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Abstract

IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of

IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was

tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin

receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R

inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted

agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation

of several Pharma programs. Here, we review completed and on-going trials of IGF-1R

antibodies, kinase inhibitors and ligand antibodies. We assess candidate bio-markers for patient

selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for

standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to

IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R

inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The

last few years were a tough time for IGF-1R therapeutics, but also brought progress in

understanding IGF biology. Even failed studies include patients who derived benefit; they should

be investigated to identify features distinguishing the tumors and host environment of responders

from non-responders. We emphasize the importance of incorporating biospecimen collection into

trial design, and wording patient consents to allow post hoc analysis of trial material as new data

become available. Such information represents the key to unlocking the potential of this approach,

to inform the next generation of trials of IGF signalling inhibitors.
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IGF-targeting: a promising start

The rationale for developing drugs to block IGF signalling has been reviewed elsewhere [1–

3] and will not be repeated, except to highlight first the seminal work of Baserga in showing

that type 1 IGF receptor (IGF-1R) is required for malignant transformation [4], and secondly

the demonstration that low IGF bioactivity protects against development of clinical cancers

[5,6]. A variety of experimental approaches was used to provide proof of principle [7–11];

strategies with clinical application fall into three categories: monoclonal anti-IGF1R

antibodies, small molecule tyrosine kinase inhibitors (TKIs), and IGF ligand antibodies.

Preclinical data indicate that these different classes of drug have different profiles of

selectivity, efficacy and toxicity that may affect their use in clinical practice [12–22].

IGF-1R antibodies block ligand binding and induce receptor internalization and degradation

[14], also resulting in insulin receptor (InsR) downregulation in cells expressing

IGF-1R:InsR hybrid receptors [23]. The majority of IGF-1R TKIs described to date act by

competing with ATP for binding in the IGF-1R kinase domain [18,20,24], and also inhibit

InsR due to conservation of structure, particularly in the ATP-binding cleft of the kinase

domain [25]. As a class effect, IGF-1R inhibitory drugs cause hyperglycemia, although this

is usually mild and reversible [6,26]. IGF-1R TKIs induce hyperglycemia via direct

inhibition of InsR kinase, while IGF-1R antibodies impair glucose tolerance by inducing

elevated circulating levels of growth hormone and IGF binding proteins (IGFBPs),

attributed to blockade of pituitary IGF-1Rs [2]. Several ATP non-competitive agents are in

development, including one at an early stage of clinical testing [27,28]. IGF ligand

antibodies act by neutralising IGF-1 and IGF-2, preventing receptor activation without

affecting glucose tolerance [22,29]. All three classes of agent have anti-tumour activity in

vitro and in vivo, although it should be acknowledged that some preclinical models were

selected or designed to be IGF responsive, and relatively limited preclinical data led to an

extremely large number of clinical trials [30].

Clinical trials: reality check

Given experimental data supporting a key role for IGF-1R in tumor biology, a substantial

degree of optimism accompanied the commencement of clinical trials with anti-IGF-1R

agents. This early enthusiasm was stimulated to a large degree by the near ubiquitous

expression of IGF signalling components, including IGF-1R in most tumor types [30,31],

and was reinforced by initial reports of apparently dramatic activity [32,33]. However, the

data that emerged subsequently have been less impressive. Monotherapy trials of anti-

IGF-1R antibodies and TKIs have generally reported disease stabilisation and minor

responses, with few objective responses in common cancers [34–38]. There is, however,

evidence of activity in heavily pre-treated Ewing sarcoma (EWS), other types of sarcomas,

and neuroendocrine tumors, although data in the latter are conflicting [32,39–44]. In

addition, IGF-1R antibodies were recently reported to have single agent activity in recurrent
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ovarian cancer and relapsed thymoma, although thymoma treatment was associated with the

development of autoimmune conditions including red cell aplasia [45,46]. Activity in EWS

and childhood sarcomas may be a consequence of functional interactions between oncogenic

fusion proteins (EWS-FLI1 and related fusion partners) and the IGF pathway [47–50].

