

Fine-mapping studies typically follow a two-step procedure.
First, a statistical analysis of the association signal is performed
to identify a minimum set of SNPs that can explain the signal.
Second, the SNPs that are putatively causal are functionally
tested using laborious and expensive functional assays. There-
fore, the objective of the statistical component of fine mapping
is to minimize the number of SNPs that need to be selected for
follow-up studies while identifying the true causal SNPs. In this
work, we focus on developing approaches for statistical re-
finement of the association signal with the goal of identify-
ing the minimum set of variants to be tested to identify all
the causal variants. Although in this work we primarily focus on
common variants, our work can be extended to rare variants
through careful regularization of normalized association scores
(z-scores) (Navon et al. 2013).

The basic statistical fine-mapping approach is to select
SNPs for functional validation based on the strength of the
association signal. A standard statistical association test is
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performed, followed by the selection of the top k SNPs with
the highest evidence of association for functional assays. The
value of k depends on the budget and resources assigned
for the follow-up study. This procedure is suboptimal as it
does not properly account for the LD at a particular locus
(Lawrence et al. 2005; Udler et al. 2009; Faye et al. 2013).
For example, two SNPs in perfect LD will always show the
same association statistic and it is unclear how to prioritize
these SNPs for functional assays. In addition, the finite sam-
pling of individuals in the fine-mapping study induces sta-
tistical noise in the association statistics that can result in
higher association statistics at neighboring SNPs as opposed
to the true causal SNP. Furthermore, even when the sample
sizes are large enough such that the statistical noise can be
ignored, the local LD structure can induce higher association
statistics for neighboring SNPs rather than causal variants at
loci with multiple causal variants (Udler et al. 2009). More
fundamentally, this approach provides no guarantees that the
actual causal SNPs are contained in the top k SNPs selected
for functional assays.

In this article, as opposed to the basic top k approach,
recent works (Maller et al. 2012; Beecham et al. 2013) have
proposed to estimate the probability of each SNP to be causal
at a given locus under the simplifying assumption that each
GWAS associated locus harbors exactly one causal variant.
Under this assumption the approximation of the posterior
can be computed using only the marginal per-SNP association
statistics. This induces a one-to-one relationship between mar-
ginal association statistics and the estimated posterior proba-
bilities that yields the same ranking of SNPs within each locus.
A major advantage of this approach is that confidence intervals
(i.e., sets of SNPs that account for the 95% of all the posterior
probability of causal variants in the locus) can be estimated
and used to determine the number of SNPs for each locus to
follow up in functional assays. A major drawback of this ap-
proach is that the confidence intervals rely on the assumption
of a single causal variant per locus. As we show below, when
applied to loci where there are more than one causal variant
(Haiman et al. 2007; Allen et al. 2010; Galarneau et al. 2010;
Chung et al. 2011; Trynka et al. 2011; Stahl et al. 2012; Flister
et al. 2013), the confidence intervals may not contain any
causal variants with a much higher than expected likelihood.

As opposed to the approaches above that yield the same
ranking of SNPs, conditioning approaches to dissect the as-
sociation signal that may change the ranking of variants have
also been proposed (Allen et al. 2010; Galarneau et al. 2010;
Chung et al. 2011; Trynka et al. 2011; Stahl et al. 2012;
Flister et al. 2013). The conditional approach relies on an
iterative selection of most associated SNPs followed by re-
computation of the statistical score for the remaining SNPs
conditional on the already selected SNPs. The iterations
continue until no significant signal remains in the locus at
a nominal or Bonferroni-corrected significance (Udler et al.
2009; Allen et al. 2010; Sklar et al. 2011; Yang et al. 2011a,b,
2012). Although conditioning is amenable for identifying the
presence of multiple signals within the locus, it can also lead

to the unfavorable situation of selection of no causal SNPs for
follow-up assays. For example, in the case of two SNPs in
perfect LD, where only one of the SNPs is the causal variant,
the conditioning approach will drop one of the SNPs from the
analysis, depending on the order in which the SNPs are se-
lected in the iterative procedure. Since the statistics at these
two SNPs are mathematically equal, the order can only be
random (in the absence of other sources of information), lead-
ing to conditioning not finding any causal variants in 50% of
the cases. This underlines a major drawback of the condition-
ing approach that can lead to highly suboptimal scenarios
when searching for variants to test in functional assays.

Compared to previous work, we propose causal variants
identification in associated regions (CAVIAR), a statistical
framework that quantifies the probability of each variant to
be causal while allowing an arbitrary number of causal
variants. We accomplish this by jointly modeling the observed
association statistics at all variants in the risk locus; posterior
probabilities for sets of variants to be causal are then estimated
using the conditional distribution of all association statistics in
the locus conditional on the set of causal variants. The output
of our approach is a set of variants that with a certain prob-
ability (e.g., 95%) contain all of the causal variants at that
locus. Intuitively, the 95% causal confidence set is akin to a
95% confidence interval around an estimated parameter.
Through extensive simulations we show that our method
attains superior performance over all existing methods with
comparable results at loci where there is a single causal var-
iant. We validate our approach using empirical data from
an expression QTL (eQTL) study of the CHI3L2 gene
(Cheung et al. 2005), where the true causal variants are
known. In this data, CAVIAR correctly identifies the true
causal variant.

