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ABSTRACT Much of the current theory of adaptation is based on Gillespie’s mutational landscape model (MLM), which assumes that
the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing
body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother
than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness
based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide
a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the
expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single
and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the
known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations
observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage.

HE genetic adaptation of an asexual population to a novel

environment is governed by the number and fitness ef-
fects of available beneficial mutations, their epistatic inter-
actions, and the rate at which they are supplied (Sniegowski
and Gerrish 2010). Despite the inherent complexity of this pro-
cess, recent theoretical work has identified several robust sta-
tistical patterns of adaptive evolution (Orr 2005a,b). Most of
these predictions were derived in the framework of Gillespie’s
mutational landscape model (MLM), which is based on three
key assumptions (Gillespie 1983, 1984, 1991; Orr 2002).
First, selection is strong enough to prevent the fixation of
deleterious mutations and mutation is sufficiently weak such
that mutations emerge and fix one at a time [the strong se-
lection/weak mutation (SSWM) regime]. Second, wild-type
fitness is high, which allows one to describe the statistics of
beneficial mutations using extreme value theory (EVT). Third,
the fitness values of new mutants are uncorrelated with the
fitness of the ancestor from which they arise. This last as-
sumption implies that the fitness landscape underlying the
adaptive process is maximally rugged with many local max-
ima and minima (Kauffman and Levin 1987; Kauffman 1993;
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Jain and Krug 2007), a limiting situation that is often referred
to as the house of cards (HoC) landscape (Kingman 1978).
Thus, the MLM is concerned with a population evolving in
a HoC landscape under SSWM dynamics, starting from an
initial state of high fitness.

The validity of the SSWM assumption depends primarily on
the population size N. Denoting the mutation rate by u and the
typical selection strength by s, the criterion for the SSWM
regime reads Nu <« 1 < Ns, which can always be satisfied
by a suitable choice of N provided u < s, as is usually the case.
On the other hand, whether the other two assumptions un-
derlying the MLM are realistic is an empirical question that has
been addressed in a number of experimental studies of micro-
bial evolution. Investigations aimed at determining the distri-
bution of effect sizes of beneficial mutations have generally
found support for the EVT hypothesis (Orr 2003a, 2010; Joyce
et al. 2008), and examples for all three EVT universality clas-
ses have been reported in the literature (Rokyta et al. 2005,
2008; Kassen and Bataillon 2006; MacLean and Buckling
2009; Schenk et al. 2012; Bank et al. 2014; Foll et al. 2014).
At the same time, however, it has become increasingly clear
that the extreme assumption of uncorrelated fitness values
between genotypes connected by single mutational steps can-
not be upheld in the face of empirical evidence.

Indications for the presence of correlations in real fitness
landscapes derive from two types of experimental studies. In
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one approach, a subset of the fitness landscape is explicitly gen-
erated by constructing genotypes containing all combinations
of a small group of mutations chosen for either individual or
collective effects and measuring their fithess or some proxy
thereof (Weinreich et al. 2006, 2013; Lozovsky et al. 2009;
Franke et al. 2011; Schenk et al. 2013; Szendro et al. 2013b;
De Visser and Krug 2014). Although the topographic pro-
perties of the resulting landscapes vary over a broad range,
in most cases they display a degree of ruggedness that is
intermediate between a smooth, additive landscape and the
maximally rugged landscape assumed by the MLM (Szendro
et al. 2013b; De Visser and Krug 2014). In a second approach,
properties of the underlying landscape are inferred from the
observed dynamics of adaptation as manifested, for example,
in the trajectories of fitness increase (Kryazhimskiy et al.
2009) or the number of substitutions in an adaptive walk
(Gifford et al. 2011; Schoustra et al. 2012). Of particular in-
terest in the present context is the recent study of Miller et al.
(2011) on the microvirid bacteriophage ID11, where the
MLM was tested by comparing the distribution of beneficial
mutations from the wild type to the corresponding distribu-
tion after one step of adaptation. According to the MLM, the
two distributions should be identical up to a rescaling, but
this hypothesis was clearly refuted by the experiment.

The observation that most empirical fitness landscapes
display an intermediate degree of ruggedness implies that
there is a need for simple, mathematically tractable landscape
models in which the ruggedness can be tuned. A frequently
used model with tunable ruggedness is Kauffman’s “NK”
landscape, where each of L binary loci interacts randomly
with K other loci, and the interaction degree K serves to in-
terpolate between the additive limit K = 0 and the HoC limit
K =L — 1 (Kauffman and Weinberger 1989; Kauffman 1993;
Ohta 1997; Welch and Waxman 2005; Aita 2008; Franke and
Krug 2012; @stman et al. 2012). In the original definition of
the NK model the letter “N” stands for the sequence length,
which we denote by L in the present article. While this model
has been shown to be capable of describing various features
of empirical fitness landscapes (Hayashi et al. 2006; Rowe
et al. 2010; Franke et al. 2011), its mathematical complexity
is such that even rather elementary properties—for example,
the mean number of local fitness maxima (Evans and Steinsaltz
2002; Durrett and Limic 2003; Limic and Pemantle 2004)—are
difficult to derive in closed form (but see Perelson and Macken
1995, Orr 20064, and Schmiegelt and Krug (2014) for a variant
of the NK model that is simpler to analyze).

In the present article we therefore propose the rough
Mount Fuji (RMF) model as an alternative description of
fitness landscapes with tunable ruggedness. The model is
a simplified version of the RMF fitness landscape originally
introduced by Aita et al. (2000) in the context of protein
evolution. In essence, the RMF model superimposes an addi-
tive fitness landscape and an uncorrelated random HoC land-
scape, and the ruggedness is tuned by changing the ratio of
the additive selection coefficient to the standard deviation of
the random fitness component (Aita and Husimi 2000; Franke
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et al. 2011; Szendro et al. 2013b). Below we derive simple,
explicit formulas for various quantitative measures of the RMF
topography such as the number and location of local fitness
maxima and fitness correlations. Moreover, assuming SSWM
conditions, we show how the adaptation of a population on
the RMF landscape can be efficiently simulated for realistic
numbers of loci by locally generating the mutational neighbor-
hood of the current genotype along the adaptive trajectory.
Finally, as an example for the application of the RMF model
to empirical fitness landscapes, we estimate the parameters of
the fitness landscape of the microvirid bacteriophage ID11
studied by Miller et al. (2011) by matching the number of
secondary beneficial mutations available after one adaptive
step (the number of exceedances) predicted by the model to
the experimentally observed value.

Model
Definition

Following a common practice in the description of empirical
fitness landscapes, we represent genotypes by binary se-
quences o = (0, 03, ..., or) of fixed length L, composed of
elements taken from the set {0, 1} with o; = 1 (o; = 0) if
a mutation is present (absent) at the ith locus. The set of all
binary sequences of length L is known as the Hamming
space. It is endowed with a natural distance measure, the
Hamming distance, defined as

D(O',o") = XL: (a'j—oj‘)z, (D)

=1
which simply counts number of loci at which o and o' differ.
It is convenient to introduce the antipodal (or reversal) se-
quence @ of o through @; = 1 — ;. A sequence and its anti-
pode are maximally distant from each other, D(o, @) = L.
To introduce the rough Mount Fuji model we first choose
a reference sequence o*, which represents the state of max-
imal fitness of the additive part of the fitness landscape. The
fitness F(o) of genotype o is then defined through

F(o) = —cD(0,0%) + n(o), (2

where ¢ > 0 is a constant parameter and the 7’s are 2L
independent and identically distributed (i.i.d.) random var-
iables. Equation 2 describes an average decrease of fitness
with increasing distance from ¢* by an amount of ¢ per
mutational step, superimposed by a random fitness varia-
tion. For ¢ = 0 the RMF model reduces to an uncorrelated
HoC landscape, while for large c it becomes essentially ad-
ditive, as the random fitness component 7 is then negligible
compared to the mean fitness gradient. The competition
between the additive and random contributions is governed
by the parameter

g—— - 3)
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defined as the ratio between the additive selection coef-
ficient ¢ and the standard deviation of the random fitness
component 1 (Franke et al. 2011). With increasing 0 the
landscape becomes less rugged.

It is important to note that the RMF landscape is aniso-
tropic, in the sense that the mutational neighborhood of
a sequence o depends on its distance from o*. To be specific,
we define the neighborhood v (o) of o as the set v(o) = {0’ |
D(o, ¢') = 1} U {o}. Denoting the distance of ¢ from the
reference sequence by d = D(o, o) > 0, the set v(o) is split
into three parts: (1) the downhill neighborhood that consists
of the L — d sequences at distance d + 1 from o*, which
have an expected fitness disadvantage of ¢ compared to o;
(2) o itself; and (3) the uphill neighborhood that consists of
the d sequences at distance d — 1 from o, which have an
expected fitness advantage of ¢ compared to o.

This decomposition implies that, in contrast to the MLM,
the fitness values of the mutational neighbors of ¢ are not
i.i.d. random variables. We will see in the following how
this leads to new properties of the fitness landscape and of
the adaptive process on that landscape.

