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ABSTRACT The relationship between quantitative genetics and population genetics has been studied for nearly a century, almost since
the existence of these two disciplines. Here we ask to what extent quantitative genetic models in which selection is assumed to operate
on a polygenic trait predict adaptive fixations that may lead to footprints in the genome (selective sweeps). We study two-locus models
of stabilizing selection (with and without genetic drift) by simulations and analytically. For symmetric viability selection we find that
�16% of the trajectories may lead to fixation if the initial allele frequencies are sampled from the neutral site-frequency spectrum and
the effect sizes are uniformly distributed. However, if the population is preadapted when it undergoes an environmental change (i.e.,
sits in one of the equilibria of the model), the fixation probability decreases dramatically. In other two-locus models with general
viabilities or an optimum shift, the proportion of adaptive fixations may increase to .24%. Similarly, genetic drift leads to a higher
probability of fixation. The predictions of alternative quantitative genetics models, initial conditions, and effect-size distributions are
also discussed.

QUANTITATIVE genetics assumes that selection on an
adaptive character involves simultaneous selection at

multiple loci controlling the trait. This may cause small to
moderate allele-frequency shifts at these loci, in particular
when traits are highly polygenic (Barton and Keightley
2002). Therefore, adaptation does not require new muta-
tions in the short term. Instead, selection uses alleles found
in the standing variation of a population. Genome-wide
polymorphism data and association studies suggest that this
quantitative genetic view is relevant (Pritchard and Di Rien-
zo 2010; Pritchard et al. 2010; Mackay et al. 2012).

Different types of selection on a trait, such as directional,
stabilizing, or disruptive selection, modify the genetic
composition of a population and favor either extreme or
intermediate genotypic values of the trait. In this study we
focus on stabilizing selection, which drives a trait toward
a phenotypic optimum. Many models of this common form
of selection have been analyzed. The central question in all
these studies has been whether stabilizing selection can
explain the maintenance of genetic variation. This is

considered an important question, as it has been known
for long that stabilizing selection exhausts genetic variation
(Fisher 1930; Robertson 1956), yet quantitative traits ex-
hibit relatively high levels of genetic variation in nature
(Endler 1986; Falconer and Mackay 1996; Lynch and Walsh
1998).

Here we ask a different question, namely how much
adaptive evolution is predicted by quantitative genetic
models of stabilizing selection? In contrast to quantitative
genetics, in population genetics and genomics our under-
standing of the genetics of adaptation has revolved in recent
years around the role of selective sweeps, i.e., signatures of
positive directional selection in the genome. The model un-
derlying this population genetic view of adaptation is that
of the hitchhiking effect developed for sexual species by
Maynard Smith and Haigh (1974). The hitchhiking process
describes how the fixation of a beneficial allele (starting
from very low frequency) affects neutral or weakly selected
variation linked to the selected site. For single and recurrent
advantageous alleles appearing in a population, the model
has been further developed by Kaplan et al. (1989), Stephan
et al. (1992), Stephan (1995), and Barton (1998). Later this
model was generalized to sweeps from standing variation or
soft sweeps taking into account that sweeps may also occur
if the initial frequency of the beneficial allele is not very low
(Innan and Kim 2004; Hermisson and Pennings 2005).
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Yet, despite its simplicity, the use of the hitchhiking
model was quite successful in recent years in detecting
evidence for positive directional selection in the genomes of
plant and animal species. Typically, many studies of pop-
ulations with large effective sizes have revealed numerous
genes or gene regions showing selective footprints
(reviewed in Stephan 2010). The detection of such foot-
prints is based on statistical tests that utilize several features
of the hitchhiking model such as reduced variation around
the selected site and shifts in the neutral site-frequency spec-
trum (Kim and Stephan 2002; Nielsen et al. 2005; Pavlidis
et al. 2010). However, it is remarkable that none of these
tests incorporates phenotypic information. If functional
studies were performed to reach an understanding of the
effects of selection, they were done in most cases only post
hoc, after a gene or gene region has been identified by
a sweep.

Recent theoretical work has addressed the question
whether and to what extent the quantitative and population
genetics views of adaptation are compatible with each other.
For instance, the following question was asked: Can the
quantitative genetics models of stabilizing selection also be
used to predict observed levels of selective fixations? Chevin
and Hospital (2008) presented a model for the footprint of
positive directional selection at a quantitative trait locus
(QTL) in the presence of a fixed amount of background
genetic variation due to other loci. This approach is based
on Lande’s (1983) model that consists of a locus of major
effect on the trait and treats the remaining loci of minor
effect as genetic background. This analysis predicts that
QTL of adaptive traits under stabilizing selection exhibit
patterns of selective sweeps only very rarely. de Vladar
and Barton (2011, 2014) studied a polygenic character un-
der stabilizing selection, mutation, and genetic drift. They
found sweeps after abrupt shifts of the phenotypic optimum,
without quantifying how often such signatures occurred. Fur-
thermore, Pavlidis et al. (2012) analyzed a classical multi-
locus model with two to eight loci controlling an additive
quantitative trait under stabilizing selection (with and with-
out genetic drift). Using simulations, they showed that multi-
locus response to selection often prevents trajectories from
going to fixation, particularly for the symmetric viability
model. They also found that the probability of fixation
strongly depends on the genetic architecture of the trait.

To understand these results in greater depth, we present
here an analysis of the two-locus model of an adaptive trait
under stabilizing selection and drift. This model is suffi-
ciently simple that analytical approximations can be used to
back up the simulations. We concentrate on the case of weak
selection. Given that we are interested in a comparison
between quantitative and population genetics and selection
coefficients estimated in molecular population genetics are
generally small (,1021), this parameter range appears to be
justified (Orr 2005; Turchin et al. 2012). We show that in
this realm quasi-linkage equilibrium (QLE) approximations
are possible. Furthermore, we address the question of initial

conditions, a subject that was neglected in all of the above-
mentioned studies. These, however, are important as the
two- and multilocus models of stabilizing selection have
generally multiple stable equilibrium states and hence vari-
ous basins of attraction, which may make the ensuing dy-
namics sensitive to the initial conditions.