Results

Overview of statistical fine mapping

Our approach, CAVIAR, takes as input the association statistics
for all of the SNPs (variants) at the locus together with the
correlation structure between the variants obtained from
a reference data set such as the HapMap (Gibbs et al. 2003;
Frazer et al. 2007) or 1000 Genomes project (Abecasis et al.
2010) data. Using this information, our method predicts
a subset of the variants that has the property that all the
causal SNPs are contained in this set with the probability r

(we term this set the “r causal set”). In practice we set r to
values close to 100%, typically $95%, and let CAVIAR find
the set with the fewest number of SNPs that contains the
causal SNPs with probability at least r. The causal set can be
viewed as a confidence interval. We use the causal set in the
follow-up studies by validating only the SNPs that are present
in the set. While in this article we discuss SNPs for simplicity,
our approach can be applied to any type of genetic variants,
including structural variants.

We used simulations to show the effect of LD on the
resolution of fine mapping. We selected two risk loci (with
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large and small LD) to showcase the effect of LD on fine
mapping (see Figure 1, A and B). The first region is obtained
by considering 100 kbp upstream and downstream of the
rs10962894 SNP from the coronary artery disease (CAD)
case–control study. As shown in the Figure 1A, the correlation
between the significant SNP and the neighboring SNPs is
high. We simulated GWAS statistics for this region by taking
advantage that the statistics follow a multivariate normal dis-
tribution, as shown in Han et al. (2009) and Zaitlen et al.
(2010) (see Materials and Methods). CAVIAR selects the true
causal SNP, which is SNP8, together with six additional variants
(Figure 1A). Thus, when following up this locus, we have only
to consider these SNPs to identify the true causal SNPs. The
second region showcases loci with lower LD (see Figure
1B). In this region only the true causal SNP is selected by
CAVIAR (SNP18). As expected, the size of the r causal set is
a function of the LD pattern in the locus and the value of r,
with higher values of r resulting in larger sets (see Table S1
and Table S2).

We also showcase the scenario of multiple causal variants
(see Figure 2). We simulated data as before and considered
SNP25 and SNP29 as the causal SNPs. Interestingly, the most
significant SNP (SNP27, see Figure 2) tags the true causal
variants but it is not itself causal, making the selection based
on strength of association alone under the assumption of a
single causal or iterative conditioning highly suboptimal. To
capture both causal SNPs at least 11 SNPs must be selected in
ranking based on P-values or probabilities estimated under a
single causal variant assumption. As opposed to existing ap-
proaches, CAVIAR selects both SNPs in the 95% causal set
together with five additional variants. The gain in accuracy
of our approach comes from accurately disregarding SNP30–
SNP35 from consideration since their effects can be captured
by other SNPs.

Iterative conditioning is suboptimal in statistical
fine mapping

We performed simulations to assess the performance of var-
ious approaches for identification of the causal variants in
fine-mapping studies. In each simulation, we randomly selected
one of the SNPs in this region as a causal SNP and generated
association statistics for the 35 SNPs, using our data-generating
model (seeMaterials and Methods). We set the statistical power
at the causal SNP to be 50% at the genome-wide significance
level of a= 1028. This way, on average, the causal SNP statistic
is significant in half of the simulation panels, and the causal
SNP does not always attain the peak statistic in the region.
Using this procedure, we generated 1000 simulation panels.
Figure 1, C and D, indicates the ranking of the causal SNP
for both regions, where the x-axis is the ranking of the true
causal SNP and the y-axis is the number of simulations where
the true causal SNP has that specific ranking. We observe the
top k SNP where k is set to one and fails to find the true
causal SNP 5–40% of the time, depending on how complex
the LD pattern is in the region. Furthermore, this result illus-
trates that the first step of the conditional method, which

selects the most significant SNP, will fail to select the right
SNP 5–40% of the time.

CAVIAR outperforms existing approaches in
fine mapping

We used HapGen (Spencer et al. 2009) to simulate fine-mapping
data across European populations in the 1000 Genomes pro-
ject (Abecasis et al. 2010) across regions consisting of 50
SNPs. We randomly implanted one, two, or three causal SNPs
in each region and then simulated case–control studies. We
performed a t-test for each SNP to obtain the marginal statis-
tical scores for each SNP. After obtaining the statistical scores
and the LD correlation between each SNP, we applied our
method. Figure 3 illustrates the recall rate and the size of the
causal set for our method and the two competing methods
(conditional and posterior methods). We define recall rate as
the fraction of simulations where all the true causal SNPs are
identified. The x-axis indicates the number of true causal SNPs
implanted in each region. First we compared the recall rate of
a probabilistic method that assumes a single causal variant
[1-Post (Maller et al. 2012)] and CAVIAR. In simulations of
a single causal variant both methods are well calibrated while
in scenarios with multiple causals CAVIAR is the only approach
that maintains a well-calibrated recall rate. Our simulations
suggest that the approach that assumes a single causal var-
iant will attain miscalibrated recall rates at loci with multiple
causal variants.

