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Abstract

We study the problem of estimating the leading eigenvectors of a high-dimensional population
covariance matrix based on independent Gaussian observations. We establish a lower bound on
the minimax risk of estimators under the I, loss, in the joint limit as dimension and sample size
increase to infinity, under various models of sparsity for the population eigenvectors. The lower
bound on the risk points to the existence of different regimes of sparsity of the eigenvectors. We
also propose a new method for estimating the eigenvectors by a two-stage coordinate selection
scheme.
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1. Introduction

Principal components analysis (PCA) is widely used to reduce dimensionality of
multivariate data. A traditional setting involves repeated observations from a multivariate
normal distribution. Two key theoretical questions are: (i) what is the relation between the
sample and population eigenvectors, and (ii) how well can population eigenvectors be
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estimated under various sparsity assumptions? When the dimension N of the observations is
fixed and the sample size n — oo, the asymptotic properties of the sample eigenvalues and
eigenvectors are well known [Anderson (1963), Muirhead (1982)]. This asymptotic analysis
works because the sample covariance approximates the population covariance well when the
sample size is large. However, it is increasingly common to encounter statistical problems
where the dimensionality N is comparable to, or larger than, the sample size n. In such cases,
the sample covariance matrix, in general, is not a reliable estimate of its population
counterpart.

Better estimators of large covariance matrices, under various models of sparsity, have been
studied recently. These include development of banding and thresholding schemes [Bickel
and Levina (2008a, 2008b), Cai and Liu (2011), El Karoui (2008), Rothman, Levina and
Zhu (2009)], and analysis of their rate of convergence in the spectral norm. More recently,
Cai, Zhang and Zhou (2010) and Cai and Zhou (2012) established the minimax rate of
convergence for estimation of the covariance matrix under the matrix I{ norm and the
spectral norm, and its dependence on the assumed sparsity level.

In this paper we consider a related but different problem, namely, the estimation of the
leading eigenvectors of the covariance matrix. We formulate this eigenvector estimation
problem under the well-studied “spiked population model” which assumes that the ordered
set of eigenvalues ) of the population covariance matrix Y satisfies

X(Z):{)\I_FO—Qa"'7)\M+0-230'21---702} (l.l)

for some M > 1, where 62 > 0 and Ay > Ay > --- > Ay > 0. This is a standard model in several
scientific fields, including, for example, array signal processing [see, e.g., van Trees (2002)]
where the observations are modeled as the sum of an M-dimensional random signal and an
independent, isotropic noise. It also arises as a latent variable model for multivariate data,
for example, in factor analysis [Jolliffe (2002), Tipping and Bishop (1999)]. The assumption
that the leading M eigenvalues are distinct is made to simplify the analysis, as it ensures that
the corresponding eigenvectors are identifiable up to a sign change. The assumption that all
remaining eigenvalues are equal is not crucial as our analysis can be generalized to the case
when these are only bounded by 2. Asymptotic properties of the eigenvalues and
eigenvectors of the sample covariance matrix under this model, in the setting when N/n — ¢
€ (0, 0o) as n — oo, have been studied by Lu (2002), Baik and Silverstein (2006), Nadler
(2008), Onatski (2006) and Paul (2007), among others. A key conclusion is that when N/n
— ¢ > 0, the eigenvectors of standard PCA are inconsistent estimators of the population
eigenvectors.

Eigenvector and covariance matrix estimation are related in the following way. When the
population covariance is a low rank perturbation of the identity, as in this paper, sparsity of
the eigenvectors corresponding to the nonunit eigenvalues implies sparsity of the whole
covariance. Consistency of an estimator of the whole covariance matrix in spectral norm
implies convergence of its leading eigenvalues to their population counterparts. If the gaps
between the distinct eigenvalues remain bounded away from zero, it also implies
convergence of the corresponding eigen-subspaces [El Karoui (2008)]. In such cases, upper
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bounds for sparse covariance estimation in the spectral norm, as in Bickel and Levina
(20084a) and Cai and Zhou (2012), also yield upper bounds on the rate of convergence of the
corresponding eigenvectors under the I, loss. These works, however, did not study the
following fundamental problem, considered in this paper: How well can the leading
eigenvectors be estimated, and namely, what are the minimax rates for eigenvector
estimation? Indeed, it turns out that the optimal rates for covariance matrix estimation and
leading eigenvector estimation are different. Moreover, schemes based on thresholding the
entries of the sample covariance matrix do not achieve the minimax rate for eigenvector
estimation. The latter result is beyond the scope of this paper and will be reported in a
subsequent publication by the current authors.

Several works considered various models of sparsity for the leading eigenvectors and
developed improved sparse estimators. For example, Witten, Tibshirani and Hastie (2009)
and Zou, Hastie and Tibshirani (2006), among others, imposed I;-type sparsity constraints
directly on the eigenvector estimates and proposed optimization procedures for obtaining
them. Shen and Huang (2008) suggested a regularized low rank approach to sparse PCA.
The consistency of the resulting leading eigenvectors was recently proven in Shen, Shen and
Marron (2011), in a model in which the sample size n is fixed while N — co. d’Aspremont
et al. (2007) suggested a semi-definite programming (SDP) problem as a relaxation to the lg-
penalty for sparse population eigenvectors. Assuming a single spike, Amini and Wainwright
(2009) studied the asymptotic properties of the resulting leading eigenvector of the
covariance estimator in the joint limit as both sample size and dimension tend to infinity.
Specifically, they considered a leading eigenvector with exactly k << N nonzero entries all

of the form {—1/ V%, 1/ Vk}. For this hardest subproblem in the k-sparse lp-ball, Amini and
Wainwright (2009) derived information theoretic lower bounds for such eigenvector
estimation.

In this paper, in contrast, following Johnstone and Lu (2009) (JL), we study estimation of
the leading eigenvectors of Y assuming that these are approximately sparse, with a bounded
Iq norm. Under this model, JL developed an estimation procedure based on coordinate
selection by thresholding the diagonal of the sample covariance matrix, followed by the
spectral decomposition of the submatrix corresponding to the selected coordinates. JL
further proved consistency of this estimator assuming dimension grows at most
polynomially with sample size, but did not study its convergence rate. Since this estimation
procedure is considerably simpler to implement and computationally much faster than the 14
penalization procedures cited above, it is of interest to understand its theoretical properties.
More recently, Ma (2011) developed iterative thresholding sparse PCA(ITSPCA),which is
based on repeated filtering, thresholding and orthogonalization steps that result in sparse
estimators of the subspaces spanned by the leading eigenvectors. He also proved consistency
and derived rates of convergence under appropriate loss functions and sparsity assumptions.
In a later work, Cai, Ma and Wu (2012) considered a two-stage estimation scheme for the
leading population eigenvector, in which the first stage is similar to the DT scheme applied
to a stochastically perturbed version of the data. The estimates of the leading eigenvectors
from this step are then used to project another stochastically perturbed version of the data to
obtain the final estimates of the eigenvectors through solving an orthogonal regression
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problem. They showed that this two-stage scheme achieves the optimal rate for estimation of
eigen-subspaces under suitable sparsity conditions.

In this paper, which is partly based on the Ph.D. thesis of Paul [Paul (2005)], we study the
estimation of the leading eigenvectors of }, all assumed to belong to appropriate 5 spaces.
Our analysis thus extends the JL setting and complements the work of Amini and
Wainwright (2009) in the Ig-sparsity setting. For simplicity, we assume Gaussian
observations in our analysis.