Fitness distribution and extreme value theory

To complete the definition of the RMF model we need to
specify the statistics of the random fitness component 7 in
terms of its probability distribution function P(x) = P(n < x)
and the corresponding probability density p(x) = (d/dx)P(x).
Following the approach developed previously for the MLM,
we invoke EVT to classify the fitness distribution according
to its tail behavior. The underlying reasoning is that viable
organisms must have high fitness in absolute terms, which
implies that the beneficial mutations that drive adaptation
reside in the tail of the (usually unknown) distribution of
fitness effects of all possible mutations (Gillespie 1983,
1984; Orr 2002, 2003a, 2010). The theorems of EVT then
show that, irrespective of the detailed form of the full distri-
bution, the tail shape has to fall into one of three classes (De
Haan and Ferreira 2006): the Gumbel class containing all dis-
tributions with unbounded support and a density vanishing
faster than a power law, for example, the exponential, normal
and gamma distributions; the Fréchet class containing all dis-
tributions with unbounded support and a density vanishing as
a power law; and the Weibull class containing all distributions
with a truncated upper tail.

The three classes are conveniently represented through
the generalized Pareto distribution (GPD) defined by the
distribution function

Pe(x) =1~ (1+ wx)” /% 4

(Pickands 1975; Beisel et al. 2007; Joyce et al. 2008) with the
extreme value index k. For k > 0 the support of P, is [0, «)
and the distribution belongs to the Fréchet class, while for
k < 0 the support is [0, — (1/k)] and the distribution belongs
to the Weibull class. For k — 0 the GPD reduces to an expo-
nential, which is a representative of the Gumbel class.

In the initial formulation of the EVT approach it was ar-
gued that the Gumbel class is the most likely case to be re-
alized biologically, and empirical support for this hypothesis
was found in several studies (Rokyta et al. 2005; Kassen and
Bataillon 2006; MaclLean and Buckling 2009; Orr 2010).
However, subsequently systems showing truncated (Weibull-
type) fitness distributions were discovered (Rokyta et al. 2008),
and recently several examples for heavy-tailed (Fréchet-type)
fitness distributions have been reported (Schenk et al. 2012;
Bank et al. 2014; Foll et al. 2014). A truncated fitness distribu-
tion arises naturally in the adaptation toward a single fitness
peak, as assumed in Fisher’s geometric model, and analysis of
this model shows that the distribution becomes Gumbel-like as
the dimensionality of the underlying phenotype increases
(Orr 2006b; Martin and Lenormand 2008). A similar mech-
anistic interpretation is not known for distributions falling
into the Fréchet class, but the available empirical evidence
suggests that such heavy-tailed distributions may generally
be associated with situations of strong selection pressure,
e.g., in the adaptation of pathogens to new drugs (Schenk
et al. 2012; Bank et al. 2014; Foll et al. 2014).

We will see below that several properties of the RMF
fitness landscape take on a particularly simple form when
the random fitness component is chosen from a particular
representative of the Gumbel class, the Gumbel distribution,
defined by

—x

Pg(x)=e ¢, pglx)=e ¢ 5)

This distribution arises in EVT as the limit law of the maxi-
mum of i.i.d. random variables drawn from a distribution
in the Gumbel class (De Haan and Ferreira 2006). It ap-
proaches an exponential for large positive values and van-
ishes very rapidly (as the exponential of an exponential) for
negative values. The key property of interest here is the
behavior of Pg under shifts,

Pg(x +a) = Pg(x)° . (6)

For completeness we note that the mean of the Gumbel density
pg(0) is the Euler-Mascheroni constant y ~ 0.5772156649 ...
and its variance is 72 /6 ~ 1.644934067 ... . We emphasize
that our use of this distribution in the following sections is
motivated primarily by its mathematical convenience.

Comparison to empirical fitness landscapes

Several recent studies using the RMF model to quantify pro-
perties of empirical fitness landscapes provide some guidance
as to what range of model parameters can be expected in
applications to biological data. Franke et al. (2011) and
Szendro et al. (2013a) analyzed an eight-locus fitness land-
scape composed of individually deleterious mutations in the
filamentous fungus Aspergillus niger. Based on the statistical
properties of selectively accessible mutational pathways and
a direct fit to the data, respectively, and assuming a nor-
mal distribution for the random fitness component 7, they
obtained consistent estimates 6 ~ 0.25 and 0 ~ 0.21 for the
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parameter defined in Equation 3. In a metaanalysis of 10
different fitness data sets the A. niger landscape was found
to be among the more rugged empirical landscapes, indicat-
ing that these estimates for 6 are at the lower end of the
range of biologically relevant values (Szendro et al. 2013b).
However, we will see below that the properties of the RMF
landscape are strongly affected by the EVT index «, which
implies that both 6 and k are generally required to charac-
terize an empirical data set (see The Number of Exceedances
for an example).

Structure of The Fitness Landscape

In this section we present results concerning the main str-
uctural features of the RMF fitness landscape, in particular its
local maxima and fitness correlations.

Fitness maxima

Local fitness maxima play a key role in adaptation, as they
present obstacles to an evolving population, and the number
of maxima is a commonly used measure of landscape
ruggedness. In the HoC model all genotype fitness values
are independent and statistically equivalent. The probability
that a given sequence is a local fitness maximum is then
simply 1/(L + 1), since each of the L + 1 sequences in the
neighborhood is equally likely to have the largest fitness, and
the expected number of maxima is 2! /(L + 1) (Kauffman and
Levin 1987; Kauffman 1993). These expressions for the max-
imally rugged HoC model serve as a benchmark for the cor-
responding results for the RMF model that are presented
in the following section. Detailed derivations are given in
Appendix A.

Density of local maxima: In the RMF model the probability
p™(d) that a given genotype is a local fitness maximum
depends on its distance d to the reference sequence. When
the random component is Gumbel distributed, this quantity
can be computed exactly, with the result

1
max _
G W @
The limits of this expression for small and large c,
1
—— ¢—0
pr(d) = L+1 8
840, €=,

correspond to the HoC model and the additive landscape
with a single maximum at d = 0, respectively. Here the
Kronecker symbol &, is defined by

|1 x=y
dxy = {0 else. ©

The behavior of (7) for intermediate values of c is illustrated
in Figure 1A.
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Figure 1 (A) The probability that a given sequence is a local fitness
maximum is shown as a function of the distance d to the reference
sequence for several values of ¢ and L = 100. The density of maxima is
enhanced in the vicinity of the reference sequence, and this effect
becomes more pronounced with increasing c. (B) The probability that
the neighboring sequence of largest fitness is in the uphill (solid lines)
or downhill (dashed lines) direction is shown as a function of d for dif-
ferent values of c and L = 100. This quantity determines the local direction
of a greedy adaptive walk. In both A and B the random fitness compo-
nent is Gumbel distributed.

It is also of interest to consider the probability that the
neighboring genotype of largest fitness for a sequence at
distance d from the reference sequence is located in the
uphill or downhill part of the neighborhood, denoted by

v (d) and pd°"n(d), respectively. These probabilities deter-
mine the fate of a “greedy” adaptive walk that chooses the
neighboring sequence of highest fitness at each step (Orr
2003b). They can be explicitly evaluated for the Gumbel
distribution, with the result

d
up —
PP = e
dtecte X(L—d
+eC+e d( ) (10)
P =

T L—d+ e +e2xd

Note that pU +4pdown 4 pmax— 1 and piP = de‘pP™

pdown = (L —d)e °p™*. In the absence of a fitness gradient

)



(c = 0) the greedy walker is more likely to go uphill (down-
hill) ford > L/2 (d < L/2) because of the greater availability
of neighboring sequences in that direction. For ¢ > 0 the
crossing point where p*? = pd°"® moves toward the refer-
ence sequence and is generally located at d = L/(1 + %),
see Figure 1B.

Total number of maxima: To determine the expected
number of local fitness maxima M in the entire landscape,
the distance-dependent probability p"**(d) has to be aver-
aged over d with the appropriate weights, giving the number

of genotypes at distance d,

M= ;(fl)p?%).

Using the exact expression in Equation 7 for the Gumbel
distribution, the sum in Equation 11 can be expressed in terms
of a hypergeometric function; see Equation Al2. To obtain
a more tractable expression we note that for large L the bi-
nomial weights in Equation 11 become sharply peaked around
d = L/2, such that

(11)

2L
1 cosh(c) + 1’

L— o

M~ 2k pmax(L/2) (12)

For fixed L and large c the expression in Equation 12 violates
the obvious bound M = 1. A simple modification that cures
this deficiency is

2L

Lcosh(c) + 1 13

Mapprox =1+

which provides a very good approximation to the exact
number of maxima over the entire range of parameters; see
Figure 2A. Interestingly, apart from a multiplicative constant
the large L asymptotics of the number of maxima are the
same as for the HoC model, M ~ 2L/L. This is in contrast to
the corresponding results for Kauffman’s NK model, where
(depending on how the number of interacting loci K is
scaled with the sequence length L) different exponential and
algebraic dependencies of the number of maxima on L can
be found (Perelson and Macken 1995; Evans and Steinsaltz
2002; Durrett and Limic 2003; Limic and Pemantle 2004;
Schmiegelt and Krug 2014).