In the above experiments, CAVIAR shows the best recall
rate compared to the competing methods. However, the number
of SNPs selected by CAVIAR in the causal set is slightly higher
than in those methods. To make the comparison among these
methods fair, we extended the conditional method (CM) and
the 1-Post method such that the number of SNPs selected by
each method is equal to the number of SNPs selected by
CAVIAR. The extensions of the CM and the 1-Post method are
referred to as the ECM and the E1-Post method. As shown in
Figure 4, our method has the highest recall rate among the
competing methods for all the scenarios. Furthermore, we
compared the ranking of the causal SNPs for each method.
We vary the number of SNPs selected by each method from 1
SNP to 10 SNPs and compare the recall rate. The results are
shown in Figure 5. The x-axis is the number of SNPs selected
by each method and the y-axis is the recall rate for each
method.

We also assessed the impact of the number of individuals
in the fine-mapping study. As expected, we find that CAVIAR’s
confidence set decreases with increased sample size (see
Figure S1).

Fine mapping of the CHI3L2 locus

To validate simulation results, we applied CAVIAR to the
CHI3L2 region, using the gene expression as a phenotype.
This locus was extensively fine mapped with the true causal
variant already identified (Cheung et al. 2005; Chen and
Witte 2007; Malo et al. 2008). We obtained marginal statis-
tical scores for each SNP from the Malo et al. (2008) study
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and inferred LD patterns from the HapMap data for 57 un-
related individuals of European ancestry (CEU), the same
set of individuals used by previous studies. The result of our
method and the LD pattern is shown in Figure 6. CAVIAR selects
rs755467, rs961364, rs2764543, rs2477578, rs3934922, and
rs8535 for the causal set. Cheung et al. (2005) illustrate the
rs755467 SNP is the causal SNP through luciferase reporter and
haplotype-specific chromatin immunoprecipitation assays. Fur-
thermore, using the CM and conditioning on the known true
causal SNP (rs755467), we obtain the secondary signal in
the region, which is rs2764543. The E1-Post 95% causal set
selected the same six SNPs as CAVIAR. The ECM selects
rs755467, rs2274232, rs2182115, rs2764543, rs2820087,
and rs11583210 for the causal set.

Materials and Methods

The traditional fine-mapping study approach

A fine-mapping study is a procedure to identify, or predict,
the disease causing SNPs from a given GWAS data set. It is
assumed that the genotype data are dense enough, such that
all the causal SNPs are genotyped, including the SNPs that
are perfectly correlated to the causal variants other than
SNPs. With the development of sequencing technologies, this
assumption is becoming more realistic. Therefore, we assume
that there exists a true label for each genotyped SNP on
whether or not the SNP is causal in disease.

The traditional fine-mapping study approach performs
the following iterative procedure to predict the causal SNPs

Figure 1 (A and B) Simulated data for two regions with different LD patterns that contain 35 SNPs. A and B are obtained by considering the 100 kbp
upstream and downstream of rs10962894 and rs4740698, respectively, from the Wellcome Trust Case–Control Consortium study for coronary artery
disease (CAD). (C and D) The rank of the causal SNP in additional simulations for the regions in A and B, respectively. We obtain these histograms from
simulation data by randomly generating GWAS statistics using multivariate normal distribution. We apply the simulation 1000 times.
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within a genomic region. First, the association statistic of
each SNP is computed and the most strongly associated SNP
is chosen as a causal SNP. Intuitively, if the region contains

a single causal SNP, then the most significantly associated
SNP is likely to be the causal SNP itself (the assumption in
the traditional fine-mapping approach). However, the re-
gion may contain multiple causal SNPs, and furthermore
these SNPs may be correlated or in LD. In this scenario,
the association statistic at a causal SNP may be contam-
inated by the presence of the causal SNPs that are in LD.
To control for this contamination, at each iteration, the
traditional approach recomputes the association statistic
of the SNPs while conditioning on the presence of the
causal SNPs that are identified in each iteration of the
method. Given a statistic threshold, if the statistic of
the most strongly associated SNP exceeds the threshold, the
SNP is chosen as a causal SNP, or otherwise the procedure
terminates.

Figure 2 Simulated association with two causal SNPs. (A) The 100-kbp
region around the rs10962894 SNP and simulated statistics at each SNP
generated assuming two SNPs are causal. In this example SNP25 and
SNP29 are considered as the causal SNPs. However, the most significant
SNP is the SNP27. (B) The causal set selected by CAVIAR (our method) and
the top k SNPs method. We ranked the selected SNPs based on the
association statistics. The gray bars indicate the selected SNPs by both
methods, the green bars indicate the selected SNPs by the top k SNPs
method only, and the blue bars indicate the selected SNPs by CAVIAR
only. The CAVIAR set consists of SNP17, SNP20, SNP21, SNP25, SNP26,
SNP28, and SNP29. For the top k SNPs method to capture the two causal
SNPs we have to set k to 11, as one of the causal SNPs is ranked 11th
based on its significant score. Unfortunately, knowing the value of k
beforehand is not possible. Even if the value of k is known, the causal
set selected by our method excludes SNP30–SNP35 from the follow-up
studies and reduces the cost of follow-up studies by 30% compared to
the top k method.