The main contributions of this paper are as follows. First, we establish lower bounds on the
rate of convergence of the minimax risk for any eigenvector estimator under the I, loss. This
analysis points to three different regimes of sparsity, which we denote dense, thin and
sparse, each having its own rate of convergence. We show that in the “dense” setting (as
defined in Section 3), the standard PCA estimator attains the optimal rate of convergence,
whereas in sparser settings it is not even consistent. Next, we show that while the JL
diagonal thresholding (DT) scheme is consistent under these sparsity assumptions, it is not
rate optimal in general. This motivates us to propose a new refined thresholding method
(Augmented Sparse PCA, or ASPCA) that is based on a two-stage coordinate selection
scheme. In the sparse setting, both our ASPCA procedure, as well as the method of Ma
(2011) achieve the lower bound on the minimax risk obtained by us, and are thus rate-
optimal procedures, so long as DT is consistent. For proofs see Ma (2011) and Paul and
Johnstone (2007). There is a somewhat special, intermediate, “thin” region where a gap
exists between the current lower bound and the upper bound on the risk. It is an open
question whether the lower bound can be improved in this scenario, or a better estimator can
be derived. Table 1 provides a comparison of the lower bounds and rates of convergence of
various estimators.

The theoretical results also show that under comparable scenarios, the optimal rate for
eigenvector estimation O((log N/n)~(1=9/2)) (under squared-error loss) is faster than the rate
obtained for sparse covariance estimation, O((log N/n)~(1=9) (under squared operator norm
loss), by Bickel and Levina (2008a) and shown to be optimal by Cai and Zhou (2012).

Finally, we emphasize that to obtain good finite-sample performance for both our two-stage
scheme, as well as for other thresholding methods, the exact thresholds need to be carefully
tuned. This issue and the detailed theoretical analysis of the ASPCA estimator are beyond
the scope of this paper, and will be presented in a future publication. After this paper was
completed, we learned of VVu and Lei (2012), which cites Paul and Johnstone (2007) and
contains results overlapping with some of the work of Paul and Johnstone (2007) and this

paper.

The rest of the paper is organized as follows. In Section 2, we describe the model for the
eigenvectors and analyze the risk of the standard PCA estimator. In Section 3, we present
the lower bounds on the minimax risk of any eigenvector estimator. In Section 4, we derive
a lower bound on the risk of the diagonal thresholding estimator proposed by Johnstone and
Lu (2009). In Section 5, we propose a new estimator named ASPCA (augmented sparse
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PCA) that is a refinement of the diagonal thresholding estimator. In Section 6, we discuss
the question of attainment of the risk bounds. Proofs of the results are given in Appendix A.

Throughout, SN~ denotes the unit sphere in RN centered at the origin, |x] denotes the
largest integer less than or equal to x € R.

2. Problem setup

We suppose a triangular array model, in which for each n, the random vectors

X; := X!",i=1,...,n, €ach have dimension N = N(n) and are independent and identically
distributed on a common probability space. Throughout we assume that X;j’s are i.i.d. as
Nn(O, ¥), where the population matrix ¥, also depending on N, is a finite rank perturbation
of (a multiple of) the identity. In other words,

M
=Y A0,00+07I, 1)
v=1

where kg > Ay > -+ >\ > 0, and the vectors 64, ... ,0y € RN are orthonormal, which
implies (1.1). 0, is the eigenvector of § corresponding to the vth largest eigenvalue, namely,
A, + 02. The term “finite rank” means that M remains fixed even as n — co. The asymptotic
setting involves letting both n and N grow to infinity simultaneously. For simplicity, we
assume that the A,’s are fixed while the parameter space for the 6,’s varies with N.

The observations can be described in terms of the model
M
Xik::z AV /\l,vl,iﬁl,k—i—aZik, 121, ceey N, ]{3:1, . 7]V. (22)
v=1

Here, for each i, v,j, Zjx are i.i.d. N(0, 1). Since the eigenvectors of ) are invariant to a scale
change in the original observations, it is henceforth assumed that o = 1. Hence, A1, ..., Ay in
the asymptotic results should be replaced by /02, ... , Am/o? when (2.1) holds with an
arbitrary ¢ > 0. Since the main focus of this paper is estimation of eigenvectors, without loss
of generality we consider the uncentered sample covariance matrix S := n=2 XXT, where X
=[Xg: . Xl

The following condition, termed Basic assumption, will be used throughout the asymptotic
analysis, and will be referred to as (BA).

(BA) (2.2) holds with o = 1; N =N(n) — co asn — oo; Ay > -+ >\ > 0 are fixed (do not
vary with N); M is unknown but fixed.

2.1. Eigenvector estimation with squared error loss

Given data { X}, the goal is to estimate M and the eigenvectors 04, ... ,O. For
simplicity, to derive the lower bounds, we first assume that M is known. In Section 5.2 we
derive an estimator of M, which can be shown to be consistent under the assumed sparsity

conditions. To assess the performance of any estimator, a minimax risk analysis approach is
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proposed. The first task is to specify a loss function L(e\;, 0,) between the estimated and true
eigenvector.

Eigenvectors are invariant to choice of sign, so we introduce a notation for the acute (angle)
difference between unit vectors,

aob=a — sign((a, b))b,
where a and b are N x 1 vectors with unit I, norm. We consider the following loss function,
also invariant to sign changes:
L(a,b) := 2(1 - [(a,b))=[acb|*. @3

An estimator 6; is called consistent with respect to L, if L(GVA,GV) — 0 in probability as n —

Q.

2.2. Rate of convergence for ordinary PCA

We first consider the asymptotic risk of the leading eigenvectors of the sample covariance
matrix (henceforth referred to as the standard PCA estimators) when the ratio N/n — 0 as n
— o0o. For future use, we define

)\2
h(A) :== TR A>0, (24)
and
(=1
Q(A,T)—7(1+)\)(1+T), A, 7>0. (25)

In Johnstone and Lu (2009) (Theorem 1) it was shown that under a single spike model, as
N/n — 0, the standard PCA estimator of the leading eigenvector is consistent. The following
result, proven in the Appendix, is a refinement of that, as it also provides the leading error
term.

Theorem 2.1. Let e;,pCA be the eigenvector corresponding to the 1th largest eigenvalue of S.
Assume that (BA) holds and N, n — oo such that N/n — 0. Then, foreachv=1, ... , M,

A N-M 1 1
sup EL(6 0,)= {

A V)T +—
6,esN-1 vpen th(Au) nl;yg()\ﬂ’ )\l/)

} (1+0(1)). (2:6)

Remark 2.1. Observe that Theorem 2.1 does not assume any special structure such as
sparsity for the eigenvectors. The first term on the right-hand side of (2.6) is a nonparametric
component which arises from the interaction of the noise terms with the different
coordinates. The second term is “parametric” and results from the interaction with the
remaining M — 1 eigenvectors corresponding to different eigenvalues. The second term
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shows that the closer the successive eigenvalues, the larger the estimation error. The upshot
of (2.6) is that standard PCA yields a consistent estimator of the leading eigenvectors of the
population covariance matrix when the dimension-to-sample-size ratio (N/n) is
asymptotically negligible.