An exact expression for the expected number of maxima is
derived in Appendix A for exponentially distributed random-
ness. In that case the asymptotic behavior for large L is seen
to be identical to that in Equation 12, and in fact this behavior
arises whenever the tail of the distribution is exponential (see
Figure A1A). For tails heavier than exponential it is shown
that the asymptotics are exactly those of the HoC model,
M — 2L /I, independent of ¢, which implies, remarkably, that
the mean fitness gradient has no effect on the number of
maxima when the genotype dimension is sufficiently large.
This result applies in particular to distributions in the Fréchet
class of EVT (Figure A1B). For Gumbel-class distributions

A
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Figure 2 (A) The density of local fitness maxima M/2t in a Gumbel-
distributed RMF landscape is shown as a function of the number of loci
L. Symbols correspond to the large L approximation in Equation 13 and
lines to the exact expression in Equation A12. The double-logarithmic
scales illustrate that the ratio M/2t decays algebraically as 1/L for large
L. (B) The same quantity for an RMF landscape with a uniformly distrib-
uted random component, as given by the exact expressions in Equations
A22 and A23. Semilogarithmic scales are used to illustrate the exponen-
tial decay of the ratio M/2L.

with tails thinner than exponential the number of maxima
is significantly reduced for any value of ¢, and the ratio of
M to the HoC value 2!/ vanishes subexponentially in L (see
Equation A21).

The effect of the mean fitness gradient on the number
of local maxima is most pronounced for distributions with
bounded support belonging to the Weibull class of EVT. An
exact expression for the total number of maxima is derived
in Appendix A for the case of a uniform fitness distribution,
a simple representative of this class, and the result is illus-
trated in Figure 2B. To leading order the number of maxima
is proportional to (2 — ¢)%/L, which interpolates smoothly
between the HoC result for ¢ = 0 and the additive limit M =1
attained at ¢ = 1; for ¢ > 1 the increase in fitness gained in
one step toward the reference sequence exceeds the support
of the distribution of the random component, and the land-
scape becomes strictly monotonic in d. For other distributions
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in the Weibull class with support on the unit interval the
behavior is similar, M ~ (2—c~(!/ ">)L to leading order (Equa-
tion A26). The behavior of the number of maxima for distri-
butions with bounded support is thus reminiscent of the NK
model at fixed K, where it has been shown that M ~ AL
with a K-dependent constant with 1 < Ax < 2 for 0 <
K <L — 1 (Durrett and Limic 2003; Limic and Pemantle
2004; Schmiegelt and Krug 2014).

Location of the global maximum: We next ask where the
global maximum is located. For large c it will be found close
to the reference sequence ¢, while in the HoC limit ¢ = 0 it is
equally probable to be located anywhere. Since most sequen-
ces lie near the distance L/2 from the reference sequence, also
the global maximum is then most likely at d = L/2. In gen-
eral, the probability for the global maximum to lie at Ham-
ming distance d from the reference sequence is given by

Poax (@) = ( ) P,

14
where Ppay(d) is the probability for some specific genotype
at distance d to be the globally fittest state and the binomial
coefficient accounts for the multiplicity of states at distance
d. In Appendix A it is shown that for the Gumbel distribution

e—cd

Prax (d) = m.

(15)

With this quantity at hand we proceed to calculate the mean
distance of the global maximum from o*,

Le™¢

“Trew (16

E(d)
which interpolates smoothly between the two limiting cases
discussed above, and the corresponding variance

Le™¢

Var(d) = m.

17)

These calculations could be extended to include the posi-
tions of suboptimal local maxima and thus to address the
possible clustering of maxima discussed previously in the
context of the NK model (Kauffman 1993), but we do not
pursue this question here. For general distributions an ex-
pansion for small ¢ shows that the shift in the position of the
maximum from the HoC value L/2 is of order cL2™ <L, where
Kk is the extreme value index defined in Equation 4. For dis-
tributions in the Weibull class (x < 0) this implies that minute
values of ¢ ~ 2« suffice to bring the global maximum close to
the reference sequence with high probability.

Fitness correlations
In addition to the number of local maxima, a commonly used
measure for fitness landscape ruggedness is the decay of fitness

correlations (Weinberger 1990; Stadler and Happel 1999).
Here we consider the correlation function defined by
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(F@)~F@N(F(@)~(F())))

T e wen)

, (18)

where angular brackets denote an average over sequence
space as well as over the realizations of the random fitness
component 7 in Equation 2, and (-), denotes an average over
pairs of sequences o, ¢’ with D(o, ¢’) = r. The normaliza-
tion of the expression in Equation 18 ensures that C(0) = 1.
The derivation in Appendix B shows that the correlation
function depends on the underlying random fitness distri-
bution only through its variance, and it is given by the
expression

(6% /4)(L —2r) + 8,0

Cronr (r) = 0°L/4+ 1

(19)

The correlation function is a superposition of a peak at r = 0,
which originates from the uncorrelated HoC component in
Equation 2, and a linearly decaying piece that reflects the
global fitness gradient. It is instructive to compare this result
to the correlation function for the NK model, which reads

=)' (-5

(Campos et al. 2002, 2003). This displays a linear decay,
Cnk(r) =1 —r/L, in the nonepistatic limit K = 0. However,
in contrast to Equation 20, which is nonnegative for any r,
Equation 19 becomes negative for r > L/2 (see also Neidhart
et al. 2013 for further discussion of the relation between the
two models).

(20)

Adaptation on the RMF Landscape

In the previous section we studied properties that depend
purely on the topography of the landscape. Now we shift the
focus to the implications of the landscape structure for
the evolutionary dynamics. More specifically, we consider
the dynamics in the SSWM limit. Here, only one genotype is
populated at any time. If a beneficial mutation occurs, either
it is fixed in the entire population or the mutant goes
extinct before another mutation arises. Hence, the popula-
tion behaves as a single entity that performs an “adaptive
walk” (AW) on the fitness landscape (Gillespie 1983).
The adaptive walk is a sequence of single adaptive steps.
In each step, the population moves from the currently
populated sequence to a neighboring one with a transition
probability given by the fixation probability normalized by
the fixation probabilities of all other available beneficial
mutants. Following Gillespie (1983) and Orr (2002) we
consider the rank-ordered fitness values F; in the current
mutational neighborhood, where the rank of the resident
genotype is i and beneficial mutants have ranks j < i. Since
the fixation probability of a beneficial mutation in the
SSWM regime is proportional to its selection coefficient,



the probability for a transition from the current ith fittest
genotype to the jth fittest mutant is

F; — Fi
ZZ:](FI( - Fi)

Based on this expression a number of results have been
obtained for the adaptation dynamics on the uncorrelated
HoC landscape (Orr 2002; Rokyta et al. 2006; Joyce et al.
2008). In the following we ask how these results are mod-
ified by the fitness gradient in the RMF model.

Pij= 21D

A single step of adaptation

Before we turn to the full adaptive walk we consider a single
step of adaptation, specifically the change in the rank of
the resident genotype during an adaptive step. Using the
transition probability in Equation 21, Orr (2002) calculated
the expectation value and the variance of the rank j of the
next populated sequence after an adaptive step starting from
the genotype with rank i. For HoC landscapes with fitness
values drawn from a Gumbel class distribution he obtained

42
===

var(j) = LZ27E46)

144 22)

E(j)

These results were subsequently generalized to the other
extreme value classes by Joyce et al. (2008), who found, for

EVT index k <1/2,
+i—2 1—«
2 2—k)’

(1-K)(i—2)[(k* =4k +7)i+6(1 —«)]
12(3 — k)(2—«)? '

E(j) =1
(23)

Var(j) =

For k — 1/2 the approximation used to derive the expression
for Var(j) breaks down because the fitness distribution
ceases to have a second moment; similarly the expression
for E(j) breaks down for k — 1. For further discussion of this
case of extremely heavy-tailed fitness distributions we refer to
Schenk et al. (2012).

To see to what extent these results are modified in the
RMF landscape we refer to Appendix C, where it is shown
that the distribution of fitness values in a mutational neigh-
borhood of the RMF model with exponential randomness
approximately remains a simple exponential that is shifted
by a constant amount, depending on the distance d to the
reference sequence as well as on the model parameters ¢ and
L. This implies that the statistics of the fitness spacings
Fy_1—F; are approximately independent of c and d and take
the same form as in the HoC model with exponential fitness
distribution. In fact, the exponential nature of the fitness
spacings in this case is guaranteed by a general theorem of order
statistics (Smid and Stam 1975). Since the transition probability
in Equation 21 can be written in terms of these spacings, it
seems reasonable to conjecture that the properties of sin-
gle adaptive steps in the RMF model are well approximated

by the HoC results at least for moderate values of the fitness
gradient c.