Models

Symmetric fitness model

We consider two loci with two alleles each, A1 and A2 at
locus A and B1 and B2 at locus B. The effects of the alleles
A1, A2, B1, and B2 on a quantitative trait are 2 1

2gA;
1
2gA; 2

1
2gB;

and 1
2gB; respectively. Assuming additivity, the effects of

the gametes A1B1, A1B2, A2B1, and A2B2 are 2 1
2ðgA þ gBÞ;

2 1
2ðgA 2 gBÞ; 1

2ðgA 2 gBÞ; and 1
2ðgA þ gBÞ; respectively. The

resulting genotypic values are given by

B1B1   B1B2  B2B2
A1A1
A1A2
A2A2

0
@2gA2 gB 2gA 2gA þ gB

2gB 0 gB
gA 2 gB gA gA þ gB

1
A:

(1)

Without loss of generality, we assume 0 # gB # gA; i.e.,
locus A is the major and locus B the minor locus.

Under sufficiently weak selection (and/or for sufficiently
small genotypic effects), it may be assumed that the trait is
under quadratic stabilizing selection; i.e., the relative fitness
w(G) of individuals with genotypic value G is

wðGÞ ¼ 12 sG2; (2)

where s is the selection coefficient. The relative fitnesses of
all genotypes are then given by

B1B1 B1B2 B2B2
A1A1
A1A2
A2A2

0
@ 12 d 12 b 12 a

12 c 1 12 c
12 a 12 b 12 d

1
A;

(3)

where a ¼ sðgA2gBÞ2; b ¼ sg2
A; c ¼ sg2

B; and d ¼ sðgA þ gBÞ2
(Bürger 2000, p. 204). Neglecting mutation, the ordinary
differential equations (ODEs) determining the dynamics of
the system can then be written as

_x1 ¼ x1ðw1 2wÞ2 rD;
_x2 ¼ x2ðw2 2wÞ1 rD;
_x3 ¼ x3ðw3 2wÞ1 rD;
_x4 ¼ x4ðw4 2wÞ2 rD;

(4)

where x1, x2, x3, and x4 denote the frequencies of the gam-
etes A1B1, A1B2, A2B1, and A2B2, respectively, and D = x1x4 –
x2x3 is the linkage disequilibrium (LD). The parameter r is
the product of the recombination fraction and the birth rate
of the double heterozygotes (Crow and Kimura 1970, pp.
196–197). By setting the latter to 1, r is allowed to vary
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between 0 and 0.5. The marginal fitnesses wi (i = 1,..., 4) of
the gametes (Bürger 2000, p. 51) are

w1 ¼ 12 dx1 2 bx22 cx3;
w2 ¼ 12 bx1 2 ax22 cx4;
w3 ¼ 12 cx12 ax3 2 bx4;
w4 ¼ 12 cx22 bx3 2 dx4;

(5)

and the mean fitness of the population is

w ¼ 12 d
�
x21 þ x24

�
2 a

�
x22 þ x23

�
2 2bðx1x2 þ x3x4Þ

2 2cðx1x3 þ x2x4Þ: (6)

The equilibria of the system of ODEs (4) and their
stability properties are identical to those of the correspond-
ing discrete-time model, which has been studied by Gavrilets
and Hastings (1993) and Bürger and Gimelfarb (1999).
As reviewed in Bürger (2000, pp. 204-208), there are four
possible types of equilibria: (i) four monomorphic equilibria
(henceforth also called corner equilibria) corresponding to
the fixation of the gametes A1B1, A1B2, A2B1, and A2B2; (ii)
two edge equilibria with the major locus polymorphic and
the minor locus fixed; (iii) a symmetric (internal) equilib-
rium for which both loci are polymorphic, and (iv) two
unsymmetric equilibria. The conditions for the existence of
these equilibria, their explicit expressions, and their local
stability properties are summarized in Bürger (2000, pp.
205–208).

QLE approximation: To gain insight into the qualitative
behavior of the ODEs (4), it is convenient to reduce the
system from three to two dimensions. This is possible if, in
addition to weak selection, linkage is sufficiently loose
(relative to epistasis). This is the so-called QLE assumption,
which was introduced by Kimura (1965a). In other words,
we transform the gamete frequencies xi (i = 1,...,4) into the
frequencies p= x1 + x2 and q = x1 + x3 of the alleles A1 and
B1, respectively, and introduce linkage disequilibrium D as
the third new variable. Then we treat the latter as a fast
variable on the time scale of changes in p and q. The xi
can be expressed by the new variables as

x1 ¼ pqþ D;
x2 ¼ pð12 qÞ2D;
x3 ¼ ð12 pÞq2D;
x4 ¼ ð12 pÞð12 qÞ þ D:

(7)

Next, following Kimura we use Z = x1x4/x2x3 as a mea-
sure of LD. Then with the help of the ODEs (4), the time
derivative of Z can be written as (Crow and Kimura 1970,
p. 198)

1
Z
dZ
dt

¼ E2 rD
X4
i¼1

1
xi
; (8)

where E = w1 2 w2 2 w3 + w4 measures the strength of
epistasis. Note that in our case

E ¼ 2 2sgAgB ¼ const:, 0: (9)

In the QLE, Equation 8 can be evaluated to give the leading-
order term

D ¼ E
r
pqð12 pÞð12 qÞ: (10)

By inserting D into the variables xi in (7), the reduced sys-
tem of ODEs can be written in the form

_p ¼ sg2Apð12 pÞð12 2pÞ þ 2sgAgBpð12 pÞð122qÞ
þ O

�
s2
�
r
�
;

_q ¼ sg2Bqð12 qÞð12 2qÞ þ 2sgAgBqð12 qÞð12 2pÞ
þ O

�
s2
�
r
�
:

(11)

The local stability properties of the equilibria of Equa-
tions 11 are quite similar to those of the original system (4).
The two corner equilibria p̂ ¼ q̂ ¼ 0 and p̂ ¼ q̂ ¼ 1 are al-
ways unstable, as the respective eigenvalues are always pos-
itive. The biological explanation would be that the extreme
phenotypes are selected against when the optimum is the
double heterozygote. The corner equilibria p̂ ¼ 0;  q̂ ¼ 1 and
p̂ ¼ 1;  q̂ ¼ 0 are stable if the condition gA/2, gB , gA holds.