2.3. Iq constraint on eigenvectors

When N/n — ¢ € (0, o], standard PCA provides inconsistent estimators for the population
eigenvectors, as shown by various authors [Johnstone and Lu (2009), Lu (2002), Nadler
(2008), Onatski (2006), Paul (2007)]. In this subsection we consider the following model for
approximate sparsity of the eigenvectors. For each v=1, ... , M, assume that 0,, belongs to
an lg ball with radius C, for some g € (0, 2), thus 6, € ©¢ (C), where

N
0,(C) = {a € SN’1:Z|ak|q < C’q}. @7

k=1

Note that our condition of sparsity is slightly different from that of Johnstone and Lu (2009).

Since 0 < g < 2, for ©¢4(C) to be nonempty, one needs C = 1. Further, if Cq = N3¢/, then the
1

space Oq (C) is all of SN-1 because in this case, the least sparse vector VN 1,1,...,1)is

in the parameter space.

The parameter space for 8 := [0;: ... :Op] is denoted by

M
@g’j(Cl, L0 = {0 € HGq(C,,):<0V, 6,,)=0, forv # 1/} , (2.8)

v=1

where ©q (C) is defined through (2.7), and C, 2 1 forall v=1, ... , M. Thus @fy consists of
sparse orthonormal M-frames, with sparsity measured in Ig. Note that in the analysis that
follows we allow the C,,’s to increase with N.

Remark 2.2. While our focus is on eigenvector sparsity, condition (2.8) also implies sparsity
of the covariance matrix itself. In particular, for q € (0, 1), a spiked covariance matrix
satisfying (2.8) also belongs to the class of sparse covariance matrices analyzed by Bickel
and Levina (2008a), Cai and Liu (2011) and Cai and Zhou (2012). Indeed, Cai and Zhou
(2012) obtained the minimax rate of convergence for covariance matrix estimators under the
spectral norm when the rows of the population matrix satisfy a weak-I, constraint. However,
as we will show below, the minimax rate for estimation of the leading eigenvectors is faster
than that for covariance estimation.

3. Lower bounds on the minimax risk

We now derive lower bounds on the minimax risk of estimating 0,, under the loss function
(2.3). To aid in describing and interpreting the lower bounds, we define the following two
auxiliary parameters. The first is an effective noise level per coordinate
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TE:l/(nh(/\y)) (3.1)
and the second is an effective dimension

my, = Aq(@/r,,)q, (3.2)

where aq = (2/9)1792, ¢; := 10g(9/8) and A, := 1/(a,c?’?)and finally &% .= ¢ — 1.

The phrase effective noise level per coordinate is motivated by the risk bound in Theorem
2.1: dividing both sides of (2.6) by N, the expected “per coordinate” risk (or variance) of the
PCA estimator is asymptotically 2. Next, following Nadler (2009), let us provide a different
interpretation of t,. Consider a sparse 6, and an oracle that, regardless of the observed data,
selects a set J. of all coordinates of 6, that are larger than < in absolute value, and then
performs PCA on the sample covariance restricted to these coordinates. Since 6, € ©q (C,),
the maximal squared-bias is

N N
sup Z |¢9Vk|2 = sup {Zmi/q:Zxk <CLO<ap < Tq} = Cir*a,
0,€94(Cu)rg, k=1 k=1

which follows by the correspondence xi = |0,4/9, and the convexity of the function

N
Zkzlxi/q. On the other hand, by Theorem 2.1, the maximal variance term of this oracle
estimator is of the order k. /(nh(A,)) where k. is the maximal number of coordinates of 0,,

exceeding T. Again, 0, € ©q (C,) implies that . =< ¢4~ Thus, to balance the bias and

variance terms, we need 7 < 1/ y/nh(\,)=7,. This heuristic analysis shows that <, can be
viewed as an oracle threshold for the coordinate selection scheme, that is, the best possible
estimator of 0,, based on individual coordinate selection can expect to recover only those
coordinates that are above the threshold =,

To understand why m,, is an effective dimension, consider the least sparse vector 0, € O
(C,). This vector should have as many nonzero coordinates of equal size as possible. If

ci> N'19/2 then the vector with coordinates + N~1/2 does the job. Otherwise, we set the first
coordinate of the vector to be v'1 — 72 for some r € (0, 1) and choose all the nonzero
coordinates to be of magnitude t,. Clearly, we must have =y 72, where m + 1 is the
maximal number of nonzero coordinates, while the Iq constraint implies that

(1- 7»2)‘1/2+ng < 4. The last inequality shows that the maximal m is just a constant
multiple of m,. This construction also constitutes the key idea in the proof of Theorems 3.1
and 3.2. Finally, we set

N'=N - M. @33)

Theorem 3.1. Assume that (BA) holds, 0 < q <2 and n, N — oo. Then, there exists a
constant B; > 0 such that for n sufficiently large,
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R}, :=inf sup EL(éy, 0,) > B0,

6 04(C) 34

where &, is given by

TZN', iftZN'<landN'<m, (dense setting),
Sn=13 T2m,, iftPm,<landm,<N' (sparse setting),

1, ift? - min{N'm,}>1 (weak signal).

We may think of m, , = min{N’ m,} as the effective dimension of the least favorable
configuration.

In the thin setting, m,, ,=A,C%[nh(\,)]7><N(i.e., Cln¥/2<c N for some ¢”> 0), and the
lower bound is of the order

— —a
AC, C

v,n

=A,Clr2a= = )
5” AqCVTV [nh()\y)}l—Q/Q nl—(I/Z

3.5)

In the dense setting, on the other hand, m, , =N - M, and

N-M _N
" nh(N\,) T n’ (36)

If N/n — ¢ for some ¢ > 0, then 8,, < 1, and so any estimator of the eigenvector 0,, is
inconsistent. If N/n — 0, then equation (3.6) and Theorem 2.1 imply that the standard PCA
estimator 0,, pc attains the optimal rate of convergence.

A sharper lower bound is possible if C%,,9/2=0(N'~*) for some a € (0, 1). We call this a
sparse setting, noting that it is a special case of the thin setting. In this case the dimension N

is much larger than the quantity EZnW measuring the effective dimension. Hence, we
define a modified effective noise level percoordinate

_o « logN
Té=— ,
Y 9nh(A)

and a modified effective dimension

muza;I(EV/Fy)q.

Theorem 3.2. Assume that (BA) holds, 0 < g <2 and n, N — oo in such a way that

Clni2=0(N'~*)for some a € (0, 1). Then there exists a constant By such that for n
sufficiently large, the minimax bound (3.4) holds with
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logV
nh(A,)

1—q/2
5n:my?3:aq_1(7§( ) (sparse setting) (3.7)

so long as this quantity is < 1.

Note that in the sparse setting &, is larger by a factor of (log N)1~%2 compared to the thin
setting [equation (3.5)].