To test this conjecture, simulations consisting of the
following steps were carried out: (i) create a random RMF
neighborhood, (ii) determine the current rank of the initial
genotype, (iii) carry out an adaptive step according to
Equation 21, and (iv) determine the new rank in the old
neighborhood. A comparison of the RMF simulation results
to Orr’s analytical formulas in Equation 22 is shown in
Figure 3. Obviously, the HoC expressions are in good agree-
ment with the simulation data even in cases where the
slope c of the RMF landscape is comparable to the variance
of the random fitness contributions (for the exponential
distribution considered here the variance equals unity).

For other distributions the approximation in Appendix C is
not directly applicable, but the results shown in Figure 4
indicate that the generalized HoC formulas in Equation 23
provide a good approximation to the RMF model for a range
of EVT indexes around k = 0. Thus we conclude, somewhat
unexpectedly, that the statistical properties of single adap-
tive steps are not strongly affected by the fitness gradient in
the RMF model.

Adaptive walks

In the context of AWs, a property of interest is the mean walk
length ¢, which is the average number of steps performed until
the process reaches a local fitness maximum and terminates.
The mean walk length in the HoC landscape has been ana-
lyzed using various approaches (Gillespie 1983; Flyvbjerg and
Lautrup 1992; Orr 2002; Jain and Seetharaman 2011; Jain
2011; Neidhart and Krug 2011; Seetharaman and Jain 2014).
Because of the lack of isotropy in the RMF landscapes, ana-
lytical results for the walk length are much harder to derive
for this model, and the results described in the following
paragraphs were therefore obtained from simulations.

The simulation algorithm is analogous to that described
above for the first step of adaptation, but now a new
neighborhood is created after each adaptive step and the
procedure is repeated until a local maximum has been
found, that is, until the current genotype has rank 1 in its
new neighborhood. Since the distribution of the fitness
values in the new neighborhood depends on the distance to
the reference genotype, the direction of the adaptive steps
(uphill or downhill) has to be kept track of. Creating the
neighborhoods “on the fly” during the adaptive walk implies
that the memory of previously visited genotypes is lost be-
yond the second step. However, the error associated with
this approximation is expected to be negligible for large L
(Flyvbjerg and Lautrup 1992; Neidhart and Krug 2011) and
it is the only feasible approach for simulating walks on land-
scapes with thousands of loci.

On HoC landscapes the mean walk length is determined
primarily by the starting rank r, that is, the rank that the first
populated state has in its initial neighborhood, and was
shown in previous work to be proportional to log(r) for
r < L; see below for further discussion. On the other hand
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Figure 3 (A and B) Mean (A) and variance (B) of the fitness rank after an
adaptive step in the exponentially distributed RMF landscape are shown
as a function of the initial rank. Simulation results for different values of ¢
are compared to the analytical expressions in Equation 22 for the HoC
landscape (c = 0). The good agreement indicates that the properties of
single adaptive steps are only weakly affected by the fitness gradient.
Here L = 1000 and d = 50.

for a smooth landscape with only one maximum, the walk
length equals of course the distance d of the starting point to
this maximum. Due to its anisotropic structure, on the RMF
landscape one expects the walk length to depend on both
initial rank and initial distance to the reference sequence o*.
Specifically, for small ¢ (in the sense § <« 1), the mean
adaptive walk length should increase logarithmically in
the starting rank and be approximately independent of the
initial Hamming distance d from o*, while for 6 > 1, it
should increase linearly in d and be approximately indepen-
dent of the starting rank, since with high probability only
a single maximum exists in the fitness landscape at o* or
close to it. Analysis of a simplified version of the problem
where the walks are assumed to start from the antipode o *
of the reference sequence shows that the two regimes are
separated by a sharp transition under certain conditions
(Park et al. 2014).

Before discussing the process governed by the transition
probability in Equation 21, we briefly consider the simpler
case of a greedy adaptive walk in which the transition occurs
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Figure 4 (A and B) Mean (A) and variance (B) of the fitness rank after an
adaptive step in the GPD-distributed RMF landscape are shown as a function
of the initial rank. Simulation results for different values of k and c= 0.5 are
compared to the analytical expressions in Equation 23 for the HoC land-
scape, again showing close agreement. Here L = 1000 and d = 50.

deterministically to the available genotype of maximal fitness
in each step. On HoC landscapes, the mean walk length for
this process is known to be asymptotically constant for large
r and L, approaching the universal limit¢ = e — 1 ~ 1.72 (Orr
2003b). For the RMF model, simulations displayed in Figure
5 show that for very small c, the walk length is still on aver-
age equal to ¢ = e — 1. For larger c, the mean walk length first
decreases slightly (see curve corresponding to ¢ = 0.3) and
then increases rapidly, until ¢ = d, the limit expected for
a smooth landscape. For all values of c, the average walk
length remains independent of the starting rank.

Numerical results obtained from simulations of the full
fitness-dependent AW with transition probability in Equation
21 are shown in Figure 6. These simulations were carried out
for L = 2000 loci and the random component of the fitness
was drawn from a normal distribution with unit variance.
While in Figure 6A the starting rank was kept constant, the
initial Hamming distance to o*, d, was varied. For ¢ = 0.01
(Figure 6A, inset), the behavior seems to be independent of d,
while a d dependence starts to emerge for c = 0.3. Forc = 1
the relation between initial distance d and the walk length is
roughly linear with a slope smaller than unity.
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Figure 5 Mean length of greedy adaptive walks in an exponentially
distributed RMF landscape with L = 100, d = 10. The walk length is
independent of starting rank for all c.

For constant d = L/2 = 1000 and various choices of the
starting rank, one can observe the following behavior (Figure
6B). While for ¢ = 1 the walk length seems to be independent
of the starting rank, the data for ¢ = 0.01 can be fitted by the
relation

1
(= Elog(r) + const., 24)
which was first obtained by Orr (2002) for the HoC land-
scape with Gumbel-distributed fitness values. For ¢ = 0.3 the
dependence on the starting rank is similar but the constant
in Equation 24 is significantly larger.
Equation 24 is a special case of the general relation

1—«

(=
2—kK

log(r) + const. (25)
derived by Neidhart and Krug (2011) and Jain (2011),
which holds for HoC landscapes with fitness distributions
characterized by an EVT index k < 1; for k > 1 the mean
walk length is asymptotically independent of starting rank.
To see how this behavior is modified in the RMF model, we
carried out simulations with the random fitness component
drawn from the GPD, keeping ¢ = 0.5 fixed and varying the
EVT index k; see Figure 7. The d dependence of the data
seems to be well fitted by functions linear in d, with a slope
that increases rapidly with decreasing « when k < 0; as was
pointed out previously, the effect of the mean fitness gra-
dient is particularly pronounced for distributions in the
Weibull class. Somewhat surprisingly, the dependence on
the starting rank at fixed d can be approximately described
by the functional form in Equation 25 obtained for the HoC
model but with a constant depending on c and «; see Figure
7B.

Summarizing, inspection of the numerical data suggests
the following dependencies of the mean adaptive walk
length: a linear dependence on d with a slope that increases
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Figure 6 Mean length of adaptive walks in RMF landscapes with Gauss-
ian randomness. (A) Mean walk length for randomly chosen starting rank
vs. initial Hamming distance d to the reference sequence. Sloping solid
line illustrates the linear dependence of the walk length on d for large c.
(B) Mean walk length for constant initial Hamming distance d = 1000 vs.
starting rank r. The horizontal line connecting the data points for ¢ = 1
illustrates that walk length becomes independent of starting rank for
large c. Insets show the data for small ¢ on logarithmic scales for d and
r, respectively. Horizontal line in the inset in A illustrates that the walk
length is independent of initial distance d for c = 0.01, but acquires such
a dependence with increasing c. Sloping lines in the inset of B illustrate
the logarithmic dependence of the walk length on initial rank for small c.
The number of loci is L = 2000.

with increasing ¢ and decreasing « and a logarithmic de-
pendence on the starting rank, similar to that known from
the HoC model, with a constant offset depending on c, «,
and d. These findings are captured in the following con-
jectured expression for the adaptive walk length on RMF
landscapes,

((r,c,d k) = : (26)

“log(r) + a(c,K)d + B(c, ),

with so far unknown, nonlinear functions «, 8 with «(0, k) = 0
and B(0, x) > 0 (see Neidhart and Krug 2011 for a discus-
sion of the k dependence of the constant term in Equation
25).

Mount Fuji Model of Fitness Landscapes 707



20 \ T =
A k=07 O V
k=02 O ~
A
v
£ Lod
=11]
g
|
=]
o]
Z
=
8
=
0 L 1 1 1 1
200 400 600 800 1000
Initial d
B T T

Mean Walk Length I(r)-1(100)

100 1000

Starting rank r
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Walks with randomly chosen starting rank and varying initial Hamming
distance d to the reference sequence. Inset shows results for k = —0.7,
which are off the scale of the main panel. For negative k (Weibull class)
the walk length displays a pronounced linear dependence on d. (B) Walks
starting at constant Hamming distance d = 1000 and varying starting rank
r. In the main panel the walk length for r = 100 has been subtracted for
clarity, and the corresponding values of ¢(100) are shown in the inset. The
lines in A correspond to fits assuming a linear d dependence, and lines in
B show the HoC result in Equation 25. The latter provides a reasonable fit
to the data, if a c-dependent constant offset is allowed for, but the quality
of the approximation gets worse for negative x (Weibull class). The num-
ber of loci is L = 2000.