Figure 3 Comparison of each method’s performance on the simulated
GWAS data. (A) The recall rate for each method. (B) The number of causal
SNPs selected by each method. CM is the conditional method and 1-Post
is the method proposed by Maller et al. (2012). In both panels the x-axis is
the true number of causal SNPs that we have implanted in each region. In
the scenario of one causal SNP both our method and 1-Post have similar
results as both methods use the 95% confidence interval to select a SNP
as causal. However, for scenarios in which we have more than one causal
SNP, our method outperforms 1-Post.
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We show through empirical and theoretical results that
the traditional approach is underpowered to identify the
causal SNP compared to our method. In the next section we
present a data-generating model for fine-mapping studies.

Data-generating model for fine-mapping studies

We consider a GWAS on a quantitative trait where n indi-
viduals are genotyped on m SNPs. For individual k, we are
given the phenotypic value yk and the genotype values at m
SNPs, where for SNP i, gik 2 {0, 1, 2} is the minor allele
count. Let y denote the (n 3 1) vector of the phenotypic
values and xi denote the (n 3 1) vector of normalized ge-
notype values at SNP i such that 1Txi = 0 and xTi xi ¼ n:

Let us assume that a SNP c is the only SNP involved in the
disease. We assume the data-generating model follows a lin-
ear model,

y ¼ m1þ bcxc þ e;

where 1 denotes the (n 3 1) vector of ones, m is the in-
tercept, bc is the effect-size of SNP c, and e is the (n 3 1)
vector of i.i.d. and normally distributed residual noise,
where e � N (0, s2I) with covariance scalar s and (n 3
n) identity matrix I.

The estimates for m and bc are obtained by maximizing
the likelihood function,

y � N �m1þ bcxc;s
2I
�
;

L�yjm;bc;s
2� ¼ ��2ps2I

��2ð1=2Þ
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The association statistic for SNP c, denoted by Sc ¼ ŝc;
follows a noncentral t distribution, which is the ratio of
a normally distributed random variable to the square root
of an independent chi-square-distributed random variable,

ŝc ¼
ffiffiffi
n

p
b̂c

.
sffiffiffiffiffiffiffiffiffiffiffiffið1=nÞp � ffiffiffiffiffiffiffiffi
êT ê

p
=s
	 ¼ nb̂cffiffiffiffiffiffiffiffi
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p
and n d.

f. Note that

ê ¼ y2 m̂12 b̂cxc;
êT ê
s2 � x2n;

where x2
n denotes the chi-square distribution with n d.f. and

it can be shown that êT ê is independent of b̂c:

For simplicity, we assume the sample size n is large
enough, such that the association statistic Sc is well approxi-
mated by a normal distribution with NCP lc and unit variance

Sc � tlc;n � Nðlc; 1Þ:

Furthermore, if SNP i is correlated with a disease-in-
volved SNP c with coefficient r, i.e., ð1=nÞxTi xc; the estimate
of its effect size follows

b̂i ¼
xTi y
n

;
ffiffiffi
n

p b̂i
s
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The covariance between the two normal random variables
reads
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ffiffiffi
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T
i Var ðyÞxc ¼ r:

Therefore, the joint distribution of the association statistics of
two SNPs in a region follows a multivariate normal distribution,


Si
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�
� N

�

li
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�
;



1 rij
rij 1

��
:

If we assume the ith SNP is causal, we have lj = rijli, and if
we assume the jth SNP is causal, we have li = rijlj. Given
the significance level a and the observed value of the test
statistic ŝi; the SNP is deemed significant, or statistically
associated, if ĵsij.F21ð12a=2Þ; where F21(.) is the quan-
tile function of the standard normal distribution.

The equivalent derivation showing that the joint distri-
bution of the association statistics in case/control studies

Figure 4 Comparison of recall rates. ECM and E1-Post are our extension
of the CM and the 1-Post method, respectively, where we allow them to
select the same number of causal SNPs as CAVIAR.
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follows the multivariate normal distribution has been shown
in Han et al. (2009).

A new framework for computing the posterior
probability of causal SNP statuses from GWAS data

Consider we are given a set of m SNPs M, with their pair-
wise correlation coefficients S. We introduce a new param-
eter, c, an (m 3 1) causal status indicator vector, with ci
denoting an element for that vector. There are three possible
causal statuses for each SNP: positive effect (ci = +1), neg-
ative effect (ci = 21), and no effect (ci = 0). The indicator
vector c can take 3m possible causal statuses, denoted by the
set C, with 3m 2 1 of them having at least one causal SNP.

We denote the association statistics of the SNPs by the
(m3 1) vector S= [S1 . . . Sm]T, which follows a multivariate
normal distribution,

S � NðlcSc;SÞ; (1)

where, for simplicity in presenting the model, we assume all
causal SNPs have the same NCP, lc. Later, we relax this as-
sumption by utilizing the standard Fisher’s polygenic model
that effects size follows a normal distribution with mean zero.
Although the above equation holds for common variants, we
can extended it to rare variants through careful regularization
of normalized association scores (z-scores) (Navon et al. 2013).

Let c* 2 C denote a particular causal status. We define
a prior probability over the possible causal statuses, P(c),

which assumes that each variant has a probability of being
causal in either direction, g,

PðcÞ ¼
Y

gjcijð12 2gÞð12jcijÞ:

Below, we extend the prior to allow for incorporating
functional information into our approach.