Edge equilibria exist for q̂ ¼ 0;  p̂ ¼ 1=2þ gB=gA; and for
q̂ ¼ 1;  p̂ ¼ 1=22 gB=gA (Bürger 2000, p. 205). The stabil-
ity condition is identical to that of the full system, as for
0, gB ,gA=2 both edge equilibria are stable.

The main difference from the full system (4) is that the
internal symmetric equilibrium is always unstable. This can
be seen by linearizing the reduced system about
p̂ ¼ q̂ ¼ 1=2. Neglecting higher-order terms in s, the Jaco-
bian of (11) becomes0

BBB@
2

sg2A
2

sgAgB

2 sgAgB
sg2B
2

1
CCCA; (12)

with its eigenvalues

l1 ¼ 1
4
s
�
2 g2A 2g2B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4A þ 14 g2Ag

2
B þ g4B

q �
;

l2 ¼ 1
4
s
�
2 g2A 2g2B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4A þ 14 g2Ag

2
B þ g4B

q �
:

(13)

Thus, for p̂ ¼ q̂ ¼ 1
2 the eigenvalues of this matrix have op-

posite signs, showing that this equilibrium point is unstable.
In fact, since the eigenvalues are real, p̂ ¼ q̂ ¼ 1

2 is a saddle
point. The two separatrices of this saddle divide the pq
phase plane into four regions with different dynamics. For
each of these regions the locally stable equilibrium points
are globally attractive. Unfortunately, the ODEs for the sep-
aratrices cannot be solved explicitly. However, numerical
analysis of the vector field of ODE (11) in the phase plane
shows that for each of these regions the locally stable equi-
librium points are globally attractive.
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The parameter ranges of stability for the different
systems depend on gB/gA and r/s. Inner stable equilibria
exist only in the full system (4). For r/s sufficiently large,
the stability properties of the edge equilibria are equivalent
in the full and the QLE system. Monomorphic equilibria are
also qualitatively equal in both systems.

Accuracy of the QLE approximation: We estimated the
range of parameter values for which we obtain a reasonably
good QLE approximation of the two-locus model. We
generated a set of random parameter values as described
in Table 1 and initial conditions for which we estimated the
trajectory from the full system and the QLE system. Then we
compared both trajectories by calculating the mean relative
error using the distance

dðtÞ ¼
��p9ðtÞ2 pðtÞ��

p9ðtÞ þ
��q9ðtÞ2 qðtÞ��

q9ðtÞ ;

summed over all times t. Here p9ðtÞ ¼ x1 ðtÞ þ x2 ðtÞ and
q9ðtÞ ¼ x1 ðtÞ þ x3 ðtÞ denote the trajectories from the full
model and p(t) and q(t) are the trajectories of the QLE
approximation.

In Figure 1 it can be seen that for increasing recombina-
tion rates the mean error is ,5%, which corresponds to
a threshold of 23 (blue to dark blue areas in Figure 1A
and green to yellow in Figure 1B). For example, assuming
2sgAgB = 0.04 would require a recombination rate above
0.07 to achieve an approximation of the two-locus model
with a relative error ,5%. Thus, when assuming a relatively
low selection coefficient of 0.01, the effects could be mod-
erately high, such as gA = gB = 1.5. For many parameter
ranges of interest this is a sufficiently good approximation.
Figure 1B demonstrates that the ratio of the effects has only
a marginal impact on the quality of the approximation.

Generalizing the symmetric fitness model

We have studied two generalizations of the symmetric
fitness model. First, in the general fitness model we relaxed
the restrictions on the relations of allelic contributions by
allowing for arbitrary values of the effects gA1, gA2, gB1, and

gB2 for the alleles A1, A2, B1, and B2, respectively. However,
by assuming that the absolute values of gA1 and gA2 are
equal or larger than those of gB1 and gB2, we further con-
sider locus A as the major and locus B as minor locus, and
the phenotypic optimum is again 0. In this case the geno-
typic values are

Second, in the shifted optimum model we consider the
quadratic optimum model with an arbitrary position u of
the optimum, yet assign the effects as in the symmetric fit-
ness model. Note that in both cases the genotypic fitnesses
may no longer conform to the symmetric viability model.

General fitness model: We established the ODEs in accor-
dance to those of system (4) and investigated this model
numerically. Furthermore, we derived the ODEs using the
QLE approximation as

_p ¼ 1
4
sðgA2 2gA1Þpð12 pÞ	ð3gA2 þ gA1Þ22ðgA22 gA1Þp

þ 4ðgB22 ðgB22 gB1ÞqÞ

þ O

�
s2
�
r
�
;

_q ¼ 1
4
sðgB22 gB1Þqð12 qÞ	ð3gB2 þ gB1Þ2 2ðgB2 2gB1Þq

þ 4ðgA2 2 ðgA2 2 gA1ÞpÞ

þ O

�
s2
�
r
�
:

(15)

Thus, if the effects gij are chosen as in the symmetric fitness
model, Equations 15 reduce to Equations 11. Furthermore, if
the parameter values follow constraints similar to those in
the symmetric fitness model, the equilibrium structure of
(15) is similar to that of (11). In particular, if the absolute
values of the effects of both loci are comparable, but their

Table 1 Parameter values used for simulations

Parameter Range Condition

gA Uniform(0, 2)
gB Uniform(0, 2) gB #gA

r Uniform(0, 0.5)
s Uniform(0, 0.1)