Crossing probability

While the adaptive walk length is a measure of the length of
typical adaptive trajectories, it is also of interest to ask how
likely it is for the population to traverse the entire land-
scape. To quantify this feature we introduce the crossing
probability, which is the probability that an AW starting at
the maximal distance L from the reference sequence o* rea-
ches it and terminates there. For such an event to happen,
three conditions must be fulfilled: the reference sequence o*
must be a local maximum; there must exist at least one fit-
ness-monotonic path connecting the antipodal sequence o *
to o*; and finally, such a path must be chosen by the AW. The
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probability for the first condition was evaluated above and is
given by

1
pe(0) =

Title @7

for Gumbel-distributed random fitness components, and this
obviously constitutes an upper bound on the crossing proba-
bility. The probability for the existence of fitness-monotonic
pathways in the RMF model has been investigated previously
for the case when the paths end at the global fitness maximum
(Franke et al. 2011), and it has been shown that such paths
exist with unit probability for large L and any ¢ > 0 (Hegarty
and Martinsson 2014). It is not clear whether this result
applies in the present setting, however, because the probabili-
ty that the global maximum coincides with the reference
sequence vanishes for large L (see Equation A29). Figure 8
shows numerical data for the crossing probability in com-
parison with the upper bound in Equation 27. Both qu-
antities follow a sigmoidal behavior with a fairly sharp
transition from zero to unity around a characteristic value
of ¢, which increases roughly logarithmically with L, as
would be expected on the basis of Equation 27.

The Number of Exceedances

In this section we consider a feature of the fitness landscape
that provides a distribution-free statistical test of the as-
sumption of the MLM that fitness values of different
genotypes are i.i.d. random variables (Miller et al. 2011). To
define the quantity of interest, suppose that an adaptive step
is taken from a starting genotype o with rank i in its neigh-
borhood v(o) to a genotype ¢’ with rank j < i in v(o). The
number of exceedances (NoE) is then equal to the number
of neighboring genotypes in v(¢’) that are fitter than o',
that is, the rank of ¢’ in its own neighborhood minus one.
Since the only sequences present in both neighborhoods
v(o) and v(o') are o and o', the NoE can principally vary
between 0 and L — 1. Under the HoC assumption that fitness
values are i.i.d. random variables, a classic result due to
Gumbel and Von Schelling (1950) states that the distribu-
tion of the NoE is independent of the fitness distribution,
and for large L the mean NoE is equal to the rank of ¢’ in the
initial neighborhood v(o) (Rokyta et al. 2006). In other
words, if the first adaptive step goes to a genotype of rank
Jj, the expected number of beneficial mutations available for
the second step isj. In contrast, in a purely additive landscape
such as the RMF model for very large 6, the NoE of a genotype
is equal to its distance d from the global fitness maximum and
independent of its rank in the initial neighborhood.

In their evolution experiments with the microvirid bacte-
riophage ID11, Miller et al. (2011) identified 9 beneficial
second-step mutations on the background of a mutation,
named g2534t, that had been found to have the largest effect
among 16 beneficial first-step mutants. To apply the result of
Gumbel and Von Schelling (1950), the rank of this muta-
tion among all possible first-step mutations (not only the
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Figure 8 The probability for an adaptive walk starting from the antipodal
sequence o * to reach the reference sequence o* and terminate there.
Results are shown for Gumbel-distributed random fitness components.
Numerical results are displayed by symbols connected with lines, while
the corresponding lines without symbols show the upper bound given in
Equation 27.

16 observed in the experiment) has to be estimated. Assum-
ing conservatively that the rank of g2534t among all ben-
eficial first-step mutations is at most 3, at most 3 beneficial
second-step mutations would then have been expected if fit-
ness values were identically and independently distributed.
Thus, the observation of 9 beneficial second-step mutations
allowed Miller et al. (2011) to reject the HoC hypothesis with
high confidence (P < 0.02).

Here we ask whether the RMF model is capable of
yielding predictions for the NoE that are compatible with
the experimental findings of Miller et al. (2011). Note that,
unlike HoC landscapes, RMF landscapes are not isotropic
and the NoE will depend on the position of genotypes o
and o' on the landscape, i.e., their distance to the reference
state, and on whether the adaptive step was taken in the
uphill or the downbhill direction. In contrast to the universal
result of Gumbel and Von Schelling (1950), there will also be
a dependence on the probability distribution of fitness values.

In Appendix C we present an approximate analytic calcu-
lation of the expected NoE for the RMF model, assuming an
exponential distribution for the random fitness component.
While the complete expressions for the expected NoE dis-
played in Equations C8-C13 are fairly complex, for small ¢
they reduce to the simple form

NP2+ (r=1), NO"x24(r—1) e  (28)
Here NP (Ndown) js the expected number of exceedances
after an adaptive step in the uphill (downhill) direction, and
r is the rank of the mutated genotype ¢’ in the initial neigh-
borhood. For the HoC landscape (¢ = 0) Equations 28 yield
N = Ndown = r + 1 which differs slightly from the exact
result AV = r as a consequence of the approximations in-
volved in the derivation. Figure 9 compares the full expres-
sions derived in Appendix C to numerical simulations,

showing good agreement. Interestingly, for the case of an
uphill step, the expected number of exceedances is maximal
for landscapes of intermediate ruggedness.

Equation 28 shows that a considerable enhancement of
the NoE is possible for moderate c, provided the adaptive step
is in the uphill direction and the random fitness components
are exponentially distributed. However, as we do not know
whether the beneficial mutations that were observed in the
experiments of Miller et al. (2011) correspond to uphill or
downhill steps in a presumed RMF landscape, we need to
average the predictions for the two cases, weighted with
the probabilities for each of the two types of transitions to
have happened. Furthermore, for an unbiased comparison it
is appropriate to consider more general distributions for the
random component than the exponential distribution dis-
cussed above. Here we choose the GPD, which allows us to
cover distributions corresponding to all extreme value classes
by varying a single parameter. Extending the approximate
derivation in Appendix C to this general case is complicated
and not very enlightening. Therefore, in the following we use
numerical simulations to estimate the NoE.

To find parameter combinations that match the experi-
mentally observed NoE, we constructed RMF landscapes,
fixing the GPD index in the interval k € [—1, 0.5] and
sampling k with a resolution of Ak = 0.01. For each value
of k, the NoE was calculated for a range of ¢ values. Follow-
ing Miller et al. (2011) we assume that the first-step mu-
tation has rank r = 1 in the initial neighborhood and
determine for each choice of k the smallest value of ¢ for
which A (1) = 9 (Figure 10A). For comparison, results as-
suming initial rank r = 3 are shown in Figure 10B. Note
that, similar to the case of the exponential distribution dis-
played in Figure 9, for some « there exists a second, larger c
yielding the same value for . The results displayed in
Figure 10 show that the strength of the fitness gradient
¢ required to reproduce the experimentally observed NoE
depends sensitively on the EVT index and becomes very
small for negative k deep inside the Weibull domain.

This is in accordance with the generally stronger effect of
the additive fitness contribution for negative k discussed
above in the context of the statistics of fitness maxima and
reflects the fact that for strongly negative x the random
variables drawn from the GPD probability density tend to
crowd near the upper boundary of its support. For the EVT
index k = —0.29 estimated by Miller et al. (2011) from
a maximum-likelihood analysis of the fitness values of 16
first-step beneficial mutations, the ¢ value required to pro-
duce at least nine exceedances varies between 0.86 and 1.04
for initial rank 1 and between 0.44 and 0.76 for initial rank
3, depending on the assumed distance d to the reference
sequence. Normalizing ¢ by the standard deviation of the
random fitness component, which equals 0.617 for this
value of k (compare to Equation C14), this translates into
the intervals 1.39 = 6 = 1.69 and 0.71 = 0 = 1.23 for the
parameter 6, respectively, which in comparison to estimates
for other empirical data sets is indicative of a relatively
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Figure 9 Expected number of times that a sequence that had rank rin
the old neighborhood is exceeded in fitness in the new neighborhood,
when the adaptive step occurred in the (A) uphill or (B) downhill direction.
Symbols show simulation results for the RMF model with exponentially
distributed random fitness component, and lines show the approximate
analytic expression derived in Appendix C. In all cases the initial genotype
was located at distance d = 50 from the reference sequence in a landscape
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the HoC model (c = 0) and NP = d, NV'9o" = O for a smooth landscape
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smooth landscape. To further narrow down the range of
RMF model parameters that can provide a consistent de-
scription of the fitness landscape of the ID11 microvirid sys-
tem would require including other experimental observables
into the analysis, which is beyond the scope of this article.