Given the observed association statistics of the m SNPs,
ŝ ¼ ½ ŝ1 :  :  : ŝm �T ; the posterior probability of the causal sta-
tus Pðc*��ŝÞ can be expressed as

P
�
c*
��̂s	 ¼

P
�
ŝjc*

	
P
�
c*
	

X
c2CP

�
ŝjc
	
P
�
c
	: (2)

Given a set of SNPs K ⊂M, we denote the set of causal SNP
configurations rendered by K with CK, which excludes all causal
SNP configurations having a SNP outside of K as causal. Note
that our definition for CK includes the null configuration of hav-
ing no causal SNPs as well. Using CK, we can compute the pos-
terior probability of K to include, or capture, all the causal SNPs,

PðCKjŝÞ ¼
X
c2CK

PðcjŝÞ:

We denote the value of this posterior probability with r,
where r ¼ PðCKjŝÞ; and refer to it as the confidence level

Figure 5 The recall rate compression for
different methods while selecting the
same number of causal SNPs. The x-axis
is the number of SNPs selected by each
method and the y-axis is the recall rate
for each method. A, B, and C represent
the scenarios where we have implanted
one, two, and three causal SNPs, respec-
tively. In the scenario of only one causal
SNP CAVIAR, top k SNPs, and the 1-Post
method obtain similar ranking for SNPs.
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of K in capturing the causal SNPs. Similarly, we refer to K as
a “r confidence set of causal SNPs” or a “r confidence set.”

Given a minimum confidence threshold r*, there can be
many confidence sets, each having a confidence level that is
greater than the threshold. Among all these sets, the ones
with a smaller number of SNPs are more informative, or
have higher resolution, in locating the causal SNPs. Then,
the problem we are interested in is to find the r* confidence
set with the minimum size,

P
�CK*��ŝ�$ r*;

where K* has the minimum size.

Generalized framework for a locus with multiple causal
SNPs with different NCP values

In the previous section we consider the case where all the
causal SNPs in a locus have the same NCP. Thus, lcc indicates
a point in a Rm space and the coordinates corresponding to
the causal SNPs have value of 6lc and the coordinates cor-
responding to the noncausal SNPs have a value of zero. We
relax this assumption to instead have the NCP for each causal
SNP drawn from a distribution with mean 0 and variance s2.
This is the standard assumption of Fisher’s polygenic model.

We define the prior probability on the vector of NCP lc

for a given causal status c, using the multivariate normal
probability

ðlcjcÞ � N ð0;ScÞ;

where Sc is constructed as follows:

Scfi; jg ¼
8<
:

0 i 6¼ j
s if i is causal
e if i is not causal:

2 is a small constant that ensures that the matrix Sc is of full
rank. The final prior is then

Pðc;lcÞ ¼ PðcÞPðlcjcÞ
¼ Q

i¼1
gjcijð12 gÞ12jcijfðlc; 0;ScÞ; (3)

where f(lc, 0, Sc) is the probability density function of the
causal status (lc|c) � N (0, Sc). We use the above gener-
alization as a prior on the mean of the distribution indicated
in Equation 1. We know the LD between two SNPs is sym-
metric (ST = S) and the NCP l = Slc,

l � Nð0;SScSÞ:

Thus, the association statistics of the SNPs follow a multi-
variate normal distribution,

S � Nð0;Sþ SScSÞ:

Optimization

To compute the posterior probability for each set, which is
shown in Equation 2, we calculate the summation over the
likelihood of all the possible causal statuses. Unfortunately,
computing this summation that is the denominator of the
Equation 2 is computationally intractable in the general case
(multiple causal SNPs with different NCP values). Thus, to
simplify the calculation we assume the total number of causal
SNPs in a region is bounded by at most six causal SNPs. Al-
though this assumption simplifies the denominator in Equation
2, to detect the minimum causal set still we have to con-
sider all the possible causal statuses. We utilize the following
greedy algorithm to make the detection of the minimum
causal set tractable. In each iteration of the greedy algorithm
we select a SNP to be causal that increases the posterior
probability the most. The process of selecting SNPs to be
causal continues as long as the posterior probability of the
causal set is at least a r fraction of the total posterior proba-
bility of the data.

Using simulated data, we show in Supporting Information,
File S1, and Table S3 the proposed greedy method results are
similar to the results obtained by solving Equation 2 exactly.
In addition, for each causal status we define a prior. To com-
pute the prior, we assume each SNP is independent and the
probability of a SNP to be causal is equal to 1022 (Eskin 2008).

To identify the causal SNP sets, we need to consider all
possible subsets of the SNPs that number 2m (in the case of
multiple causal SNPs with different NCP values, we consider
two causal statuses for each SNP: have an effect or have no
effect) when m is the number of SNPs in the region. In the
process of computing the posterior probability for each of
these possible subsets, we need to enumerate over each

Figure 6 The 95% causal set selected by CAVIAR for the CHI3L2 region.
The red triangle represents the true causal SNP that is known using
experimental methods (Cheung et al. 2005) and the green square repre-
sents the causal SNP detected using the CM conditional on the true
causal SNP (rs755467).
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possible causal status for each SNP. There are two possible
causal statuses for each SNP. The SNP has an effect or the
SNP has no effect. Thus for each possible subset of SNPs,
we need to consider 2m possible causal statuses for the
SNPs. For each of these statuses, the multivariate normal
distribution is utilized to compute the likelihood of the
data given the causal statuses. Thus to identify the best
causal SNP set, we must perform a significant amount of
computation.