      B1B1      B1B2 B2B2

A1A1

A1A2

A2A2

0
BBBBBBB@

gA1 þ gB1 gA1 þ
gB1
2

þ gB2
2

gA1 þ gB2

gA1
2

þ gA2
2

þ gB1
gA1
2

þ gA2
2

þ gB1
2

þ gB2
2

gA1
2

þ gA2
2

þ gB2

gA2 þ gB1 gA2 þ
gB1
2

þ gB2
2

gA2 þ gB2

1
CCCCCCCA
:

(14)
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signs are opposite for each locus, the corner equilibria (1, 0)
and (0, 1) are locally stable and the other two are unstable.
If the absolute values of the effects of the major locus are
sufficiently large relative to those of the minor locus, we find
again two edge equilibria. For instance, the eigenvalues of
ðp̂; 0Þwith

p̂ ¼ 1
2
gA1 þ 3gA2 þ 4gB2

gA2 2 gA1
if   0, p̂, 1 (16)

are approximately

l1 � 2
1
2
sðgA1 þ gA2ÞðgB12 gB2Þ;

l2 � 2
1
8
sðgA12gA2Þ2:

(17)

Hence, ðp̂; 0Þ is locally stable if the parameters gA1 + gA2
and gB1 – gB2 have the same sign. Finally, the interior equi-
librium p̂ ¼ q̂ ¼ 1

2 exists and remains a saddle point if and
only if gA1 + gA2 + gB1 + gB2 = 0. Under more general
conditions, however, this equilibrium does no longer exist,
as we show in our simulations (Table 2).

Shifted optimum model: Here we use the fitness function

wðGÞ ¼ 12 sðG2uÞ2 (18)

for individuals with genotypic value G (Bürger 2000, p.
213). Then assuming that the effects follow those used in
the symmetric fitness model, the ODEs under the QLE ap-
proximation are

_p ¼ sg2Apð12 pÞð12 2pÞ þ 2sgAgBpð12 pÞð12 2qÞ
2 2sgAupð12 pÞ þ O

�
s2
�
r
�
;

_q ¼ sg2Bqð12 qÞð12 2qÞ þ 2sgAgBqð12 qÞð12 2pÞ
2 2sgBuqð12 qÞ þ O

�
s2
�
r
�
:

(19)

The equilibrium structure of this model is discussed in Bür-
ger (2000, pp. 213–214) as a function of u . 0. For u suf-
ficiently small, either two stable corner equilibria or two
stable edge equilibria exist, depending on the ratio gB/gA.
For u$ gA 2

1
2gB the corner equilibrium (0, 1) becomes un-

stable and the stable edge equilibrium

p̂ ¼ 0 and q̂ ¼ 1
2
þ gA

gB
2

u

gB
(20)

arises. For u$ gA þ 1
2gB both loci are under directional se-

lection driving the most extreme gamete to fixation.

Simulations

Simulation settings were kept identical throughout this
section. The model parameters were drawn according to
Table 1. Initial gamete frequencies were produced under the
assumption of no initial LD with the constraint

P4
i¼1xi ¼ 1:

Furthermore, initial conditions of the gamete frequencies
were drawn from allele frequencies that were distributed
as the standard neutral site-frequency spectrum (i.e., for
constant population size). To do so, we sampled the locus
frequencies from the neutral site-frequency spectrum (Grif-
fiths and Tavaré 1998, Equation 1.3) for a large sample size
(n = 50). This choice of initial conditions is biologically
more plausible than the random initial frequency values
used in Pavlidis et al. (2012). The initial gamete frequencies
are in our case clustered near the corner equilibrium (E8)
such that the frequencies of both alleles A1 and B1 are low.

For each parameter set the simulation was run for 10,000
generations forward in time. In total, 10,000 simula-
tions were produced. Various environmental settings were
analyzed: (i) a constant environment under which weak
stabilizing selection is acting on the trait, (ii) a constant
environment with strong stabilizing selection, (iii) a change
in the environmental parameter values describing stabilizing
selection (i.e., effects and selection coefficient), (iv) a change

Figure 1 Quality of the QLE approximation. (A) Logarithm of the mean relative error for recombination rate r vs. –E. (B) Logarithm of the mean relative
error for log(r/s) vs. gB /gA. Broadly, log(r/s) must be .2 to achieve an error ,5%.
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in the optimum of the trait, and (v) a general fitness model
as described above. For each environmental setting we stud-
ied the equilibrium structure of the dynamical system under
uniformly distributed parameter values. In addition, to be
biologically more realistic, we used specific distributions for
some parameters (e.g., effect sizes).

Deterministic simulations

For a given parameter set we solved the ODEs (4) using the
“ode23s” command in Matlab (v. 6). We refer to the param-
eter setting as constant environment when the parameters
of the symmetric fitness model are fixed during evolution. In
the following, we report the percentage of trajectories that
converge to a certain equilibrium point of the symmetric
model defined by Bürger (2000, p. 205).

First, in the case of a trait under stabilizing selection
according to the symmetric model (constant environment)
and weak selection (s , 0.1), we observed that only 2% of
all simulations end up in a symmetric, polymorphic equilib-
rium (E1, see Table 2). About 5% of all trajectories reached
one of the unsymmetric equilibria (E2 + E3). Edge equilib-
ria with locus A polymorphic and a loss at locus B were
reached in 35% of the cases (E4), whereas only 1% of the
runs ended at B with A polymorphic (E5). We also observed
that more trajectories (31%) approach the corner where
fixation occurs at A (and loss at B, E6) compared to fixation
at B (and loss at A, E7) (11%). The higher proportion of
fixations at A (rather than locus B) is due to the fact that A
has been chosen as major locus. Thus, in total 42% of the
trajectories were fixed at locus A (E6) or B (E7), whereas
43% converged to the polymorphic equilibria (E1–E5). Note
that the proportions of trajectories approaching the equilib-
ria E1–E9 do not add up to 100%. A substantial percentage
(�14%) did not converge within the simulated 10,000

generations, particularly when the effects and selection coef-
ficients are close to zero, and a small percentage of �2%
could not be assigned exactly to one of the possible equilib-
rium points due to numerical errors in the approximation of
the trajectory or unreached equilibrium states. Furthermore,
some corner equilibria (E8 and E9) are not approached at all
as they are unstable (see Bürger 2000, pp. 205–206).