It should be noted that for fixed signal strength A, for the corresponding eigenvector to be
thin, but not sparse is somewhat of a “rarity,” as the following argument shows: consider

first the case N = o(n). If N’<Aq(h(>\y))‘1/26?,nQ/2, then we are in the dense setting, since
72N’ < N/n — 0. On the other hand, if N = o(n) and C?n%/2=0(N'~*) for some a € (0,
1), then 6,, is sparse, according to the discussion preceding Theorem 3.2. So, if N = o (n), for

the eigenvector 0, to be thin but not sparse, we need aq,nqﬂ = N, where sy is a term
which may be constant or may converge to zero at a rate slower than any polynomial in N.
Next, consider the case n = o (N). For a meaningful lower bound, we require 72y, <1,
which means that Ef’,frﬂ/%cqﬂ,n for some constant g, > 0. Thus, as long as n = O(N1®)
for some a € (0, 1), 6, cannot be thin but not sparse. Finally, suppose that N < n, and let
C?=N7 for some 2 0. If B <1 - qg/2, then we are in the sparse case. On the other hand, if
>1 - @/2, then there is no sparsity at all since when C? > N'1-9/2the entire SN-1 belongs to
the relevant I, ball for 6,. Hence, only if § = 1 — g/2 exactly, it is possible for 0, to be sparse.
This analysis emphasizes the point that at least for a fixed signal strength, thin but not sparse
is a somewhat special situation.

4. Risk of the diagonal thresholding estimator

In this section, we analyze the convergence rate of the diagonal thresholding (DT) approach
to sparse PCA proposed by Johnstone and Lu (2009) (JL). In this section and in Section 5,
we assume for simplicity that N > n. Let the sample variance of the kth coordinate, the kth
diagonal entry of S, be denoted by Syx. Then DT consists of the following steps:

1. Define I =1 (yy) to be the set of indices k € {1, ... , N} such that Sy, > 1 + v, for
some threshold v, > 0.

2. Let Sy be the submatrix of S corresponding to the coordinates I. Perform an eigen-
analysis of S and denote its eigenvectors by f;, i = 1, ..., min{n, |I|}.

3. Forv=1, ..., M,estimate 0, by the N x 1 vector f;, obtained from f, by
augmenting zeros to all the coordinates in I°:= {1, ... , N} \ .

Assuming that 0, € ©4(C,), and a threshold .= \/logIN/n for some y > 0, JL showed that
DT yields a consistent estimator of 0,, but did not further analyze the risk. Indeed, as we
prove below, the risk of the DT estimator is not rate optimal. This might be anticipated from
the lower bound on the minimax risk (Theorems 3.1 and 3.2) which indicate that to attain
the optimal risk, a coordinate selection scheme must select all coordinates of 0,, of size at
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least © V108V/™ for some ¢ > 0. With a threshold of the form vn above, however, only
coordinates of size (log N/n)14 are selected. Even for the case of a single signal, M = 1, this
leads to a much larger lower bound.

Theorem 4.1. Suppose that (BA) holds with M = 1. Let C > 1 (may depend onn), 0 <q< 2
and n, N — oo be such that anq/4=0( V1), Then the diagonal thresholding estimator
01, pr satisfies

sup EL(6
81€0,(C)

1,DT? 01) > anqnf(lfqm)/?

(4.1)

for a constant Ky > 0, where cd=cd-1.

A comparison of (4.1) with the lower bound (3.5), shows a large gap between the two rates,
n~Y2(1-4/2) yersus n~(1-%2), This gap arises because DT uses only the diagonal of the sample
covariance matrix S, ignoring the information in its off diagonal entries. In the next section
we propose a refinement of the DT scheme, denoted ASPCA, that constructs an improved
eigenvector estimate using all entries of S.

In the sparse setting, the ITSPCA estimator of Ma (2011) attains the same asymptotic rate as
the lower bound of Theorem 3.2, provided DT yields consistent estimates of the
eigenvectors. The latter condition can be shown to hold if, for example,

Cin/*(logN) =9/ ?=o(y/n) forall v=1, ..., M. Thus, in the sparse setting, with this
additional restriction, the lower bound on the minimax rate is sharp, and consequently, the
DT estimator is not rate optimal.

5. A two-stage coordinate selection scheme

As discussed above, the DT scheme can reliably detect only those eigenvector coordinates k
for which [0, x| = c(log N/n)Y4 (for some ¢ > 0), whereas to reach the lower bound one needs
to detect those coordinates for which [0, | > c(log N/n)Y/2.

To motivate an improved coordinate selection scheme, consider the single component (i.e.,
M = 1) case, and form a partition of the N coordinates into two sets A and B, where the
former contains all those k such that |0y is “large” (selected by DT), and the latter contains
the remaining smaller coordinates. Partition the matrix ) as

Z:[%A Lan }

BA BB

Obsefve that ZBA :Alel,seﬂ. Let 61~ bea “prgliminary” estimator of 64 such that limy, _, o
P((61 A, 01,4) 2 8p) = 1 for some 8y > 0 (e.g., 01 could be the DT estimator). Then we have
the relationship
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Z é1,A:<§1,A791,A>/\101,B ~ 0(60))\1913

BA

for some ¢(8q) bounded below by 80[2, say. Thus one possible strategy is to additionally
select all those coordinates of ) ga01 a that are larger (in absolute value) than some constant

multiple of v/logN / \/nh(A1). Neither $ga nor A is known, but we can use Sga as a
surrogate for the former and the largest eigenvalue of Spa to obtain an estimate for the latter.
A technical challenge is to show that, with probability tending to 1, such a scheme indeed

recovers all coordinates k with [01x|>7+ v/1og N/ \/nh(A1), while discarding all coordinates

k with |01 <y— V1ogN / 1/nh(A1) for some constants v, > y— > 0. Figure 1 provides a
pictorial description of the DT and ASPCA coordinate selection schemes.

5.1. ASPCA scheme

Based on the ideas described above, we now present the ASPCA algorithm. It first makes
two stages of coordinate selection, whereas the final stage consists of an eigen-analysis of
the submatrix of S corresponding to the selected coordinates. The algorithm is described
below.

For any vy > 0 define
I(y)={k:Sex>1+7}.  (5.1)
Let yi >0 fori=1, 2 and x > 0 be constants to be specified later.

Stage 1.

10
Let I =1 (y1,n) where Y1,,="1 y/logN/n..

2° Denote the eigenvalues and eigenvectors of S| by é{ > > 6,;1 and fy, ..., fmy,
respectively, where mq = min{n, |I|}.

3° Estimate M by M defined in Section 5.2.
Stage 2.

4° / 1/2

2f1...@

M

A1
Let E=[(; fM] and Q =S¢l E.

5° LetJ={k ¢ I:(QQT)kk>7§,n} for some vy, > 0. Define K=1UJ.
Stage 3.

6° Forv=1, ... M,Adenote by 6; the 1th eigenvector of Skk, augmented with zeros
in the coordinates KC.

Remark 5.1. The ASPCA scheme is specified up to the choice of parameters v, and vy, ,, that
determine its rate of convergence. It can be shown that choosing y; = 4 and
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logN | M
Yom=r A 2=t (| — 62
n n

with K= v/3+¢ for some & > 0, results in an asymptotically optimal rate. Again, we note that
for finite N, n, the actual performance in terms of the risk of the resulting eigenvector
estimate may have a strong dependence on the threshold. In practice, a delicate choice of
thresholds can be highly beneficial. This issue, as well as the analysis of the risk of the
ASPCA estimator, are beyond the scope of this paper and will be studied in a separate
publication.

5.2. Estimation of M

Estimation of the dimension of the signal subspace is a classical problem. If the signal

eigenvalues are strong enough (i.e., Av>cy/N/n forallv=1, ..., M, for some ¢ > 1
independent of N, n), then nonparametric methods that do not assume eigenvector sparsity
can asymptotically estimate the correct M; see, for example, Kritchman and Nadler (2008).
When the eigenvectors are sparse, we can detect much weaker signals, as we describe
below.