Discussion

Motivated by the increasing availability of empirical in-
formation about the structure of adaptive landscapes, we
have presented a detailed analysis of a one-parameter family
of tunably rugged fitness landscapes. The model is a variant
of the rough Mount Fuji landscape, in which the locus-
specific additive effects considered in the original version
(Aita et al. 2000; Aita and Husimi 2000) are replaced by
a single parameter, and ruggedness is governed by the ratio

710 J. Neidhart, I. G. Szendro, and J. Krug

-1 08 -06 -04 -02 0 0.2 0.4
K

Figure 10 The minimal value of the RMF parameter ¢ required to gen-
erate on average nine exceedances after an adaptive step. (A and B)
Results for initial rank 1 (A) and initial rank 3 (B). The random fitness
component is assumed to be distributed according to the GPD with
EVT index k, and different curves correspond to different values of the
initial distance d to the reference sequence. The experimental estimate
k ~ —0.29 of the EVT index is indicated by a vertical line. The total
number of loci is L = 1000. Figure C1 shows the same results in a plot
where the additive selection coefficient has been scaled by the standard
deviation of the distribution of the random component.

0 of the additive fitness effect to the standard deviation of
the random fitness component.

Landscape topography

The mathematical simplicity of the model allowed us to
derive several explicit results for the number and positions
of local and global maxima; such results are much harder to
come by for other generic fitness landscape models, notably
Kauffman’s NK model. In particular, we have arrived at
a complete classification of the expected number of fitness
maxima in the limit of large genotype dimensionality L,
which highlights the importance of the tail behavior of the
distribution of the random fitness component in determining
the ruggedness of the landscape. For distributions with tails
heavier than exponential, the additive fitness component
becomes asymptotically irrelevant, in the sense that the



number of maxima is equal to the value expected for an
uncorrelated HoC landscape. In contrast, for distributions
with bounded support the number of maxima is reduced
compared to the HoC expectation by a factor that varies
exponentially in L. The interplay between additive effects
and tail behavior has been a recurrent theme of this article,
which manifests itself in various quantities of interest. Our
results show that both the parameter 0 characterizing the
additive effects and the EVT index k must be specified for
a comprehensive description of the landscape topography in
the RMF model.

An exception to this rule is provided by the fitness
correlation function, which, similar to the NK model, is in-
dependent of the type of randomness. In contrast to the NK
model, however, the correlations become negative at large
distances, which reflects the inherent anisotropy of the
RMF landscape and the long-range effect of the fitness
gradient.

Another important measure of fitness landscape rugged-
ness not discussed so far in this article is the existence and
abundance of selectively accessible mutational pathways,
defined as paths composed of single mutational steps along
which fitness increases monotonically (Weinreich et al. 2006;
Franke et al. 2011). Using an approach similar to that of the
present work, an explicit expression for the expected num-
ber of accessible pathways in the RMF model with Gumbel-
distributed randomness can be derived (Franke et al. 2010,
2011). Subsequently Hegarty and Martinsson (2014) pre-
sented a rigorous proof that accessible pathways exist with
unit probability for large L in the RMF model for any ¢ > 0,
independent of the distribution of the random fitness compo-
nent. This is in stark contrast to the behavior in the HoC
model (c = 0), where the probability for existence of acces-
sible paths tends to zero for large L. Analyses in which the
genotypes are placed on a regular tree show that this strong
dichotomy between the HoC and RMF models is specific to
the hypercube topology of sequence space (Nowak and Krug
2013; Roberts and Zhao 2013).

Dynamics of adaptation

Apart from being amenable to rigorous analysis, the RMF
model is useful for exploring various aspects of evolutionary
dynamics in rugged fitness landscapes through simulations.
Recent applications in this context include studies of ev-
olutionary predictability (Lobkovsky et al. 2011; Szendro
et al. 2013a), epistatic interactions between mutations oc-
curring along an adaptive walk (Greene and Crona 2014),
and the effect of recombination on rugged fitness landscapes
(Nowak et al. 2014). Here we have focused on adaptation in
the SSWM regime and considered both single adaptive steps
and adaptive walks to local fitness maxima. Interestingly,
while the statistics of single adaptive steps largely conform
to the classic results obtained for the MLM (Orr 2002; Joyce
et al. 2008), adaptive walks in the RMF are much longer
than in the MLM already for small values of c. Specifically,
the heuristic expression in Equation 26 that summarizes the

simulation results suggests a linear dependence of the walk
length on the initial distance to the reference sequence.

The qualitatively different effects that the fitness corre-
lations in the RMF have on single vs. multiple adaptive steps
highlight the fact that a step in an adaptive walk involves
two distinct random processes (Rokyta et al. 2006; Neidhart
and Krug 2011). The first process is the selection of a fitter
neighbor according to the transition probability in Equation
21, and the second process is the change of the mutational
neighborhood after the fixation of the mutated genotype. In
the MLM the effect of the second process is relatively weak,
and as a consequence adaptive walks are well described by
an approximation that ignores the neighborhood change
(Orr 2002; Neidhart and Krug 2011).

To understand the role of the neighborhood change in
the RMF model we refer to the analysis in Appendix C, where
it is shown (for exponentially distributed randomness) that
the effect of the fitness gradient can be approximately sub-
sumed into an overall shift of all the fitness values consti-
tuting a neighborhood by the same amount. This implies
that the transition probability in Equation 21, which
depends only on fitness differences within the neighbor-
hood, is approximately independent of c. However, since
the shift is a function of the distance d to the reference
sequence that changes in the adaptive step, the rank of
the mutant genotype in the new neighborhood is strongly
dependent on whether the step occurred in the uphill (d —
d — 1) or downhill (d —» d + 1) direction. Further inves-
tigations are required to elucidate how this effect gives rise
to the observed dependence of the walk length on the land-
scape parameters. A promising approach is to consider walks
starting from the antipode of the reference sequence, which
can be assumed to move almost exclusively in the uphill
direction provided the walk length remains short compared
to L (Park et al. 2014).

For large populations and/or high mutation rates the
SSWM approximation underlying the simple adaptive walk
picture breaks down, and additional processes such as the
competition between beneficial clones and the crossing of
fitness valleys have to be taken into account. The resulting
complex population dynamics are governed by the tension
between a tendency toward greater determinism induced by
clonal competition (Jain and Krug 2007; Jain et al. 2011) and
the increasing role of nonmonotonic pathways that become
accessible through valley crossing (Szendro et al. 2013a; De
Visser and Krug 2014). In contrast to the SSWM regime, the
trapping of large populations at local fitness maxima is only
a transient occurrence, and the rate of escape from such peaks
plays an important role in the comparison between recombin-
ing and nonrecombining populations on rugged fitness land-
scapes (Nowak et al. 2014).

Application to experiments

The usefulness of the RMF model for the quantitative de-
scription of empirical fitness landscapes has been docu-
mented in several recent studies. Franke et al. (2011) applied
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the model to an eight-locus fitness landscape for the fungus A.
niger and extracted an estimate of ¢ from a subgraph analysis of
pathway accessibility. In a study of amplitude spectra of fitness
landscapes Neidhart et al. (2013) showed that the correlation
function of a six-locus fitness landscape obtained by Hall et al.
(2010) for the yeast Saccharomyces cerevisiae is well described
by the RMF model. Finally, in a metaanalysis of 10 empirical
fitness landscapes Szendro et al. (2013b) used the RMF model
to interpolate the behavior of various ruggedness measures
between the limits of a completely random (HoC) and an ad-
ditive landscape and found good agreement with the trends in
the empirical data.

In the present article we have complemented these an-
alyses by considering the effect that the fitness gradient in
the RMF model has on the number of secondary beneficial
mutations that are available after an adaptive step. We have
identified model parameters for which the RMF prediction
matches the large number of fitness exceedances observed in
the experiment of Miller et al. (2011). A small fitness gradient
suffices to explain the experiments when the distribution of
the random fitness component is assumed to belong to the
Weibull class of EVT, as is suggested by the analysis of the
distribution of first-step mutational effects. We believe that
more work along these lines, focusing on the changes in
the statistics of mutational neighborhoods along an adap-
tive trajectory, will provide important insights into the role
of epistatic interactions during adaptation and the viability
of schematic models like the one considered here.
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Appendix A
Properties of Fitness Maxima

Density of local maxima The probability p®* (d) that a genotype at distance d from the reference sequence is a local
fitness maximum is given by the integral

PP (@) = [ e plx) (Pee—c)) Pl + ) (A1)

This is simply the probability that the genotype’s fitness x exceeds that of its uphill and downhill neighbors, averaged with
respect to the probability density p(x). Unless specified otherwise, here and in the following the domain of integration is
equal to the support of the probability distribution. For the Gumbel distribution Pg(x) =e™¢ " the integral (Al) can be
evaluated exactly using the shift property (6), yielding the result in Equation 7 of the main text.

Similarly, the probabilities to find the neighboring genotype of largest fitness in the uphill or downhill direction,
respectively, are given by

piP(d) =d / dx p(x)P(x)"1P(x + c)P(x + 201, (A2)

p(ciown(d) =(L—d) / dx p(x)p(x)L—d—lp(x - c)P(x—zc)d7 (A3)

which can be evaluated for the Gumbel distribution to yield the expressions in Equation 10.