There is as yet little evidence regarding the efficacy of ligand antibodies and non-ATP

binding IGF-1R inhibitors, although of note, initial reports of the latter suggest single agent

activity in non-small cell lung cancer (NSCLC) [28,51]. Otherwise, it is clear that in

common cancers there is insufficient clinical support for continued evaluation of IGF-1R

antibodies and TKIs as monotherapy in unselected patients. In the context of expectations

generated by preclinical data, these clinical results have been disappointing. It is unclear

whether limited single agent activity in common cancers reflects IGF-independent growth in

established tumors, adaptive resistance mechanisms (discussed below) or the inability to

sustain target blockade. The latter issue is raised by preclinical data demonstrating that

IGF-1R antibodies may inadequately maintain in vivo IGF-1R down-regulation or

suppression of PI3K-AKT signalling [52,53]. One factor that could limit efficacy was

highlighted by an immuno-SPECT study showing correlation between uptake of IGF-1R

antibody R1507 in responsive but not resistant IGF-1R-positive bone sarcoma xenografts

[54]. These findings suggest that microenvironmental factors may limit vascular access of

therapeutic antibody to tumor tissue, an obstacle that may be circumvented by small

molecule drugs.

Based on reports that IGF-1R mediates resistance to other modalities of treatment [55–58],

IGF-1R targeting has been evaluated in combination with an extensive range of standard

and/or novel cancer treatments, including cytotoxic drugs and inhibitors of EGFR,

mammalian target of rapamycin (mTOR) and steroid hormone receptors [53,59–75]. This

has also met with mixed results, with Phase 2/3 trial failures in unselected patients [76]. One

thing is certain: some sort of signal is needed soon, and this will require patient selection.

Can we identify who will benefit?

While negative trials led to the high profile termination of several Pharma IGF programs, a

number of IGF axis inhibitors are continuing active evaluation, including small molecule

inhibitors and ligand antibodies. It is important for the success of these programs that

information from completed trials is utilized in translational research, because even the

negative studies include patients who derived benefit from IGF-1R inhibition, providing an

opportunity to characterize responsive tumors. This information has the potential to provide

a basis for stratification and selection, if future trials are to be successful. Without such an

approach, the clinical utility of EGFR inhibitors would not have been recognized after initial

negative Phase 3 evaluation in NSCLC [77].

Although IGF-1R is almost ubiquitously expressed by human tumors, sensitivity to anti-

IGF-1R therapy varies widely between patients and cancer types [26]. Large-scale cancer

genome sequencing projects have identified rare IGF1R gene mutations reported to

influence basal (ligand-unstimulated) phosphorylation of IGF-1R substrates [78]. However,

these or similar mutations, comparable to those in EGFR associated with EGFR inhibitor
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sensitivity, have not been reported in tumors of patients on IGF-1R inhibitor trials. Thus, it

is unlikely that IGF-1R mutations will be relevant in selecting patients for IGF signalling

inhibition. Therefore, there is an on-going search for predictive biomarkers, which fall

generally into two groups: potential biomarkers in the IGF axis, and biomarkers in other

pathways that influence response to IGF-1R inhibition (Table 1).

Candidate predictive biomarkers in the IGF axis

The first candidate biomarker emerged from the Phase 2 figitumumab trial in NSCLC [59],

with a report that high pre-treatment levels of circulating free IGF-1 were predictive of

clinical benefit from addition of figitumumab to standard chemotherapy [79]. These findings

were corroborated with respect to levels of free or total circulating IGFs in additional

clinical trials [63,80–82]. Circulating markers present obvious advantages over tissue

biomarkers: testing is minimally invasive and amenable to serial monitoring. There is

novelty in the concept that tumor sensitivity to a targeted agent may be influenced by host

factors; this idea is consistent with the known importance of circulating host-derived IGFs in

normal and cancer biology, and the recognition that high circulating IGF-1 is associated

with increased risk of developing common cancers [83,84]. However, this line of research

suffered a setback when the original findings with respect to the figitumumab NSCLC data

were retracted [85]. Nonetheless, more recent data support further investigation of IGF

components as candidate biomarkers. Preclinical models find evidence of correlation

between sensitivity to figitumumab or TKI NVP-AEW541 and expression of IRS2, IGFBP5

and MYB in colorectal cancer [86], and expression of IGF-1R, IGF-2 and IRS-1 and -2 in

breast and colon models [87,88]. In breast cancer cells resistant to BMS 536924, the