The computational burden is high because we need to
consider every possible subset of SNPs to be in the causal set
and for each subset we need to enumerate all of the possible
causal SNP statuses. We propose two ideas to reduce the
computational burden. The first idea only reduces the possible
causal status that we need to consider for each subset. The
second idea utilizes a greedy algorithm to identify the subset of
SNPs in the causal set by eliminating our need to consider all
possible subsets.

To reduce the computational burden, we assume in each
region we have at most six causal SNPs. If we consider only
causal statuses that have a total of i causal SNPs, there are
2i
�m

i

	
possible different causal statuses. Thus, for the case

where we consider only at most six causal SNPs we haveP6
i¼12

i
�m

i

	
possible causal statuses, which reduces the

number of possible causal statuses. The intuition behind this
assumption lies in the fact that causal variants are relatively
rare. Using the simulated data we show (Table S3) the set
obtained by considering only six causal SNPs in a region is
highly similar to the set obtained by considering all the 2m

causal statuses.
The assumption of at most six causal SNPs reduces the

computational burden to compute the posterior probability
for each subset of SNPs. However, to identify the causal
SNP sets, we need to select the smallest subset of SNPs
that has the desired posterior probability. This process can
be extremely slow in some cases as we need to consider all
the possible subsets of SNPs. We propose an efficient greedy
method where in each iteration of the method we select a
SNP that increases the posterior probability the most. We
continue the process of adding SNPs to the causal set until
we have the desired posterior probability for the causal set.

Incorporating functional data as a prior into CAVIAR

Although we consider a simple prior in our model, CAVIAR
can easily be extended to incorporate external information
such as functional data or knowledge from previous studies.
This external information can be incorporated into CAVIAR
as a prior. We allow the probability that a variant is part of
a causal set to vary from variant to variant, depending on
prior information. This variant-specific probability is denoted gi.
We extend Equation 3 and instead of P(c) as the prior for each
causal status, we compute P(c|g= [g1, g2, . . ., gm]) as follows:

PðcjgÞ ¼
Ym
i¼1

g
jcij
i ð12giÞ12jcij:

Conditional method for fine mapping

Here we show how to compute the statistics for the rest of
the SNPs, given we have selected a SNP as the causal SNP.
For simplicity we use only two SNPs to compute the
conditional statistics. Thus, we have

�
SijSj ¼ ŝj

� � N
�
bi þ rij

�
ŝj2bj

	
; 12 r2ij

	
:

Conditioning on one SNP is equivalent to making the
statistics for that SNP equal to zero. Moreover, the variance
of the remaining SNP is one. As a result,

�
Snewi

��̂sj� � N

0
B@ ŝi 2 rijŝjffiffiffiffiffiffiffiffiffiffiffiffiffi

12 r2ij
q ; 1

1
CA:

We use the iterative method to obtain all the causal SNPs.
In each iteration of the method we pick the SNP with the
lowest P-value (the highest statistics) and recompute the
statistics of the remaining SNP, using the formula men-
tioned above. We keep repeating this process until no sig-
nificant SNP exists. In our experiment we set the significant
threshold value to 0.001.

Discussion

Over the past few years, GWAS have identified hundreds of
genetic loci harboring genetic variation affecting disease risk
for hundreds of common diseases (Bauer et al. 2013; Coram
et al. 2013; Diogo et al. 2013; Gong et al. 2013; Marigorta
and Navarro 2013; Peters et al. 2013; Wu et al. 2013). Iden-
tifying the causal genetic variants affecting disease risk at
these loci has the potential of providing clues to the mecha-
nism of the disease, which can lead to identification of better
targets for drug terrapins. Unfortunately, the pervasive LD
and the uncertainty of data make the task of deconvoluting
causal variants from tagging ones very challenging.

In this article, we present a novel framework for identify-
ing the causal variants underlying GWAS risk loci. The key
idea behind our framework is that instead of considering each
variant one at a time, we instead analyze all of the variants
in the entire locus simultaneously. The result of our method
is a set of variants that with high probability contains (or
captures) all the causal variants. Through extensive simu-
lation results, we show that our approach is superior to
existing methods in reducing the overall number of variants
to be examined in functional follow-up to identify the causal
variants.

In our method we make a series of assumptions to ease
the computational burden and to simplify the model. We
make the assumption that the number of causal SNPs in a
region, in which we are interested to preform fine map-
ping, is at most six. Our method also makes the standard
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assumption of Fisher’s polygenic model that effects size fol-
lows a normal distribution with mean zero. This assumption
is the basis of many recent approaches to estimate heritabil-
ity (Yang et al. 2011a,b; Speed et al. 2012; Kostem and
Eskin 2013) and to correct for population structure in GWAS
(Kang et al. 2008; Lippert et al. 2011; Listgarten et al. 2012;
Segura et al. 2012; Zhou and Stephens 2012).