We estimate M by thresholding the eigenvalues of the submatrix Si; where

T := I(7/logN/n) for some y € (0, y1). Let m = min{n, [I[} and ¢; > --- > ¢y, be the
nonzero eigenvalues of Sjj. Let a,, > 0 be a threshold of the form

1 / I
an=2 |—|+ <1+c0 loﬂ) |—
n n n

for some user-defined constant ¢y > 0. Then, define M By

M := max{l < k <m:0>1+a,}. (53)

The idea is that, for large enough n, I (y,) C T with high probability and thus [T acts as an
upper bound on [l (v1p)|- Using this and the behavior of the extreme eigenvalues of a Wishart
matrix, it can be shown that, with a suitable choice of ¢y and y, M is a consistent estimator of
M.

6. Summary and discussion

In this paper we have derived lower bounds on eigenvector estimates under three different
sparsity regimes, denoted dense, thin and sparse. In the dense setting, Theorems 2.1 and 3.1
show that when N/n — 0, the standard PCA estimator attains the optimal rate of
convergence.

In the sparse setting, Theorem 3.1 of Ma (2011) shows that the maximal risk of the ITSPCA
estimator proposed by him attains the same asymptotic rate as the corresponding lower
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bound of Theorem 3.2. This implies that in the sparse setting, the lower bound on the
minimax rate is indeed sharp. In a separate paper, we prove that in the sparse regime, the
ASPCA algorithm also attains the minimax rate. All these sparse setting results currently
require the additional condition of consistency of DT—without this condition, the rate
optimality question remains open.

Finally, our analysis leaves some open questions in the intermediate thin regime. According
to Theorem 3.1, the lower bound in this regime is smaller by a factor of (log N)1~9/2, as
compared to the sparse setting. Therefore, whether there exists an estimator (and in
particular, one with low complexity), that attains the current lower bound, or whether this
lower bound can be improved is an open question for future research. However, as we
indicated at the end of Section 3, the eigenvector being thin but not sparse is a somewhat
rare occurrence in terms of mathematical possibilities.
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APPENDIX A: PROOFS

A.1. Asymptotic risk of the standard PCA estimator

To prove Theorem 2.1, on the risk of the PCA estimator, we use the following lemmas.
Throughout, ||B|| = sup{x" Bx : |IX|l> = 1} denotes the spectral norm on square matrices.

Deviation of extreme Wishart eigenvalues and quadratic forms

In our analysis, we will need a probabilistic bound for deviations of [[n"1ZZT - I||. This is
given in the following lemma, proven in Appendix B.

Lemma A.Ll. Let Z be an N x n matrix with i.i.d. N (0, 1) entries. Suppose N < n and set

t,=81/n~tlogn and y, = N/n. Then for any ¢ > 0, there exists n; > 1 such that for all n > n,

P(Hn*lZZT — I [[>Ym+2 v/ Antctyn) < o<, (A1)

Lemma A.2 [Johnstone (2001)]. Let 52 denote a Chi-square random variable with n degrees
of freedom. Then

‘ , 1
P(x2>n(1+e)) < e~ 3e*/16 <0<£<§>7 (A2)

P(x2<n(l —¢)) < et /A (0<e<l), (A3)
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V2 2
2 < —ne /4 > .
P(x;>n(1+e)) < i (0<e<1/2,n > 16). (A4)

Lemma A.3 [Johnstone and Lu (2009)]. Let y1j, ¥2i, i =1, ..., n, be two sequences of
mutually independent, i.i.d. N(0, 1) random variables. Then for largenand any bs.t. 0<b

<Vn,

1 3b
P <;Zy1iyzi|> \/b/n) < 2exp {—E‘f’o(“_lbz)} - (A5)
i_1

Perturbation of eigen-structure

The following lemma, modified in Appendix B from Paul (2005), is convenient for risk
analysis of estimators of eigenvectors. Several variants of this lemma appear in the
literature, most based on the approach of Kato (1980). To state it, let the eigenvalues of a
symmetric matrix A be denoted by Aq(A) = --- =\, (A), with the convention that Ag(A) = co
and Ay+1 (A) = —oco. Let Pg denote the projection matrix onto the possibly multidimensional
eigenspace corresponding to Ag (A) and define

1
H,(A)= ZWPS(A).

S#ET

Note that H, (A) may be viewed as the resolvent of A “evaluated at A, (A).”

Lemma A.4. Let A and B be symmetric m x m matrices. Suppose that A, (A) is a unique
eigenvalue of A with

0 (A)=min{|X;(A4) — A (A)]:1 < j #r <m}.

Let p, denote the unit eigenvector associated with the L.(A). Then

p-(A+B)op,(4)= — H.(A)Bp,(A)+R,, (A6)
where, if 4| B|| < 6,1 (A),
1B, || < K67 (A)||Hy (A) B, (A)IBI, (a7)

and we may take K = 30.

Proof of Theorem 2.1. Flrst we out line the approach. For notational 5|mpI|C|ty throughout
this subsection, we write 6 to mean GV pca. Recall that the loss function L(ev, 0,) =16, ©
0,/12. Invoking Lemma A.4 with A=Y and B=S - ¥ we get

é,,@@l,: - HVSQV_'_RV? (A8)

Ann Stat. Author manuscript; available in PMC 2014 October 14.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Birnbaum et al.

Page 16

where and

_ 1 T 1
H=H, )= > S _Ayeﬂeﬂ — )\—VPL A9

1<pzv<M F

M 7
and P1=1 — Zu:ﬂuau. Note that H,0, = 0 and that H, 36, = 0.

Leten,=K5, (D)8 = > | We have from (A.7) that

IR < || 5,86, 16,

nv’

and we will show that as n — oo, €5, — 0 with probability approaching 1 and that
|H,S6,|>(1 — e,,)* < L(8,,6,) < |H,S6,|*(1+en)?.  (A10)

Theorem 2.1 then follows from an (exact, nonasymptotic) evaluation,

N M 1 41y 0 (A (14 1+)\,,)

E[|1,56,|)= Y

(A.11)
HFEV

We begin with the evaluation of (A.11). First we derive a convenient representation of
H,S6,. In matrix form, model (2.2) becomes

M
X=Y VA0l +Z, (a12)
v=1

where v, =(v,;)1_;, forv=1, ..., M. Also, define
ZV:ZTG,,, w,,:XTGV: VA u,+z, (Al13)

and

1 n
b>n:52aibi for arbitrarya,b € R". (a14)

Then we have

1 M 1
SHV:EXU}V:; /A (Vs wu>n0H+EZwl,.

Using (A.13),

1 2y, Wy, 1
EHVZ’LUV:Z< 2 >9 — n—VP_LZIUV.
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Using (A.9), H,0, = (\y = Ay) 7L 0, for u # v, and we arrive at the desired representation

(wy, wy), 1
HZ,SH,,:ZWQH — n—/\VPlZwy. (A.15)

HFV

By orthogonality,

2
Wy, Wy 1
HH,,SGZ,HQ:Z (s )y + wlZ" P, Zw,. (a16)

HFEV (/\;L - /\z/)2 n2)\12/

Now we compute the expectation. One verifies that z,, ~ N(0, 1,,) independently of each other
and of each v, ~ N(0, 1), so that w,, ~ N (0, (1 +A,) I,,) independently. Hence, for u # v,

B[ (wy, w,) 2 =n" 2Bt (w,wlw,w]) =n”2r((14A) (14 A) L) =0 (1+A) (14A,). S

From (A.13),
ElwlZT P\ Zw,|Z)=2L 2" P, Z2,+)\ E[v: ZT P, Zv,|Z) =tx(ZZ" P, ZZ70,01)+ \ tr(PLZZ7T).
Now, it can be easily verified that if W := ZZT ~ Wy(n, 1), then for arbitrary symmetric N x
N matrices Q, R, we have
E[tr(WQW R)|=n[tr(QR)+tr(Q)tr(R)|4+n*tr(QR). (A.18)
Taking Q =P and R:GHGZ and noting that QR = 0, by (A.18) we have
E[wl Z" P\ Zw,|=ntr(P, )+nA,tr(PL)=n(N — M)(1+X,). (A19)

Combining (A.17) with (A.19) in computing the expectation of (A.16), we obtain the
expression (A.11) for EH,S0,|12.