IGFBP-5/IGFBP-4 expression ratio was found to correlate with sensitivity to IGF-1R

inhibition [89]. Clinical evidence supporting evaluation of IGF axis biomarkers comes from

trials in pancreatic cancer, where sensitivity to dalotuzumab (IGF-1R antibody MK-0646)

was linked with tumor IGF-1 expression, and to ganitumab with high circulating IGF-1,

IGF-2 or IGFBP-3, or low IGFBP-2 [82,90].

In certain cancers, including NSCLC, breast, colorectal, EWS and rhabdomyosarcoma,

tumor IGF-1R may be predictive of response [52,87,91,92]. IGF-1R expression by

circulating tumor cells may correlate with tumor IGF-1R, providing a feasible approach for

serial measurement [93]. This could be particularly relevant when monitoring response to

IGF-1R antibody, where IGF-1R downregulation is an indicator of target engagement [14].

In rhabdomyosarcoma cell lines, there was significant correlation between elevated IGF-1R

and anti-proliferative effects of an anti-IGF1R monoclonal antibody, enabling prediction of

responses to IGF-1R-targeting in animal models [52]. This parameter and the finding of

association with IGFs, IRS proteins and IGFBPs may indicate tumors that are more heavily

dependent on IGF signalling, although evidence in this area is contradictory, with some

preclinical and clinical studies reporting that IGF-1R expression or activation has no

predictive value [72,94,95]. It is possible that the specific molecular context and the

complexity of IGF-1R:insulin hybrid receptor biology may explain some of these

contradictory results [26]. A well-designed Phase 2 study in patients with bone or soft tissue

sarcomas tested the utility of IGF-1R as a predictive biomarker by measuring IGF-1R in

fresh tumor biopsies pre-and post treatment [72]. The results suggested that PFS was similar
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in patients with ‘IGF-1R positive’ vs ‘IGF-1R negative’ tumors, apparently challenging the

assumption that lack of IGF-1R has negative predictive value, although it was acknowledged

that IGF-1R could be detected by western blotting of tumor lysates in tumors that were

‘IGF-1R negative’ by immunohistochemistry, casting doubt on the sensitivity of IHC

detection [72]. These data highlight the importance of establishing standardized detection

protocols for IGF-1R, as for estrogen receptor (ER) and HER2, and to develop robust assays

for InsR and hybrid receptors in clinical tumors.

Subcellular IGF-1R localization may also be relevant to response to IGF-1R inhibition,

although there is conflict in the literature on its significance. Aberrant IGF-1R glycosylation

is reported to impair insertion of IGF-1R into the plasma membrane, conferring resistance to

IGF-1R antibody [96], consistent with a model in which only receptors on the plasma

membrane are accessible to antibody binding. IGF-1R is known to undergo ligand-induced

translocation from the cell surface to the nucleus of human tumor cells, and nuclear IGF-1R

is associated with resistance to EGFR inhibitor gefitinib [97–100], suggesting a role in

IGF-1R-mediated resistance to targeted therapies. Exclusive nuclear IGF-1R localization

was reported by Blay and colleagues to be associated with benefit from IGF-1R antibody in

unresectable and metastatic sarcomas [101]. This may suggest that nuclear IGF-1R is a

marker for dependence on IGF signalling, and sensitivity to its inhibition. It also raises the

question of the location of IGF-1R:antibody binding; of note, quantum dot-labelled IGF-1R

antibody has been found to undergo nuclear import [102].