To obtain a better insight into the stability of the equi-
librium states (Table 2), which we need to interpret some
of the simulation results, we calculated the distribution
of eigenvalues of the stable equilibrium points (Figure 2).
For simplicity we report only the maximum eigenvalue of
each equilibrium point that decides the stability and calcu-
late the mean of the maximum eigenvalues across all simu-
lations that reached the equilibrium point. The corner
equilibria where either fixation or loss at a locus occurred
(E6 and E7) have on average the lowest eigenvalues (E6,
20.033; E7, 20.043) and are therefore most stable. The
eigenvalues in the edge equilibria where locus A remains
polymorphic (E4 and E5) are much higher (E4, 20.009;
E5, 20.0085) than those of E6 and E7, and the same is true
for the symmetric equilibria (E1, 20.01). The unsymmetric
equilibria have the highest mean of the maximum eigenval-
ues (E2 + E3, 20.00034). The unsymmetric equilibria are
therefore the weakest of all stable equilibrium states. How-
ever, we observe that the degree of stability is not related to
the percentage of trajectories ending up in a state. For in-
stance, we found about 2.5 times more trajectories converg-
ing to unsymmetric equilibria compared to symmetric ones,
which may be attributed to the fact that they are randomly
distributed in the gamete space, whereas the symmetric
ones are located on a line.

Selective sweeps occur at loci when a beneficial allele
rises rapidly to fixation from a very low frequency. Fixation

Table 2 Proportions (%) of trajectories that lead to one of the equilibria in the deterministic case

Equilibrium Descriptiona
Constant environment,

weak selection
Constant environment,

strong selection
Changing

environmentb
Optimum
changec General fitnessd

E1 Polymorphic/symmetric 1.97 21.21 2.63 0 0
E2 + E3 Polymorphic/unsymmetric 4.6 4.46 2.73 1.91 2.19
E4 A polymorphic, loss at B 34.89 25.81 39.09 22.07 17.32
E5 A polymorphic, fixation at B 0.92 0.68 2.9 3.63 4.28
E6 Fixation at A, loss at B 31.44 31.16 41.58 7.76 14.53
E7 Loss at A, fixation at B 10.75 10.8 9.15 25.54 12.13
E8 Loss at A, loss at B 0 0 0 0 14.99
E9 Fixation at A, fixation at B 0 0 0 16.22 23.99

Sweep at A (fixation in E6)e 48.03 47.79 0.48 44.85 54.44
Sweep at B (fixation in E5)e 1.09 0 0 44.08 49.07
Sweep at B (fixation in E7)e 9.67 11.85 0.22 40.6 51.69
Sweep at A and B (fix. in E9)e 0 0 0 31.81 32.56
Transient 13.56 4.53 0 9.79 0
Unclassified 1.87 1.35 1.92 13.08 10.57
Sweeps total 16.15 16.17 0.22 20.61 24.09

a The equilibria E1–E9 are defined following Bürger (2000, p. 205).
b Environmental changes were defined by random change of the original effects and selection coefficient.
c In the shifted optimum model (see Models) the phenotypic optimum takes an arbitrary position 0 , u , 1.
d In the general fitness model the effects have arbitrary values sampled from (0, 2) such that A is major locus.
e Selective sweeps are defined here as trajectories that lead to fixation from very low initial frequencies (,0.01). Numbers denote the proportions of fixations with initial
frequencies ,0.01.
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of alleles can be observed in corner equilibria at one of the
loci (E6 and E7) or at both (E9). In Table 2 we report the
proportion of trajectories that reached these equilibria from
initially low frequencies (0.01). We observed that for 48% of
the trajectories that were going to fixation at A (and loss at
B, E6) the initial allele frequency was ,0.01 at locus A.
Hence, 48% of the fixations in E6 were classical sweeps
(according to our definition). In contrast, only 11% of the
12% observed fixations at B (from E5 and E7) were selective
sweeps. In total, �16% of all trajectories that ended in one
of the equilibria E1–E9 were selective sweeps. This propor-
tion of sweeps is much higher than that observed by Pavlidis
et al. (2012) who found that 4% of the trajectories were
sweeps when the initial conditions are randomly drawn
from [0, 0.2] 3 [0, 1.0] and selection is strong (0.1 # s #
1). Joint sweeps at both A and B do not occur in the de-
terministic case under stabilizing selection, as this state is
unstable. Selective sweeps occur exclusively for gA # 2gB
(as predicted in the Models section).

Second, to better understand why the number of sweeps
we observed is increased in comparison to Pavlidis et al.
(2012), we simulated the distribution of trajectories for
strong selection (with s sampled from [0.1,1]) and the same
initial conditions as used above. We found that 10 times
more trajectories converge to a polymorphic symmetric equi-
librium (E1) because the double heterozygote is most fit.
The proportions of sweeps at the edge equilibrium with A
polymorphic and fixation at B (E5, 0%), the corner with
fixation at A and loss at B (E6: 48%), and the other corner
with loss at A and fixation at B (E7: 12%) remain about the
same (16%). Hence, the difference from our result is largely
attributable to the fact that in the standard neutral frequency

spectrum that we used here to determine the initial condi-
tions, most initial frequencies are small.