A.2. Bound for IS - Sl

We begin with the decomposition of the sample covariance matrix S. Introduce the
abbreviation &, = n"1Zv,. Then

M M
S= Z V )‘#/\M/<UH’UM/>n0H0£’+Z \/ Ap(9u§Z+§uag)+n_1ZZT (A.20)

pop' =1 p=1

and from (2.1), with V= [{vy,, vy)n — Syl and 8y, denoting the Kronecker symbol,

M M
IS — Z | < Z \ MMVW’HZ V )‘u”fu”"'H”JZZT —1]. (A.21)
p=1

pop/ =1

We establish a bound for ||S — Y || with probability converging to one. Introduce notation
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M
n,=1/N"llogn, 7,=+/n"togn, ~,=N/n, \/K:Z\/)‘TL
p=1

Fix ¢ > 0 and assume that y, < 1. Initially, we assume that 2cn, < 1/2, which is equivalent to
N > 16¢2 log n.

We introduce some events of high probability under which (A.21) may be bounded. Thus,
let D be the intersection of the events

lloulla=11 < 267, 1< p <M, [ vp) [y, 1< p# g’ < M, N7 Zo P/ oul* < 1426,

and let D, be the event

n'ZZT — I|| < Y2 Fn+8cT,.  (A23)
To bound the_ probability of D¢, in the case of the first line of (A.22), use (A.3) and (A.4)
with & = 2cn,. For the second, use (A.5) with b = ¢2 log n. For the third, observe that Zvy/

[loull ~ NN(O, 1), and again use (A.4), this time with € = 2cn, < 1/2. For Dg, we appeal to
Lemma A.1. As a result,

P(Di) < 3]\,[71_024—]\[(]\,[ — 1)n—(3/2)02+0(n_110g2n)’P(Dg) < 2n—c2. (A24)

To bound (A.21) on the event D; N Do, we use bounds (A.22) and (A.23), and also write

1Zvull (vl 1/2 — \1/2
”gHH vV In /_N”UH” \/E = F)/n( + Cnn) ( + Cﬁn) vV Intln,  (A.25)

say, and also noting that nr; < Mp, We obtain

1S =31 < VAnl2enaA+2VAH,+4(1+2en,)].  (A26)

Now combine the bound 2cn, < 1/2 with H,, < 3/2 and 2 VA < A+1to conclude that on D,
N Doy,

IS =D 1l < 2(A+4) v

and so

ey < 2K5;1(Z)(A—|—4) vV —0

since N/n — 0.
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Let us now turn to the case N < 16¢2 log n. We can replace the last event in (A.22) by the
event

N 2o, /v | < 2(clogn+logN), 1< < M,

and the second bound holds for p(Df) for sufficiently large n, using the bound

P(N7'x2 >a) < 2N(1 - ®(V/a)) < N y/2/are™**for any a> 0. In (A.25), we replace
the term (1 + 2cn,)Y2 by (2¢2 log n + 2 log N)2 which may be bounded by ¢, \/logn. As

soon as N = 4¢2, we also have 2¢n, < /logn and s014-2¢7,, < 14 v/, logn. This leads to
a bound for the analog of Hy, in (A.26) and so to

1/2
1S =Y "I < Vnlogn{A+2a VA4 /ymlogn)  +as}.

When N < 16¢? log n, we have /5, logn < 4clogn/ +/n and so

Eny < a3K6;1(Z)(A+1)logn/ Vn — 0.

To summarize, choose c= V2, say, so that D,, = D1 N Dy has probability at least 1-O(n~2),
and on D,, we have gy, — 0. This completes the proof of (A.10).

Theorem 2.1 now follows from noticing that L(GVA, 0,) <2andso

E[L(6,,6,), D;] < 2P(D;;)=0(n"*)=0(E| H,S6, )

and an additional computation using (A.16) which shows that

1/2

E[||H,86,|*, D] < (E[||H,86, ") P(Dy)=0(B| H,S6,||*)-

A.3. Lower bound on the minimax risk

In this subsection, we prove Theorems 3.1 and 3.2. The key idea in the proofs is to utilize
the geometry of the parameter space in order to construct appropriate finite-dimensional
subproblems for which bounds are easier to obtain. We first give an overview of the general
machinery used in the proof.

Risk bounding strategy

A key tool for deriving lower bounds on the minimax risk is Fano’s lemma. In this
subsection, we use superscripts on vectors 0 as indices, not exponents. First, we fix v € {1,

..., M} and then construct a large finite subset & of @é” (Cq, ..., Cpn), such that for some §
> (0, to be chosen
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0',0% ¢ # = L(6L,6°) > 40.

vy v

This property will be referred to as “48-distinguishability in 0,.” Given any estimator 0 of 0,
based on data X, = (Xy, ..., Xp), define a new estimator ¢(X,) = 6*, whose M components

are given by ¢, =arg minge_gL(é#, 6,.), where GJ is the pth column of 0. Then, by
Chebyshev’s inequality and the 45-distinguishability in 0,,, it follows that

sup EGL(éuaeu) > 5322P9(¢(Xn) # 0) (A.27)

0cOM(C1,...Cy)

The task is then to find an appropriate lower bound for the quantity on the right-hand side of
(A.27). For this, we use the following version of Fano’s lemma, due to Birgé (2001),
modifying a result of Yang and Barron (1999), pages 1570 and 1571.

Lemma A.5. Let {Py: 0 € &} be a family of probability distributions on a common
measurable space, where @is an arbitrary parameter set. Let pyax be the minimax risk over
©, with the loss function L1{6, &) = 1626/,

Pmax=infsupPy (T # 0)=infsupEL’(0,T),
T pco T peco

where T denotes an arbitrary estimator of dwith values in ©. Then for any finite subset #of
O, with elements &, ... ,0y where J = |7,

L K(P, Q)+log2
logJ ’

Pmax > 1- 1nf (A.28)

where Pj = Py, and Q is an arbitrary probability distribution, and K(P;,Q) is the Kullback-
Leibler divergence of Q from P;.

The following lemma, proven in Appendix B, gives the Kullback-Leibler discrepancy
corresponding to two different values of the parameter.