Candidate predictive biomarkers outside the IGF axis

Given that the IGF axis engages in complex signalling interactions [103], it is predictable

that candidate biomarkers will be identified outside the IGF–IGF-1R–IRS axis, and some

such have been identified from tumor-specific screens. In childhood sarcoma cells,

knockdowns of macrophage-stimulating 1 receptor (MST1R, also known as RON) and

ribosomal protein S6 restored sensitivity to BMS-536924 in resistant cell lines [104].

Sensitivity to the dual IGF-1R/InsR inhibitor linsitinib (OSI-906) was associated with

IGF1R gene copy number (but not IGF-1R protein) in colorectal cancer cell lines, and also

with differential expression of 3 gene pairs and a trend to greater sensitivity in cells with

wild-type KRAS [105]. The latter finding raises the issue of the extent to which activating

mutations in IGF-1R effectors mediate resistance to IGF-1R blockade. In preclinical models,

IGF-1R inhibition is capable of suppressing tumor cell growth in cells that lack functional

PTEN, although there are conflicting reports of the consequences of PTEN loss in terms of

the ability of IGF-1R targeting to enhance radiosensitivity [10,106,107]. While PTEN loss

amplifies signalling to AKT, it does not induce constitutive pathway activation; logic

dictates that constitutively activating mutations in the PI3K-AKT or RAS-RAF-ERK

pathways should render cells refractory to IGF axis blockade. Indeed, preclinical data

suggest that resistance to IGF-1R inhibition is observed in the context of constitutive AKT

activation and high levels of activated ERKs [108–111], and sensitivity of KRAS mutant

NSCLC was restored by MEK inhibition [112,113]. Consistent with this, IGF-1R antibody

ganitumab was ineffective at sensitizing to FOLFIRI chemotherapy in patients with KRAS

mutant colorectal cancer [114], although issues of chemotherapy scheduling may be a

contributing factor (see below). In contrast, KRAS mutant NSCLC cells appear to be
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sensitive to IGF-1R inhibition: mutant KRAS was found to induce IGF-dependent PI3K

activation that could be suppressed by targeting IGF-1R [115]. These findings suggest that

KRAS mutation may have varying significance for response to IGF-1R blockade, depending

upon the tumor type and/or molecular context.

Finally, predictive information may be derived by characterizing IGF-regulated gene

expression. This approach was first applied by Lee and colleagues, with reports that an IGF

gene signature induced in breast cancer cells in vitro is associated with poor prognosis in

clinical cancers, and correlates with sensitivity to IGF-1R inhibitor BMS-754807 in triple

negative breast cancer (TNBC) in vivo [116,117]. These data provide further support for the

concept that tumors that are highly dependent on IGF signalling may also be sensitive to

IGF-1R inhibition. A similar approach has been taken in EWS, to identify molecular

signatures associated with resistance to IGF-1R antibody or TKI drugs [118].

Thus, there is evidence from several studies that levels of circulating IGFs and IGFBPs

correlate with sensitivity to IGF axis inhibition. Otherwise, there is little consensus, with a

range of candidate biomarkers identified in different tumors with different classes of agent.

As a consequence, phase 2/3 trials have been undertaken without patient selection, although

some are now reporting post hoc identification of markers that characterize responsive

patient subgroups [65,82]. In order for this research to inform clinical practice, it is of

critical importance to be able to test these factors in the tumors of additional trial patients.

This in turn requires that trial consents should permit future ethically-approved research on

archival and trial-specific material. For example, BATTLE-FL is building on previous

NSCLC BATTLE trials [119], to incorporate biomarkers into a trial adding targeted agents

including IGF-1R antibody cixutumumab to first-line carboplatin/pemetrexed chemotherapy

(NCT01263782). Another example is the ongoing ISPY2 (NCT01042379) breast cancer

clinical trial, which is incorporating ganitumab in combination with metformin, into

neoadjuvant chemotherapy, and employing a rich biomarker driven, adaptive study design

[120,121]. The analysis will be used to develop both predictive and prognostic biomarkers

through correlation of tumor expression profiles by DNA microarray and reverse-phase

protein arrays with tumor response at the time of surgery.