We also estimated the mean time to equilibrium under
weak selection. For the trajectories that lead to adaptive
fixations the mean time to equilibrium was �476 genera-
tions, whereas for trajectories that lead to other equilibria
(including the ones that remained transient) it was �1105
generations (P_ranksum = 2.8 3 10282). As depicted in
Figure 3, for a large range of parameter values, we observe
a relatively short mean time to equilibrium of �200 gener-
ations if recombination rate is sufficiently large (correspond-
ing roughly to the range in which QLE holds; see Figure 1).
Figure 3 also shows that the mean time to reach an equilib-
rium (including fixation) gets longer for low values of the
selection coefficient or the effect sizes. This means that
for low values of these parameters the speed of fixation
may become too small to cause sweeps. For the constant-
environment model with strong selection we observe a mean
time to equilibrium for trajectories that lead to adaptive
fixations of �50 generations, whereas all other trajectories
need �60 generations (P_ranksum = 2.9 3 10212). Hence,
larger effects decrease on average the time to reach an
equilibrium.

Third, we simulated a change in the environment for
the symmetric fitness model as follows. We assume that a
population has evolved first in a constant environment
and reached one of the possible equilibria E1 to E7 in the
proportions reported in Table 2 for the constant-environment
model. From these proportions we then sample the ini-
tial allele and gamete frequencies. Furthermore, we change
randomly the effects and selection coefficient, thus re-
flecting an extreme case of an environmental change (see

Figure 2 Distribution of the maximum eigenvalues
in the equilibrium states (see Table 2) obtained
from 10,000 simulations under stabilizing selection
in a constant environment.
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below for biologically more realistic cases). Then we let the
system converge to its new equilibrium points. More than
98% of the trajectories ended in one of the equilibria listed
in Table 2. We observe that �42% of the trajectories are
driven to fixation at A and loss at B (E6). Compared to the
constant environment (with weak selection), we observe
a slightly higher amount of trajectories that approached
the edge equilibrium E4 (39%). The chance of detecting
selective sweeps as fixation at locus A (E6, 42%) is very
low (0.5%). At locus B the proportion of selective sweeps
is �0.2%. Thus, the total number of sweeps is much lower
than in the constant-environment model (0.2%). The reason
is that in contrast to an initial condition under standard
neutrality, the population is in this scenario preadapted be-
fore the environmental change occurs; i.e., it sits in a state in
which the allele frequencies are not clustered near the cor-
ner (E8). However, soft sweeps may occur if the initial state
is an edge equilibrium (e.g., E4).

Fourth, we simulated a change in the optimum according
to Equation 18. In addition to the parameter values sampled
according to Table 1, we sampled the new optimum u from
a uniform distribution of the interval (0, 1). The initial con-
dition for the allele frequencies was chosen as for the con-
stant-environment model (standard neutral allele frequency
spectrum). Compared to the symmetric fitness model, .13%
of the trajectories did not end up in one of the states E1–E9,
suggesting that the equilibrium structure of this model is
rather different from the symmetric fitness model (discussed
further below). We found an increase of the proportion of
trajectories (26%) that led to fixation at the minor locus
and loss of the allele at the major locus (E7). Furthermore,
in accordance with theory, fixations occur at both loci in 16%
(E9) of the cases, in particular when u is large. Indeed, in all
fixations the condition u$ gA þ 1

2gB was met (see remark
below Equation 20). Hence, selective sweeps are expected
to be relatively frequent at both the major and the minor
locus, as observed in 44% of the trajectories reaching the edge
with fixation at locus B (E5, 4%), 45% of the trajectories that
reach the corner E6 (8%), and 41% of the trajectories that
reach the corner E7 (26%). From the simulations that go to

the corner with fixation at both loci (E9, 16%) 32% generate
a selective sweep. Note that a sweep occurring at both loci has
been counted as one sweep, as it is produced by merely one
trajectory. In total, �21% of all trajectories ending in E1–E9
led to selective sweeps at A or B, which is a slight increase
relative to the symmetric fitness model (16%) and can be
attributed to the change of the optimum. The amount of
trajectories leading to an edge equilibrium with A polymor-
phic and loss at B is much lower (22%) compared to the
previously discussed models.

Fifth, we simulated the general fitness model and
observed that �89% of the trajectories ended in one of
the states E1–E9. We found an increase of simulations that
led to corner equilibria compared to the symmetric fitness
model. Convergence to extreme phenotypes is quite likely
compared to the symmetric fitness model (loss at A and B,
15%; fixations at both A and B, 24%). Furthermore, the
internal symmetric equilibrium is generally unstable (as pre-
dicted in the Models section). In total, �24% of all trajecto-
ries ending in E1–E9 led to selective sweeps at A or B. These
results agree roughly with those of Pavlidis et al. (2012) and
are expected because in the general fitness model the dou-
ble heterozygote is not necessarily associated with the high-
est fitness as in the symmetric fitness model.

For all four models we also estimated the amount of LD
between locus A and B using the squared correlation coeffi-
cient r2 (Table 3). This coefficient that is defined only for the
internal polymorphic equilibria was measured at the end of
each run. We note that the values in column 2 of Table 3
appear to be primarily determined by the symmetric equi-
librium rather than the unsymmetric ones. Thus, for strong
selection we found 47% LD relative to 9% for weak selec-
tion, and LD is low if the polymorphic/symmetric equilib-
rium (E1) does not exist as in the shifted optimum model.
The reason is that LD is generally much stronger in the
symmetric equilibrium. In our stochastic simulations (dis-
cussed below) we observed generally higher LD, due to
the action of drift.