Lemma A.6. Let 7 := [0] ..... 1],j:1, 2 be two parameters (i.e., for each j, Hi’s are
orthonormal). Let 3 ; denote the matrix given by (2.1) with 6= @ (and o0=1). Let Pj denote
the joint probability distribution of n i.i.d. observations from N (0, };) and let 7(4) = /(1 +
A). Then the Kullback-Leibler discrepancy of P, with respect to P is given by

{ M M "
Ko := K(0',0%)= LG A = D> (N Aw (01,6 > J . (A29)
p=1p'=1
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Geometry of the hypothesis set and sphere packing

Next, we describe the construction of a large set of hypotheses % satisfying the 48
distinguishability condition. Our construction is based on the well-studied sphere-packing
problem, namely how many unit vectors can be packed onto S™1 with given minimal
pairwise distance between any two vectors.

Here we follow the construction due to Zong (1999) (page 77). Let m be a large positive
integer, and mg = [2m/9. Define v * as the maximal set of points of the form z = (zy, ...,
Zm) in S™1 such that the following is true:

vV Mmoz; € {—1,0,1}V’L Z|ZZ" < /my
=1

and

forz,z' € Y,) |z—7| > 1

For any m = 1, the maximal number of points lying on S™~1 such that any two points are at
distance at least 1, is called the kissing number of an m-sphere. Zong (1999) used the
construction described above to derive a lower bound on the kissing number, by showing

that |y;%| > (9/8)™1+°(W) for m large.

Next, for m <N — M we use the sets v* to construct our hypothesis set & of the same size,

| #|=|Y;:|. To this end, let {e,}_, denote the standard basis of RN. Our initial set 6° is
composed of the first M standard basis vectors, 8% = [e1: ... :epm]. Then, for fixed v, and
values of m, r yet to be determined, each of the other hypotheses 8 € Zhas the same vectors
as 0 for k # v. The difference is that the vth vector is instead given by

m
0l=+1-— T2e,,+7“ZZZJeM+l, j=1,..., |F|, (A.30)
=1

where z/=(2,...,2J ), > 1, is an enumeration of the elements of y *. Thus ¢/ perturbs e,
in subsets of the fixed set of coordinates {M + 1, ... , M + m}, according to the sphere-
packing construction for ™1,

The construction ensures that 0{, . ,0;’1 are orthonormal for each j. In particular, <6i, eu)
vanishes unless g = |, and so (A.29) simplifies to

K(GJ,GO):%nh(Ay)(l (63 00>2):%nh()\,j)r2 (A31)

vy

forj=1, ..., |7 Finally, (67, 6%)=1 — r24+r%(z7, 2*), and so by construction, for any 6}, 6k
€ Fwith j #k, we have
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L(65,65) > % (A32)

In other words, the set Fis r2-distinguishable in 0. Consequently, combining (A.27), (A.28)
and (A.31) (taking Q = Pg0 in Lemma A.5), we have

R:=inf sup EL(6,,6,) > (r?/4)[1 — a(r,.F)]

6, ©4(C) (A33)

with

h(A,)r? /2+log2
log| 7|

a(r, Z)=" (A.34)

Proof of Theorem 3.1. It remains to specify mand letr € (0, 1). Let y;* be the sphere-
packing set defined above, and let & be the corresponding set of hypotheses, defined via (A.
30).

Let ¢q = log(9/8), then we have log |#| = by,cym, where by, = 1 as m — oo. Now choose r =
r(m) so that a(r, %) < 3/4 asymptotically in the bound (A.33). To accomplish this, set

crm

2
rewles

Indeed, inserting this into (A.34) we find that

cym/2+log2

F) <
a(r, )_ b,cam

Therefore, so long as m = mx«, an absolute constant, we have a(r, %) < 3/4 and hence

R} > 7%/16=(c1/16)m7?.

We also need to ensure that 7 e 0,4(C,). Since exactly mq coordinates are nonzero out of
{M+1,...,M+m},

||9,Z||g:(1 - 7‘2)11/2—0—7“‘1171(1)_'1/2 < 1—|—aqrqm1_q/2,
, Where ag = (2/9)1"%2. A sufficient condition for 6 € ©,(C, ) is that
aqm(rQ/’rn)q/2 <C (A36)

Our choice (A.35) fixes r2/m, and so, recalling that qul/(aqc§/2), the previous display
becomes

m < A,C%[nh(A,)]2.
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To simultaneously ensure that (i) r? < 1, (i) m does not exceed the number of available co-
ordinates, N — M and (iii) ¢/ € ©,(C,), we set

m=|m'|, m'=min{nh(\,),N — M, Aqa(i(nh()\l,))qﬂ}.

Recalling (3.1), (3.2) and (3.3), we have

m'=min{7, %, N',m, }=7, *min{1, 7 - min{N’, m, }}.

To complete the proof of Theorem 3.1, set By = [(m= + 1)/m«]c4/16 and observe that

/.2
R} > Bym/T).

Proof of Theorem 3.2. The construction of the set of hypotheses in the proof of Theorem 3.1
considered a fixed set of potential nonzero coordinates, namely {M + 1, ... ,M + m}.
However, in the sparse setting, when the effective dimension is significantly smaller than
the nominal dimension N, it is possible to construct a much larger collection of hypotheses
by allowing the set of nonzero coordinates to span all remaining coordinates {M + 1, ... ,

N}

In the proof of Theorem 3.2 we shall use the following lemma, proven in Appendix B. Call
AcC{L,...,N}anm-setif |A| =m.

Lemma A.7. Let k be fixed, and let .27\ be the maximal collection of m-sets such that the
intersection of any two members has cardinality at most k —1. Then, necessarily,

|%|z(§)/(f) . (A3D)

Let k = [mg/2] + 1 and mg = [Bm] with 0 < p < 1. Suppose that m, N — cowith m = o(N).
Then

| k| = exp[Ne(Bm/2N) — 2me(5/2)](1+0(1)),  (A38)

, where &(x) is the Shannon entropy function,

e(z)= — zlog(z) — (1 — z)log(l — z), O<z<l1.

Let 7w be an m-set contained in {M + 1, ..., N}, and construct a family 2 by modifying (A.
30) to use the set 7 rather than the fixed set {M +1, ... , M + m} as in Theorem 3.1,

ﬂgj’”): V 1-— ?“QEV—FTZleel, .7:1? St ‘Y’:l‘

lem
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We will choose m below to ensure that 6™ ¢ ©,(C,). Let 2 be a collection of sets 7 such
that, for any two sets wand 7’ in £, the set w N 7’ has cardinality at most mp/2. This ensures

that the sets 7 are disjoint for  # 7/, since each al(jﬂf) is nonzero in exactly mg + 1
coordinates. This construction also ensures that

mo Mo

2
for allg', 8 e U}ﬁﬂl,(el,o?) > (_+_>< r ) —r2,
TES

2 2

Define %= Uypc® J5. Then

|ﬁlz\w8ﬁw =|2|[V| = [2](9/8)" M. (az9)

By Lemma A.7, there is a collection £ such that |7 is at least exp([Ne(m/9N)- 2me(1/9)](1
+0(1))). Since g(x) = — x log x, it follows from (A.39) that

log|.7|
m

> (élog% - 25(1/9)> +1og(9/8)(1+0(1)) > glogN—f—O(l),

since m = O (N1I™®),

Proceeding as for Theorem 3.1, we have log |4 = by, (a/9)m log N, where b, — 1. Let us
set (with m still to be specified)

2_,,(@/9ogN
= nh()\u) =mT,. (A.40)

Again, so long as m = m«, we have a(r, %) < 3/4 and R* > r2/16=(1/16)m7>. We also need

to ensure that 6™ € ©,(C,,), which as before is implied by (A.36). Substituting (A.40)
puts this into the form

m < ﬁ,,:a;l(al,/ﬂ,)q.