Approaches to design rational combination therapies

Given the large number of signalling pathways that converge on those activated by IGF-1R

[103], it was in retrospect unlikely that IGF-1R targeting would have dramatic impact as

monotherapy, except in specific cancers that are highly IGF-dependent. Predictive

biomarkers serve an important purpose in identifying potentially responsive patients, but

they do not make treatments more effective per se. To achieve that goal, it is necessary to

understand how to combine novel drugs most effectively, and how to schedule targeted

drugs with standard treatments. A large body of literature has highlighted the ability of

IGF-1R to mediate resistance to other treatment modalities, and conversely has identified

proteins capable of compensating for IGF-1R blockade. These findings provide the rationale

for designing trials of IGF-1R inhibitory drugs in combination with other targeted agents,

and with chemotherapy.
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Trials of IGF-1R inhibitory drugs with targeted agents

IGF-1R signalling is involved in extensive cross-talk with other receptor tyrosine kinases

(RTKs) and their downstream effectors, such that compensation from other pathways is

likely to mediate resistance to inhibition of a single class of receptor [122]. For IGF-1R, the

most closely-related candidate is InsR, with evidence that resistance to IGF-1R antibody

therapy results from IGF-1R:InsR heterodimer formation, and IGF-2 signalling via the

variant InsR isoform A (InsR-A) that is frequently expressed by human tumors [96,123–

125]. Of note, InsR-A may be the more important IGF signalling receptor in hormone-

resistant breast cancer [126–128]. This source of compensatory signalling may be blocked

by IGF ligand antibodies and dual IGF-1R/InsR TKIs such as linsitinib and BMS-754807

[20,129]. Trials currently in progress will clarify whether this conceptual advantage

translates to improved efficacy.

Cross-talk has been demonstrated between IGF-1R and other cell surface and nuclear

receptors including epidermal growth factor receptor (EGFR), platelet-derived growth factor

receptor α (PDGFRα), Src and ER [130–136]. Preclinical studies implicate RTKs such as

EGFR, HER2, PDGFRα and cMET in adaptive resistance to IGF-1R inhibition

[133,137,138]. In particular, it is well-recognized that EGFR and IGF-1R are capable of

providing reciprocal compensation, via receptor upregulation, enhanced PI3K-AKT

signalling, and altered function of cell cycle regulators, patterns of chromatin modification

and gene expression [55,87,130,139,140]. This recognition prompted trials of combined

IGF-1R:EGFR inhibition, alone or with standard cancer treatments. Phase 1 evaluation

suggests that such combinations are tolerable, with evidence of activity in non-

adenocarcinoma NSCLC [61]. However, outcomes were not improved by the addition of

IGF-1R antibodies ganitumab to EGFR antibody panitumumab in colorectal cancer, or

cixutumumab to EGFR TKI erlotinib with gemcitabine in unselected patients with

pancreatic cancer [67,73]. This and other IGF-1R:EGFR combination trials, such as the

Phase 2 NSCLC trials of linsitinib and erlotinib (NCT01221077, NCT01186861) have been

conducted in erlotinib naïve patients, whereas the ability of IGF-1R to mediate resistance to

EGFR inhibition was identified preclinically in NSCLC cells induced to be erlotinib

resistant [130]. Due to the paucity of trials that have to date incorporated post-treatment

biopsies, it is unclear to what extent the mechanisms identified preclinically contribute to

clinical resistance to IGF targeted therapy.

Components of downstream signalling pathways may also modulate response to IGF-1R

inhibition [141]. While anti-IGF-1R antibodies down-regulate IGF-1R and inhibit activation

of AKT, S6 and ERKs, at least acutely, it is recognized that AKT can be reactivated despite

sustained IGF-1R down-regulation, leading to tumor progression [52,142]. Thus there is

interest in combining IGF-1R inhibition with small molecule inhibitors of the PI3K/AKT

pathway [143]. Given the redundancy in RTK signalling cascades, a logical therapeutic

strategy would be to target the points at which these pathways converge. Inhibition of the

mTOR complex 1 (mTORC1) by rapamycin and rapalogues everolimus and temsirolimus

has been found to activate PI3K-Akt via a pro-oncogenic feedback loop that can be

suppressed by IGF-1R blockade [21,144,145]. This could be an effective approach in tumors

that harbor mutant LKB, in which expression of IGF axis components is upregulated [146],
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and in sarcomas where RPS6 has been shown to mediate resistance to IGF-1R inhibition

[104]. Indeed, anti-tumor effects have been observed preclinically using rapamycin with

figitumumab, ganitumab or ligand antibody BI 836845 in sarcoma models [21,147,148].