Our method also assumes that we have genotyped each
variant in the locus. With the increasing cost efficiency of
high-throughput sequencing, this assumption is becoming
more and more realistic. One future direction of research is
to extend this approach to handle imputed association sta-
tistics. In this case, only a relatively small number of indi-
viduals in a GWAS must be fully sequenced at the locus while
for the rest of the individuals the sequenced individuals can
be used as an imputation reference panel.

Our method takes as input the association statistics and
linkage disequilibrium patterns in the locus to identify the
set of variants that are likely to contain the causal variants.
The minor allele frequencies of the variants will affect the
magnitude of the observed statistics as well as the linkage
disequilibrium patterns. However, our approach is applied
only to loci that harbor significant association signals at in-
dividuals’ variants. These types of signals are most likely
driven by common variants. Most likely, additional rare var-
iants in the locus that also have effects on the phenotype will
not be selected because their association statistics are low.
Extending our approach to discover additional rare variants
in a locus is an interesting direction for future work.

CAVIAR can easily take into account data on putative
function of variants either from functional genomic data
(Bernstein et al. 2012) or from eQTL data that have been
recently shown to help facilitate fine-mapping studies (Hoffman
et al. 2012; Edwards et al. 2013). The way that this informa-
tion can be incorporated is by assigning each variant a prior
probability of affecting the trait (Eskin 2008; Jul et al. 2011;
Darnell et al. 2012). In this framework, the functional genomic
data are converted to a probability between 0 and 1 of that
variant having an effect on the trait. These priors then affect
the likelihood of each causal status and then ultimately are
incorporated into the final causal set.

The method presented in this article has some conceptual
similarities to methods for identifying associations in regions
where there is more than one associated variant. These methods
have become very popular in the context of rare variant as-
sociation studies (Li and Leal 2008; Madsen and Browning
2009; Jul et al. 2011; Long et al. 2013; Navon et al. 2013).
However, there are other methods that also consider common
variants (Wu et al. 2011; Yi et al. 2011). Our method differs
from these approaches in that our goal is to narrow down the
possible set of variants in a locus that we suspect is associated
while the previous approaches utilize multiple variants to
attempt to identify an associated locus.

Compared to methods for association testing, methods
for fine mapping, including the proposed method, are more
complicated and make many implicit or explicit assumptions.

For example, our method makes explicit assumptions about
the effect size of causal variants while association methods
make no such assumptions. In our view, this is inherent to
the fact that fine-mapping methods attempt to control false
negatives compared to association methods that attempt to
control false positives. To control false negatives, fine-mapping
methods must make explicit assumptions about the “alternate”
distribution to understand how well the data fit the assump-
tions. Association methods on the other hand, to control false
positives, need only to make assumptions about the null distri-
bution, which in the case of association studies is the assump-
tion that all of the variants at a locus have no effects. This
asymmetry characterizes the fine-mapping problem and compli-
cates attempts to merge fine mapping and association into
a single framework.
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FILE S1

MATERIALS AND METHODS

Effect of different values of ρ on the causal sets

In our simulations, we used the 100kb region that contains 35 SNPs on chromosome 9, which

is centered by the most significantly associated SNP (rs1333049) in the coronary artery disease

(CAD) study.

In each simulation, we randomly select one of the SNPs in this region as a causal SNP and

generate GWAS statistics for the 35 SNPs using our data-generating model. We set the statistical

power at the causal SNP to be 50% at the genome-wide significance level of α = 10−8. This way,

on average, the causal SNP statistic is significant in half of the simulation panels, and the causal

SNP does not always attain the peak statistic in the region. Using this procedure, we generated

1000 simulation panels.

We illustrate the performance of our method when we have implanted one causal SNP in

Table S1. We range the ρ∗ from 0.5 to 0.95. Clearly, we can see as the ρ∗ increases the size of the

configuration set and the recall rate increase as well. It is worth mentioning the recall rate obtained

from the simulation is always higher than the value of ρ∗, as ρ∗ is the lower bound for the recall

rate guaranteed by our method. Table S2 shows the results when we have implanted two causal

SNPs in our simulation data sets.

Comparison between the exact and greedy solution

In this section we perform simulation to indicate the results obtained from the greedy method is

close to the solution obtained from solving the exact posterior probability. We compared the size

of causal set and the recall rate of both methods. In this simulation we use a region that consist of

15 SNPs, this region is selected from the WTCCC study (Burton, Clayton, Cardon, et al. 2007).
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We generated the phenotypes similar to previous sections of the paper. As shown in Table S3 for

different values of ρ both methods tend to have similar recall rates. Moreover, the size of the causal

sets are very close, but the exact solution tends to have smaller causal set (fewer SNPs) compared

to the greedy solution.

Conditional method using the marginal z-scores

Here we show how to compute the statistics for the rest of the SNPs given we have selected a SNP

as the causal SNP. We use ẑi and βi to represent the marginal statistics and the SNP effects of i-th

SNP. As both the phenotype and genotype for each SNP are standardized, which has mean zero

and variance of one, we have V ar(xi) = E[xi
2] − E[xi]

2 = 1, thus xi
Txi = n where n is the

number of individuals in the study. We compute the effect of i-th SNP given we have selected the

j-th SNP as follows:

(β̂i|β̂j) = (xi
Txi)

−1xi
T [y − xj(xj

Txj)
−1xj

Ty)] (1)

= (xi
Txi)

−1xi
Ty − (xi

Txi)
−1xi

Txj(xj
Txj)

−1xj
Ty (2)

=
xi

Ty

n
− rijxj

Ty

n
(3)

= cor (xi,y)− rij cor (xj ,y) (4)

=
ẑi√
n
− rij

ẑj√
n

(5)

Where ẑi is the marginal z-score for the i-th SNP, which is equal to cor (xi,y)
√
n. Next, we

obtain the variance of the conditional effect size using the equations 5.