Finally, we studied the probability of observing adaptive
fixations under biologically more realistic assumptions (see

Figure 3 Mean speed of adaptation for the con-
stant-environment model. Mean speed is measured
by the mean time to equilibrium as a function of the
recombination rate and the absolute value of the
strength of epistasis. The scale on the right-hand side
provides the mean time in generations.
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Table 4). The initial conditions were derived from a muta-
tion–selection equilibrium (Orr and Betancourt 2001), with
0 , s , 0.1 and mutation rates of 8.4 3 1029 per site per
generation for Drosophila (Haag-Liautard et al. 2007) and of
2.5 3 1028 for humans (Nachman and Crowell 2000). The
effects were sampled from a gamma distribution with the
shape parameter k = 0.2 and k = 0.35, which have been
previously measured for Drosophila and humans, respec-
tively (Keightley and Eyre-Walker 2007). Furthermore,
k = 1 was chosen as an extreme case. We report the pro-
portion of adaptive fixations observed from 10,000 simula-
tions after 10,000 generations for the various combinations
of models, initial conditions, and distributions of effect sizes
(Table 4). Overall we observe that using the biologically
more reasonable gamma-distributed effects, the proportion
of selective sweeps is reduced in the constant-environment
model (e.g., from 16 to 1% comparing the uniformly distrib-
uted effects with gamma-distributed effects and k = 0.2).
Similarly, in the general fitness model the percentage of
fixations is lower for gamma-distributed effects and realistic
values of the shape parameter than for the effects sampled
form the uniform distribution. In contrast, using the muta-
tion–selection balance as initial condition strongly increases
the chance of observing selective sweeps for the constant-
environment model, as much more low-frequency variants
are initially available that might go to fixation. For the
changing-environment model, we also analyzed the impact
of moderate environmental changes by altering the effects
by 10 or 50%. In both cases the observed number of sweeps
remains quite low, independent of the chosen effect size
distribution. A more moderate optimum shift than in the
original model reduced the proportion of sweeps to some
extent compared to the results shown in Table 2.

We also tested the constant-environment model under the
assumptions that the effects are derived from the initial
frequencies using an exponential distribution a exp(2bp). We
have chosen the parameter a = 0.5 and b = 1 to match the
distribution measured in Mackay et al. (2012). We observe
a high proportion of trajectories going to fixation from initially
low frequencies (30%). Hence, alleles with high effect sizes
and initially low frequencies reach fixation quickly.

Stochastic simulations

We ran stochastic simulations in a similar way as described
above to study the impact of genetic drift on the resulting

proportions of equilibria approached by the trajectories.
Instead of ODEs, we used the system of corresponding
difference equations (Willensdorfer and Bürger 2003). Gam-
ete frequencies are sampled after each generation using the
“mnrnd” function in Matlab (v. 6.1). As in the deterministic
case we let the system evolve for 10,000 generations. Due to
the random nature of genetic drift, equilibrium points can be
approached, yet the trajectories may not stay at the deter-
ministic equilibria. Therefore, we measured the proportion
of trajectories that reside in an e interval (with e =1023) of
one of the respective equilibria after 10,000 generations (see
Table 2 and Table 5).

For the constant-environment model and a population
size of N= 1000, the trajectories reside in the neighborhood
of the unsymmetric polymorphic equilibria at low proportion
(E2 + E3, 1%) compared to the edge equilibria (E4, 38%).
This is not surprising given that their eigenvalues are closest
to zero compared to the eigenvalues of the other equilibria.
However, in the constant-environment model due to drift,
losses at A and fixations at B (E7, 26%; see Table 5) occur
more frequently than in the deterministic case (E7, 11%; see
Table 2), and the same is true under the changing-environ-
ment model. Consequently, sweeps at the minor locus are
observed almost as often as at the major locus. This involves
frequent crossings of the separatrices described above (for
the QLE approximation). For example, assuming a constant
environment and equal effects, the separatrices are defined
as the diagonals in the pq plane. From 10,000 stochastic
simulations with equal effects and a neutral allele frequency
distribution as initial condition we observe 11% crossings of
the separatrices. Selective sweeps at the B locus are possible.
Increasing the population size to .10,000 makes the rela-
tive proportions of time spent in the equilibria similar to the
percentages found in the deterministic case (data not
shown).

Discussion

We have analyzed four versions of the two-locus model of
stabilizing selection on a phenotypic trait to understand the
signatures of selection at the molecular level. For symmetric
fitnesses we found for realistic parameter ranges (i.e., weak
selection and loose linkage) essentially two evolutionary
outcomes: fixation or polymorphism at the major locus
(while the minor locus was monomorphic). At the genomic

Table 3 Average amount of linkage disequilibrium (r2) between the major and minor locus at the end of each run

Modela Deterministic (%) Stochastic (N = 1000, %)

Constant environment, weak selection 9.38 64.41
Constant environment, strong selection 46.84 61.17
Changing environment 24.37 62.93
Optimum change 4.06 16.97
General fitness 9.24 Not applicableb

a Random sets of parameter values were chosen according to Table 1.
b Internal polymorphic equilibria were not found.
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level, fixations may be observed as classical selective sweeps
if the initial frequency of the beneficial allele was very low
and selection sufficiently strong or as sweeps from standing
variation (soft sweeps). Polymorphic equilibria may be
detected as allele frequency shifts. However, this is possible
only if these events occurred relatively recently (Kim and
Stephan 2000). In the following we discuss how the differ-
ent versions of the model, the initial conditions of the ensu-
ing evolutionary trajectories, and population size influence
the relative abundance of these signatures.

Models

The symmetric viability model produces sweeps for �16% of
the trajectories if the initial frequencies were chosen accord-
ing to the standard neutral site-frequency spectrum (Tajima
1989). This number is considerably higher than in the case
of randomly drawn initial frequencies (Pavlidis et al. 2012).
The main reason is that most polymorphisms in the neutral
frequency spectrum are singletons (i.e., occur once in a sam-
ple) and are therefore centered around the state in which
both loci are monomorphic (E8). The locus with the larger
effects exhibits more selective sweeps than the locus with
the minor effects. The amount of sweeps remains about the
same for high-selection coefficients. However, more trajec-
tories are found in the polymorphic equilibrium than for
weak selection.

In the other two generalized models in which the
trajectories started from initial frequencies sampled from
the neutral frequency spectrum, the proportion of sweeps is
even higher than that for the symmetric fitness model. For
the model with an optimum u . 0, we found that �20% of
the trajectories reach fixation starting from an initial fre-
quency , 0.01, although the parameter values (other than
u) were drawn from the same distributions as for the sym-
metric fitness model. This increase in the number of sweeps
is due to the fact that a shift of the optimum to a positive
value reflects directional selection on the phenotype. Under
standard neutral initial conditions, the general fitness model
predicts that �24% of the trajectories lead to sweeps. The
reason is that, as in the shifted optimum model, the double

heterozygote is not necessarily associated with the highest
fitness.