This strategy is being explored in clinical trials including NCT00927966, NCT00678769,

NCT01016015, with promising evidence of durable disease control in metastatic

adrenocortical cancers and sarcomas including EWS [70,72,149,150], findings that clearly

merit further follow-up. IGFs regulate cell cycle progression by influencing the activity of

cyclin-dependent kinases (CDKs), and IGF-1R inhibition has been shown to synergize with

CDK4/6 inhibition in models of pancreatic ductal carcinoma and dedifferentiated

liposarcoma [151,152].

Cross-talk between IGF and endocrine pathways has prompted clinical trials of IGF-1R

inhibition with hormone therapy in breast and prostate cancer. IGF-1R was identified in a

kinome-wide screen as a key mediator of resistance to endocrine therapy in hormone

receptor positive breast cancer [153], but outcomes were not improved in this patient

population by addition of ganitumab to the aromatase inhibitor exemestane or ER antagonist

fulvestrant [154]. An earlier trial using figitumumab had similarly found no overall benefit

from addition to exemestane, but a possible responsive subgroup based on glycemic control,

with HbA1c <5.7% [155]. Additional preclinical data suggest that complete blockade of IGF

signalling through IGF-1R and InsR A isoform is required for reversing resistance to

endocrine therapy in ER+ breast cancer [156]. An ongoing study of BMS-754807 alone or

with letrozole (a non-steroidal aromatase inhibitor) in patients with metastatic breast cancer

is collecting post-treatment biopsies to evaluate potential mechanisms of resistance

(NCT01225172). TNBC may also be an appropriate focus for this approach, given the

adverse prognostic significance of IGF-1R expression in TNBC, and the sensitivity of

TNBC cells to IGFs and IGF-1R inhibition [117,157,158]. In prostate cancer, preclinical

data indicate that IGF-1R antibody cixutumumab caused significant delay in development of

androgen resistance, and early trial results suggested benefit from IGF-1R blockade in men

with this disease [93,159]. These data have prompted two neoadjuvant trials: figitumumab

monotherapy [160], and cixutumumab with endocrine therapy (bicalutamide and goserelin)

prior to radical prostatectomy [161].

Clinical trials combining IGF-1R inhibitory drugs with chemotherapy

The addition of IGF-1R inhibition to chemotherapy is supported by preclinical evidence that

IGF-1R protects tumor cells from killing by cytotoxic drugs [68,162]. Further mechanisms

that may be relevant include the ability of IGF-1R inhibition to suppress chemotherapy-

induced IGF-1R activation and DNA damage repair [107,112,163–165]. Phase 1 trials

suggested that IGF-1R inhibition is tolerable with chemotherapy, with evidence of clinical

activity in heavily pre-treated patients [71,74,75,166–170]. The first reported Phase 2 trial

with chemotherapy tested effects of figitumumab with paclitaxel and carboplatin in NSCLC.