Total number of maxima Inserting Equation Al into the sum in Equation 11 and exchanging the order of integration and
summation, one arrives at the compact expression

M= [ dxplePle—o) + Pl + O (A9

which is evaluated in the following sections for various special cases. Equation A4 makes it evident that M is an even

function of ¢: changing c to —c produces a fitness landscape with the antipodal reference sequence ¢ * that is statistically
equivalent to the original landscape.

Exponential distribution: For the exponential distribution defined by

1—e™ x=0
Pe) _{ 0 x<o, (A5)
the expression in Equation A4 becomes
C o
M :/ dx e X[1—e e ™" + ZL/ dx e *[1—cosh(c)e ™" (A6)
0 c

Substituting z = e, this yields

2L
cosh(c)(L + 1)

1 e ¢ C
M= / dz [1—ea]" + ZL/ dz[1—cosh(c)z]" = ¢ {(1—6726)L+1 - (1—676)L+1] +
e° 0

T [1 - (l—efccosh(c))L] . A7)

It is straightforward to check that M — 1 for ¢ — . Moreover, the asymptotics for large L at fixed c are identical to those
derived in Equation 12 for the Gumbel distribution, M ~ 2L/L cosh(c). A graphical illustration of Equation A7 is shown in
Figure A1A.
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Figure A1 Expected number of maxima M normalized by its value for a HoC landscape, 2%/(L+ 1). (A) The exact result in Equation A7 for an
exponentially distributed random contribution. Dashed horizontal lines illustrate that the ratio converges to 1/cosh(c) for large L. (B) A numerical evaluation
of Equation 11 for a Pareto-distributed random contribution with « = 2 (x = 1/2). In accordance with Equation A16 the ratio converges to unity for large L.

Gumbel distribution: Inserting the exact expression in Equation 7 into Equation 11, one obtains

M= (k L (A8)
N §<d> 1+de+ (L—d)e ¢

We first show that the sum in Equation A8 can be expressed in terms of a hypergeometric function defined by

Fiabicz) = Y Dnlbh )( =Y

n=0 n=0

(Graham et al. 1994) where the Pochhammer symbol is defined by

B 1 f n=0
(x)n—{x(x+1)...(x+n—1) if n>0.

The defining feature of the hypergeometric function is that the terms t, satisfy to = 1 and

ten  (kta)k+b) =z

te k+c k+1 (A9)
To bring Equation A8 into this form we write
_ 1 max —c
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ensuring that ty = 1, and compute the fractions t4,1/t4 according to

tiyn (L-d 1+Le“+42dsinh(c) [ —1\ (d—L)(d+ (1+Le )/2sinh(c)) (A1D)
tg \d+1) 1+Le¢+2(d+ 1)sinh(c) \d+1 d+1+ (1+Lec)/2sinh(c)
By comparison with Equation A9 the arguments q, b, ¢, and z can be identified and it follows that
e . 1+ Le™ €
_ o1 7 7 . _
M=(1+Le™) " oF1(-LGE+ 15 —1) with £ = (A12)

The asymptotic behavior for large L is most conveniently extracted from the general expression in Equation A4, which in this
case can be brought into the form

1
M= / dp [p¢ +pe " (A13)
0

Recognizing that the dominant contribution to the integral comes from the region near P = 1 and expanding the integrand
around this point, one readily finds that M ~ 2% /I cosh(c) for large L, in agreement with Equation 12. Along similar lines it
can be shown that the same asymptotics obtain for any distribution with a strictly exponential tail.

Fréchet class: Here we show that for distributions in the Fréchet class the expected number of maxima is asymptotically equal to that
in the HoC model, M ~ 2% /L, for large L and any ¢ > 0. To simplify the notation we use a standard Pareto distribution defined by

P(x) =

{1—x— x=1 (A14)

0 x <1,

where the exponent « is related to the EVT index through @ = 1/«. Similar to the case of the exponential distribution, the
domain of integration in Equation A4 has to be subdivided into the interval [1, 1 + ¢), where P(x — ¢) = 0, and the
remainder [1 + ¢, ). The dominant contribution comes from the second part, which is given by

% 1 B o
M = 2L dx ax~(@+D) {1—5 [c+¢)™* + (x—¢) “}}

o2 [ ax e L (1464 (15 ]

1+4c X
(A15)

for large L. Substituting y = Lx~¢, this yields

2L L/(1+c>n y y 1/01 T y l/a T 2L
MNT[) dyexp[—iKlJrc(L) ) +(1_C(Z> ) H_)f (A16)

as claimed; see Figure A1B for illustration.
Gumbel class: We are now in the position to generalize the results obtained for the exponential and Gumbel distributions to

the entire Gumbel class of EVT. For calculational convenience we choose the one-parameter family of Weibull distributions
defined by

_ —yB >
P(x):{l exg[ xF] i;g (A17)

to represent Gumbel-class distributions with tails that are heavier (for 8 < 1) or lighter (for 8 > 1) than exponential. As in
the cases considered above, the dominant contribution to the number of maxima comes from the part of the integral in
Equation A4 that extends from c to infinity, which now reads

n OO0 L
M=~ ZL/ dx p(x) {1—% {e_(”C)B + e_<x_c>ﬁH ) (A18)
C

The crucial difference between the cases 8 < 1 and 8 > 1 lies in the behavior of the ratio of the two exponential terms inside
the inner square brackets. For 8 < 1
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e (c+c)?
lim o=1, (A19)

which implies that the shift by *=c becomes irrelevant asymptotlcally and M — 2L /L independent of ¢, as in the Fréchet class.
On the other hand, for 8 > 1 one finds that e 5 o=+ for large x and Equation A18 simplifies to

MzZL/ dx p(x) [1 %e (= ﬂ ~2L/ dx p( )exp{—Le (= ﬂ. (A20)

For large L the integrand is effectively zero below a cutoff scale x* determined by Le & 9" w1 orx* ~c+ (lnL)l/ B Thus
L ; L 18\f] 2" 1-1/8
M ~ 2M[1 — P(x*)] = 2Lexp|— (c +(InL) ) ~ fexp[—,ec(ln L) ] (A21)

to leading order in L.

Weibull class: We next consider distributions with bounded support, which we take to be the unit interval [0, 1]. In the
evaluation of the general expression in Equation A4 it has to be taken into account that P(x — ¢) = 0 forx < cand P(x + ¢) =
1 for x > 1 — ¢, which implies in particular that the cases c<1/2 (where c <1 — ¢) and ¢>1/2 (where ¢ > 1 — ¢) have to
distinguished. We begin with the uniform distribution and assume ¢ <1/2, which yields
c 1-c 1 1
M = / dx (x + )" + de (20 + [ dx (1xmo)f =g [(2—C)L+1 +(2E—1)d - zL(1—c)L+1] (A22)
0 c 1-c

Analogously for ¢ >1/2 we obtain

1-c c 1
M= dx (x+cf+ [ dx +/ dx (1+x—c)t = 1 [(z—c)LH — cL“] +2c—1. (A23)
0 1—c c L+1
Comparing Equations A22 and A23, the two expressions are seen to coincide at ¢ = 1/2. Moreover, Equation A22 reduces to
2L /(L + 1) for ¢ = 0 and Equation A23 confirms that M = 1 for ¢ = 1, as expected.
As representatives of Weibull-class distributions with a general EVT index k < 0 we consider the Kumaraswamy distri-
butions defined by

1-(1-x)” 0=x=1

P(x) = 0 x<0 (A24)
1 x>1
with v = — 1/k. We focus on the leading-order behavior of the number of maxima for large L, which is given by the part of

the integral in Equation A4 that contains the upper boundary of the support at x = 1 (compare to Equations A22 and A23).
We assume ¢ <1/2 and obtain

L

M2t dx v(1—x)"~ 1{1—7(1 x+c)} —2L/ dy vy"~ 1[1— (y—l—c)} , (A25)
1—c

which is dominated by the region near y = 0 for large L. Expanding (y + c)” for small y, it follows that

™ 1Ly}_) vI(v) (2—c¢)Et
(

—cv VCV*])V Lv (A26)

M= (2= /dy vy” exp{

for large L, where I" denotes the Gamma function. The result for ¢ > 1/2 is asymptotically the same. Thus to leading order the
number of maxima is M ~ (2—c~ /%))t /[ =(1/x) in the Weibull class.

Expansion for small c: A unified view of the effect of the fitness gradient on the expected number of maxima can be obtained
by expanding the general expression in Equation A4 for small values of c. To leading order in c the integrand is P(x — ¢) +
P(x + ¢) = 2P(x) + c?P"(x) = 2P(x) + c?p’(x), where primes indicate derivatives with respect to x. Integrating and keeping
terms of order ¢2, we thus obtain
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2k _ _
=i 2172 - 1)c? [ dx p(x)*P(x)" 7% + O(cY). (A27)
Evaluating the integral on the right-hand side for the GPD in Equation 4, one finds that it is of the order of L~G*29 and
hence the entire correction term is of order 2:L~(1+2¢2, Thus for k > 0 (Fréchet class) the correction becomes negligible
compared to the HoC term for large L. In contrast, for k < 0 (Weibull class) the correction term eventually dominates the
HoC term, showing that the leading-order behavior of M is modified.