Initial conditions

The initial conditions of the trajectories studied in this
article are usually drawn from the standard neutral site-
frequency spectrum. This appears to be biologically more
plausible than random initial frequencies. However, this
difference of initial conditions may have a large influence on
the ensuing trajectories. In other words, the evolutionary
dynamics of the models are relatively sensitive to the basins
of attraction of the underlying system. As we have empha-
sized above, in the case of initial conditions following the
standard neutral frequency spectrum, the number of sweeps
is much higher than for random initial frequencies, as the
initial frequencies are more centered around state in which
both loci are monomorphic (E8). As expected, we found that
the proportion of sweeps is even higher if the initial
frequencies are drawn from a mutation–selection balance
(Orr and Betancourt 2001), which show an excess of low-
frequency alleles (Ohta 1973). The choice of the initial con-
ditions appears to be more important for the symmetric fitness
model, whereas the general fitness model appears to be less
sensitive to whether the initial frequencies are , 0.0001 or
0.2 (see Pavlidis et al. 2012, Figure 4).

On the other hand, assuming that a sudden environmen-
tal shift occurs from an equilibrium state to which a pop-
ulation has already been adapted, the number of sweeps
observed may be drastically reduced. We observed this in
our model of an environmental change in which we sampled
the model parameters from the same distributions as for the
other models. Many trajectories are driven from edges into
a corner equilibrium. Thus, we found a very strong re-
duction of classical sweeps and instead a large proportion of
allele frequency shifts or fixations from standing variation.

Population size

All results discussed above were generated using the de-
terministic version of the models. In our stochastic simu-
lations, the effect of genetic drift due to a finite population

Table 4 Percentage of selective sweeps for various models, initial conditions, and distributions of effects

Effects

Model Initial condition Uniform k = 0.2 k = 0.35 k = 1

Constant environment Neutral 16.15 1.16 3.05 12.28
Constant environment Mut.-sel. balance (m = 2.5 3 1028) 43.48 29.45 18.22 30.31
Constant environment Mut.-sel. balance (m = 8.4 3 1029) 43.67 32.16 21.54 29.44
Changing environment (,0.1)a Equilibriumb 0.26 0.36 0.4 0
Changing environment (,0.5)a Equilibriumb 0.28 0.43 0.35 0.04
Optimum change (u , 0.1) Neutral 14.67 0.71 2.09 9.46
Optimum change (u , 0.5) Neutral 17.2 5.21 9.15 16.05
Optimum change (u , 0.1) Equilibriumb 0.05 0.03 0.09 0.16
Optimum change (u , 0.5) Equilibriumb 2.27 1.27 2.8 3.97
General fitness Neutral 24.09 6.22 12.98 26.77
a Effects were changed randomly relative to the initial effects by 10 or 50%.
b The equilibrium states of the constant-environment model were used as initial condition.
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size is twofold. First, the equilibrium points of the deter-
ministic system, in particular, the less stable internal ones,
are no longer attractive. As a consequence, more trajectories
tend to approach the corner equilibria in which drift can no
longer operate. Second, drift facilitates crossing of separa-
trices, which is not possible in the deterministic system. For
this reason, we occasionally observed for small population
sizes (of N = 1000) relatively large differences between the
outcomes of the deterministic and stochastic simulations.
For instance, in the changing-environment model, many
more trajectories have approached the equilibrium E7 (loss
at A, fixation at B) in the stochastic case than in the deter-
ministic one. Similarly, we observe in all models a slightly
higher proportion of sweeps in the stochastic case compared
to the deterministic case. For larger population sizes (N .
10,000) the system approaches the deterministic version
(data not shown).

Predictions of alternative models

We have quantified the frequency of selective fixations
(leading to selective sweeps) in one of the most widely
studied models of quantitative genetics, the two-locus model
of stabilizing selection. In a similar analysis, this model has
been extended from two to eight loci by Pavlidis et al.
(2012). Using the general fitness scheme, these authors
found that the frequency of sweeps declines with the num-
ber of loci. However, several classes of alternative models of
stabilizing selection have been analyzed with respect to the
maintenance of polygenic variation, for which we do not
know to what extent they predict selective fixations.

One of the simplest ways to maintain genetic variation in
natural populations is to include mutation (Kimura 1965b;
Turelli 1984; Barton 1986). In Barton’s model, selective
fixations have been detected after an optimum shift was

introduced. Although the frequency of sweeps was not esti-
mated (de Vladar and Barton 2011, 2014), their simulations
indicate that larger shifts of the optimum increase the fixa-
tion probability, as discussed above for the shifted optimum
model. However, in none of the other mutation-stabilizing
selection models was this issue addressed.

Polygenic variation could also be caused by pleiotropic
effects of balanced polymorphisms (Turelli 1985; Barton
1990; Keightley and Hill 1990). An extension of Barton’s
(1986) model including pleiotropy was proposed by Gimel-
farb (1996). In this model, n diallelic loci contribute addi-
tively to n quantitative traits under stabilizing selection,
such that each locus has a major effect on one trait and mi-
nor effects on all other traits. It can be shown analytically
that adaptive fixations are facilitated if the shift of the opti-
mum of a trait after an environmental change is relatively
large and the effects of the locus on the other traits small
(unpublished results). Recently, pleiotropy was combined
with mutation and stabilizing selection, and it was demon-
strated that this is a sufficient mechanism to explain ob-
served levels of genetic variation (Zhang and Hill 2002;
2005). In this class of models, real stabilizing selection
works directly on the trait under study and apparent stabi-
lizing selection is caused by the deleterious pleiotropic side
effects of mutations on fitness. Therefore, these models
are expected to predict extremely low fixation probabili-
ties of new mutations, unless the degree of pleiotropy is
much lower than generally thought (Wagner and Zhang
2011).
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