The initial results generated considerable enthusiasm when the trial found highly significant

benefit in terms of objective responses and progression-free survival (PFS, hazard ratio

0.56) for patients receiving the higher dose of figitumumab [59]. However, it was

subsequently determined that a substantial number of responses proved to be unconfirmed

by RECIST criteria, and a later retraction stated that the differences in response rates were
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more modest, and without PFS prolongation [171]. Meanwhile, this trial had prompted a

Phase 3 study that was prematurely discontinued after interim analysis favoured the

paclitaxel/carboplatin only arm [172]. Unfortunately this pattern has been repeated, with

failed trials being followed by subgroup analysis characterizing responsive patients. IGF-1R

antibody ganitumab showed a trend to improved 6 month and overall survival when

combined with gemcitabine in a Phase 2 trial in patients with pancreatic cancer [173]. This

led to the Phase 3 GAMMA trial (NCT01231347) in unselected pancreatic cancer patients

that was terminated prematurely due to lack of benefit [76]. Subsequently, as highlighted in

the previous section, biomarker studies suggested that analysis of circulating IGFs and

IGFBPs may identify subsets of ganitumab-responsive patients [82]. Two trials have

evaluated addition of IGF-1R antibody to irinotecan-containing combination therapy in

colorectal cancer: ganitumab with FOLFIRI chemotherapy in KRAS mutant cancers

refractory to fluoropyrimidine- and oxaliplatin-based chemotherapy [114], and dalotuzumab

with EGFR inhibitor cetuximab in chemorefractory KRAS wild-type or mutant cancers [64].

The latter suggested that addition of dalotuzumab actually worsened progression-free and

overall survival. However, subsequent molecular analysis identified differential IGF

expression and mesenchymal phenotype as potential markers of benefit from dalotuzumab

[65,112]. It may also be relevant that these trials involved sustained antibody-mediated

IGF-1R blockade, which could protect tumor cells from the toxicity of phase-specific

cytotoxic drugs. Consistent with the concept that effects of IGF-1R inhibition on DNA

repair play a major role in chemosensitization, no clinical activity has been seen in trials

combining IGF-1R antibodies with taxanes, which do not damage DNA [174,175].

Furthermore, preclinical data suggest that the most effective inhibition of tumorigenesis

occurs when the anti-IGF-1R agent is applied after DNA-damaging chemotherapy

[176,177], which was not the design employed in the failed trials. These findings suggest

that greater emphasis should be placed on the class of cytotoxic drug(s) with which IGF-1R

agents are combined, and the scheduling of IGF-1R inhibition with chemotherapy; this will

be more readily achieved using IGF-1R TKIs or short-half-life antibody therapeutics.

Scheduling appears not to be critical for combination with radiation therapy, which causes

DNA damage in all phases of the cell cycle, and to which IGF-1R inhibitory drugs have

been shown to sensitize in head and neck, prostate and lung cancers [53,69,107,178],

although this approach has not been tested clinically.

Conclusion

While many studies have not yet reported results, IGF-1R inhibitory antibodies and TKIs

have not to date demonstrated significant benefit in unselected patients recruited to Phase

2/3 trials. This may be due, at least in part, to the lack of robust predictive biomarkers.

Following the initial transition from bench to bedside, there is a clear need to look critically

at the preclinical evidence, so that new trials are conducted in tumors with the appropriate

molecular context. For example, IGF-1R inhibitory drugs may be more appropriately tested

in triple negative rather than hormone receptor positive breast cancers [117,154,157,158],

and in KRAS-mutant rather than wild-type colorectal and lung cancers [65,115]. Completed

IGF-1R trials represent an opportunity to investigate the characteristics of responding and

resistant subgroups, provided tumor tissue was collected. This in turn requires trial consents
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to be written with sufficiently broad scope to allow future translational research, so that

newly identified biomarkers can be tested, and if validated, incorporated into future studies.

There is as yet little consistent evidence regarding candidate tissue biomarkers for response

to IGF-1R antibodies and TKIs, and it is not clear at this stage whether the same parameters

will influence sensitivity to IGF ligand antibodies, which are still at a relatively early stage

of development. However, enough trials have highlighted the association between response

to IGF-1R inhibition and circulating IGFs, IGFBPs, and indicators of glycemic control

[63,80–82,86,87,155] to support inclusion of these parameters in future trials of agents that

remain under active investigation, for example [21,22,51,165]. Even amongst the failed

trials, there are subsets of patients who have obtained durable benefit from IGF-1R

inhibition. The challenge is to identify and characterize those patients, and use that

information to increase the efficacy of this approach in cancer therapy.
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