Location of the global maximum To compute the probability Pp.x(d) that a sequence at distance d is the global fitness
maximum one has to demand that its fitness exceeds the fitnesses of all other sequences, which leads to the expression

} 0 L (?)*5@'
Prnax(d) = /_ deple+cd) [[Pec+a) . (A28)

Jj=0

Inserting the Gumbel distribution in Equation 5 and using its shift property in Equation 6, this can be evaluated according to

Sevel(5)

L (?)73@-
Puas(@) = [ @) [[Pely +ci-d) " = [y pe(y)Pa()
=0
N / dy 228 pg ()1 1 / Lo o€ (A29)
dy 0 (1+e )

For general fitness distributions one has to resort to an expansion in c. Starting from Equation A28 and collecting terms linear
in ¢, one obtains

- 1 L
Prax(d) = oIt c2k (E — d)IzL,Z +0(c?), (A30)

where
I = / dx p(x)? P(x)L. (A31)

Expressions for I; for representatives of the three extreme value classes have been derived by Franke et al. (2010). For large L
they behave as

I ~ L@ (A32)
(Wergen et al. 2011). The weighted average with respect to d then yields the approximate expression
L
E(d) ~ 5 - L2272, , (A33)

for the mean distance of the global maximum to the reference sequence. Using the asymptotic behavior of I; given in
Equation A32, it follows that the shift in the position of the maximum from the HoC value L/2 is of order cL27*L,

Appendix B

Calculation of the Fitness Correlation Function

For notational convenience we substract the mean value E(n) of the random fitness component from Equation 2 and define
flo)=F(o) —E(n) = —cd+£(0) with &(o) = n(o) —E(n), (BD

such that E(¢) = 0. It is then easy to see that
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((F(o)=(F(@)))(F(o')=(F(")))), = (Flo)=(f(@)) (f(o) = {f(0")))),

= c2[(dd"), = (2] + 78, (B2)

where v = Var(n) is the variance of n (or £), which is assumed in the following to exist, and d = D(o, 6*), d’ = D(¢’, o*).
While the sequence space averages of d and d’ are obviously equal to L/2, the evaluation of (dd’), requires a double
summation, first over sequences ¢ at distance d from ¢* and then over sequences ¢’ at distance r from o. The latter
sequences are grouped according to a number k that counts how many of the r point mutations distinguishing ¢’ from o
fall on alleles that are different in o- and o*. Obviously, each such mutation decreases the distance d’ by 1, while each of the
r — k mutations acting on previously unaltered alleles increases d’ by 1, such thatd’ =d — k + (r — k) =d + r — 2k. The

number of sequences ¢’ with a given value of k is equal to (i) ( i : ;{i> Thus the sum to be evaluated is

S e
(

(B3)
1- &) + r}

where the combinatorial identities

Jj m \ _(j+m ny_ (n-1
k;)<l+k> <n—k> = <l+n> and k<m) *”(k—1>
have been used (Graham et al. 1994). Putting everything together finally yields Equation 19.

Appendix C

Calculation of the Number of Exceedances

We have seen above in Model that the full neighborhood v (o) of a sequence o is divided into the uphill neighborhood with
the corresponding distribution function PT(x) = P(x + c(d — 1)) of fitness values, o itself with distribution function P*(x) = P
(x + cd), and the downhill neighborhood with distribution function P{(x) = P(x + c(d + 1)). The full distribution function of
fitness values is then given by

1 .
I(x) = —— (dP" (x) + P"(x) + (L — d)P* (x))
L+1
1 (CDH
=1 (dP(x +c(d—1)) +P(x+cd) + (L —d)P(x +c(d+ 1)),
and the expectation of the kth largest fitness value is obtained as

L ! L—k+1 k—1

:L+1( )/xHx 1-TI(x dIl(x (C2)

me= () [ AT )

(David and Nagaraja 2003). In general, the evaluation of this expression is complicated, because the different components of
IT do not have the same support. Here we show how this problem can be circumvented in an approximate way for the special
case of an exponential distribution fitness distribution P(x) = 1 — e *. Naively inserting this into Equation C1, we obtain

Mx) =1- e xlog((1/(L+1))e ! (de"+1+(L—d)e ™)) . 1 _ p—x+log(é(cdL)) _ P(x —log(&(c,d,L))) (C3)

with
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efcd

(de + 1+ (L—d)e™°). (CH

Our approximation consists in ignoring the fact that Equation C3 holds only on the intersection of the supports of P, P*, and

P! and instead defining the common support of TI(x) by [log(£(c, d, L)), =), such that IT(log(£)) = 0. Thus the full

distribution of fitness values defined in Equation C1 is replaced by a simple exponential that is shifted in a d-dependent way.
To proceed we recall that the expected value of the kth largest of n exponentially distributed random variables is given by

n
Mpx = Hy —Hy 1 = log (m) (C5)

(David and Nagaraja 2003), where H, = >";_,(1/k) are the harmonic numbers, and we use the convention that H, = 0. In
the second part of Equation C5 the logarithmic approximation H,, ~ log(n) + v valid for large arguments has been applied,
with y &~ 0.5772156649 ... . It follows that the mean of the kth largest fitness value in the neighborhood, defined in
Equation C2, is approximately given by

—cd

i = log(&(c,d,L)) +Hpy1 —Hi—1 = log<ke_ 1 (de+ (L—d)e “+ 1)> (C6)

After a step up To obtain the mean NoE after a transition from a sequence o at distance d to ¢’ at distance d — 1, where ¢’
has rank r in the old neighborhood, we need to count how many times F(o') is exceeded in the new neighborhood. As an
estimation, F(o") =~ w,(L, ¢, d) is compared to the mean rank-ordered fitness values from the uphill and the downhill parts of
the new neighborhood, which are sets of d — 1 and L — d + 1 independent exponential variables, respectively. In the uphill
neighborhood at distance d — 2 from the reference sequence the exponential random variables are shifted by c(d — 2), and
therefore the number of exceedances k-. derived from this part of the neighborhood is obtained by solving the relation

d—1
pr = mi-1s —e(d=2) wlog ([T ) ~eld-2 @)

for k~. Using the approximation in Equation C6, this yields the expression

(d—1)(r—1)e*

w4
A P

(C8)

Similarly, the contribution k- to the exceedances from the downhill neighborhood is obtained from the relation
My =mp_qi1k. — cd, which yields

L—d+1)r—1)

kP =1 .
R S Y P

(€9)

To complete the calculation we have to take into account the fact that, by construction, kX =d—1 and k* <L —d + 1,
which is not always satisfied by the approximate expressions in Equations C8 and C9. Incorporating these constraints, we
arrive at our final result

N =min(k?®,d - 1) + min(k®,L —d+1). (C10)

A simpler and more transparent expression can be obtained by assuming that d > 1 and e is not too large. Under the first
assumption the combination of Equations C8 and C9 reduces to k¥ 4 k'? = 2 + (r — 1)e°, while the second assumption
ensures that the min-constraints in Equation C10 can be ignored, such that N** = k¥ + k' = 2 + (r — 1)¢‘; see Equation 28
in the main text.

After a step down The calculation of the NoE after a step is taken in the downhill direction is analogous to the previous
one. In this case the contribution from the upper part of the new neighborhood is obtained from the relation
vy = Mgy1k. — cd, which yields

down __ (r_ 1)(d + 1)
= e Ty G- de (1
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Figure C1 The minimal value of the scaled RMF parameter 6 = c¢/+/Var(n) required to generate on average nine exceedances after an adaptive step. (A
and B) Results for initial rank 1 (A) and initial rank 3 (B). The random fitness component is assumed to be distributed according to the GPD with EVT
index k, and different curves correspond to different values of the initial distance d to the reference sequence. The experimental estimate k ~ —0.29 of
the EVT index is indicated by a vertical line.

Correspondingly, the contribution from the downhill part is obtained from evaluating wu, = m;_q—1%. — c(d + 2), with the result

down __ (T— 1)(L —d- 1)6_2C
S B (e (€12)

The final estimate for the number of exceedances reads
N — min (K209, d + 1) + min(k2¥, L —d ~ 1), (C13)

and the simplified expression in Equation 28 arises from the same approximations employed previously for A/UP.

Analysis of the experiment of Miller et al. (2011) In Figure 10 we report the RMF model parameter combinations (k, c)
required to explain the nine beneficial second-step mutations observed on the background of a highly fit first-step
mutation in the experiment of Miller et al. (2011). Figure C1 displays the same data with the additive selection coefficient
¢ scaled by the standard deviation of the random fitness component, which in the case of the GPD is given by

1

VVar(n) = [— (C14)

(1-k)3(1 - 2k)
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