Var(β̂i|β̂j) =
1

n
−
r2ij
n

(6)

The new z-score is computed using equations 5 and 6. The new z-score is computed as follows:
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ẑnewi =
(β̂i|β̂j)√
Var(β̂i|β̂j)

=
ẑi − rij ẑj√

1− r2ij
(7)

In each iteration of the method we pick the SNP with the lowest p-value (the highest statistics)

and re-compute the statistics of the renaming SNP using the Equation 7. We keep repeating this

process until there exist no significant SNP. In our experiment we set the significant threshold value

to 0.001. This iterative process is used for the conditional method (CM).

A trade off between the number of individuals collected and the

number of SNPs required validation

The number of SNPs selected by CAVIAR decreases with an increase in the number of individuals

collected in each study which makes it easier to differentiate the causal SNPs from the other SNPs

and this reduces the number of SNPs required to be validated.

We used HapGen (Spencer, Su, Donnelly, and Marchini 2009) to simulate fine-mapping data

across European populations in the 1000 Genome project(Abecasis, Altshuler, Auton, et al. 2010)

across regions consisting of 50 SNPs. We randomly implanted one causal SNPs in each region

and then simulated case-control studies. We perform a t-test for each SNP to obtain the marginal

statistical scores for each SNP. After obtaining the statistical scores and the LD correlation between

each SNP, we apply CAVIAR. We compute the average size of the causal set selected by CAVIAR.

The results are shown in Figure S1.
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Table S1: Relation between the ρ∗, configuration size and recall rate in regions with low amounts

of LD. Recall rate indicates the percentage of times where we picked the true causal SNP in our

configuration. The configuration size is the average number of SNPs which is predicated to be

causal by our method. For each value of ρ∗ we run the experiment for 1000 times.

ρ∗ Configuration Size Recall Rate(%)

0.5 1.009862 ± 0.117203 94.67456

0.55 1.04± 0.1961554 97.2

0.6 1.066667 ± 0.2572115 96.19048

0.65 1.094412 ± 0.2992068 98.07322

0.7 1.108 ± 0.329474 98.8

0.75 1.136905 ± 0.3498184 99.40476

0.8 1.152642 ± 0.3599944 99.60861

0.85 1.173307 ± 0.3943774 99.8008

0.9 1.177083 ± 0.3981898 99.9

0.95 1.219665 ± 0.4484662 100
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Table S2: Relation between the ρ∗, configuration size and recall rate in regions with high amounts

of LD. Recall rate indicates the percentage of times where we picked the true causal SNP in our

configuration. The configuration size is the average number of SNPs which is predicated to be

causal by our method. For each value of ρ∗ we run the experiment for 1000 times.

ρ∗ Configuration Size Recall Rate(%)

0.5 2.149402 ± 1.047566 62.94821

0.55 2.408348 ± 1.241056 70.96189

0.6 2.663462 ± 1.532 75.96154

0.65 2.921642 ± 1.452493 79.29104

0.7 3.28839 ± 1.716047 81.64794

0.75 3.64497 ± 2.10312 86.39053

0.8 3.978102 ± 2.067303 89.59854

0.85 4.684601 ± 2.73976 93.32096

0.9 5.121377 ± 2.78669 96.37681

0.95 6.598058 ± 3.598475 98.83495
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Table S3: Comparison between the solution obtained from solving the posterior probability exactly

or using the greedy method.

ρ∗ Exact Solution Greedy Solution

Configuration Size Recall Rate(%) Configuration Size Recall Rate(%)

0.5 2.025097 ± 0.8759341 67.3 2.015355 ± 0.9007232 67.8

0.55 2.581 ± 0.9276084 70.7 2.132411 ± 1.100085 79.5

0.6 2.420152 ± 1.076278 79.4 2.433962 ± 0.784 78.6

0.65 2.674721 ± 1.225183 81.2 2.750469 ± 1.187191 81.8

0.7 2.82397 ± 1.203071 85.2 2.811429 ± 1.218756 85.4

0.75 3.091085 ± 1.416079 87.4 3.124314 ± 1.37983 87.8

0.8 3.317526 ± 1.598748 91.1 3.274583 ± 1.554082 91.5

0.85 3.514395 ± 1.633862 93.2 3.537402 ± 1.570367 92.7

0.9 3.887064 ± 1.934519 95.6 3.859345 ± 1.922601 96.3

0.95 4.277992 ± 1.968794 99.6 4.165692 ± 1.938969 99.8
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Figure S1: The patterns between the number of individuals collected in each study and the number

of causal SNPs selected by CAVIAR. The black squares indicate the mean and the vertical lines

indicate the standard deviation of the number of SNPs selected by CAVIAR.
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