To simultaneously ensure that (i) r?2 < 1, (ii) m does not exceed the number of available co-
ordinates, N — M and (iii) ¢ € ©,(C,), we set

m=|m'|, m':min{T;2,N - M,m,}.

The assumption that ﬁgn‘I/Q:O(Nl—“) for some a € (0, 1) is equivalent to the assertion m,,
= O(N1=%), and so for n sufficiently large, m, < N — M and so m”= m,, so long as m, 72 < 1.
Theorem 3.2 now follows from our bound on R*.
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A.4. Lower bound on the risk of the DT estimator

To prove Theorem 4.1, assume w.l.0.g. that <6;DT,61> > 0, and decompose the loss as
A 9 A 2
L(61,DT’01):H01 - 91,1” +||01,DT - 01,1” v (A4

where | =1 (yp) is the set of coordinates selected by the DT scheme and 6; | denotes the
subvector of 64 corresponding to this set. Note that, in (A.41), the first term on the right can
be viewed as a bias term while the second term can be seen as a variance term.

We choose a particular vector 01 = 0« € ©4(C) so that

E[|6, — 6, | > KC'n=0-92/2 (a4

This, together with (A.41), proves Theorem 4.1 since the worst case risk is clearly at least as
large as (A.42). Accordingly, set r, = C%2n=(1-0/2)/4 \yhere C4 = C4 -1. Since CIn%4 =
o(n¥2), we have r, = 0(1), and so for sufficiently large n, we can take r, < 1 and define

VI =72, k=1,
0*7k: \;ﬁv if2<k < m,+1,
0 ifm,+2 < k < N,

where my, = | (1/2)CIn%4|. Then by construction 0 € 04(C), since

—~4q

<C1,

v

N
D10k l=(1 = 12) P rm 9 <t 92 < 1
k=1

where the last inequality is due to g € (0, 2) and Cd=cd-1.

For notational convenience, let o= \/logN/n. Recall that DT selects all coordinates k for

which Sy > 1 + ay,. Since Skk~(1+>\1937k)x721/n, coordinate k is not selected with
probability

Pe=P(Ser<ltan)=P(xa<n(l+c,)), (A43)

, where e,=(140,) /(1467 ) — 1. Notice that, fork =2, ..., mp + 1, py = pz and 0« = 0
for k > my + 1. Hence,

N mn+1
Ell6s — 60, 7= prl0ur|*>p2 D 0. k*=pari=psC'n~ (1922,
k=1 k=2

Now, use bound (A.3) to show that ne? — oo in (A.43) and hence that pp — 1. Indeed

02 y=r2 /mn=2n"""%(140(1)), and so
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an —M0Z,
1+M62, 2

En=

\1/5[7 ViegN — 2]

for sufficiently large n. Hence, ne2 — oo, and the proof is complete.

APPENDIX B: PROOFS OF RELEVANT LEMMAS
B.1. Proof of Lemma A.1

We use the following result on extreme eigenvalues of Wishart matrices from Davidson and
Szarek (2001).

Lemma B.1. Let Z be a p x g matrix of i.i.d. N (0, 1) entries with p < . Let Spax (Z) and
Smin(2) denote the largest and the smallest singular value of Z, respectively. Then

P(smax(Z/ \/Q)>1+/p/g+t) < e /2 (B1)

P(smin(Z/ /@) <1 — \/p/g+t) < e /2. (B2

Observe first that

A= |n'ZZ" — I, ||=max{\ (n ' ZZT) — 1,1 -\, (Z2Z")}.

Let s, denote the maximum and minimum singular values of N~Y2Z. Define

7(8) = \/N/n+t gor t > 0. Then since A=max{s? — 1,1 — s>}, and letting An(t) == 2(t)
+ ()2, we have

{ASAL (1)} € {s4>147(D)} U{s_<1— (1)},

We apply Lemma B.1 with p =N and g = n, and get

P(A>A, (1)) < 2 /2,

We observe that, with v, = N/n< 1,

Ap(t)=(N/n+2 4/ N/n)+t(24+t+2 1/ N/n) < v,4+2 \/yn+t(4+t). (B.3)

Now choose £=¢ V/ 21087/7 ¢4 that tail probability is at most 2e™"2t%2 = 2n~c%, The result is
now proved, since if ¢V logn/n <1 thent (4+t)<ct,
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B.2. Proof of Lemma A.4
Paul (2005) introduced the quantities

A = SIHA B+ (A+B) ~ A (A HA(A)], @4

. 15
" minlgj;trgm')\j(A) - )‘T(A)|

(B.5)

and showed that the residual term R, can be bounded by

20, (142A,) N | H,(A)Bp,(4)| ]} ®.

—2
R,|| < mi 10A,, ||H,(A)Bp,(A
IR < mm{ - Be- DI T58 T2,y Y1 —2a, (125, 6)

where the second bound holds only if 6r A, <( V5 — 1)/4.

We now show that if A;s 1/4, then we can simplify bound (B.6) to obtain (A.7). To see this,
note that [\r(A + B) = Ar(A)| < [[B]| and that [[Hp(A)[| < [minjz, [Aj (A) - M(A)]7L, so that

A, <) 18] < B,

Now, defining & := 2 A (1 + 24) and B = [[H; (A)Bpy (A)ll, we have 10A° < (5/2)5% and
the bound (B.6) may be expressed as

85 . [58(1-3) 8
_5mm{§ 3 ’1+5(1—5)}'

1By < -

For x > 0, the function x — min{5x/2, 1 + 1/x} < 5/2. Further, if Ar_< 1/4,then 5§ < 3 Ar_<
3/4, and so we conclude that

|R-|| <1085 < 308A,.

B.3. Proof of Lemma A.6

Recall that, if distributions F1 and F» have density functions f; and f, respectively, such that
the support of f; is contained in the support of f,, then the Kullback-Leibler discrepancy of
F, with respect to F4, to be denoted by K(F4, F»), is given by

K(Fy, Fy)=[logf8 f1(y)dy. ®7)
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For ni.i.d. observations X;, i = 1, ..., n, the Kullback-Leibler discrepancy is just n times the
Kullback-Leibler discrepancy for a single observation. Therefore, without loss of generality
we take n = 1. Since

M

ST Y (008, @)

p=1

the log-likelihood function for a single observation is given by

M M
log  (2/6)=—"3 Tog(2m)—log| 3~ |-2aT3" e :——10g(27r)—1210g(1+/\ ) -3 <<m> =300

=1

From (B.9), we have
K1,2:E91 (logf(X|01) —logf(X]6?))

:_Zn )[Egr ((X,61))° — Bgr ((X,62))7]
252_:"()‘“)[(0’1" 2:19;11> - (03’ 219?)]
—Zn ﬁ{Zme oL’ <6,£,93>2}}’

which equals the RHS of (A.29), since the columns of 8l are orthonormal for each j = 1, 2.
B.4. Proof of Lemma A.7

N
Let 7, be the collection of all m-sets of {1, ... , N}, clearly [ #m|=( ). For any m-set A,
let (A) denote the collection of “inadmissible” m-sets A”for which |A N A{= k. Clearly

m N —k
e (2)(22)

If o7\ is maximal, then Zp, = Upc o7, AA), and so (A.37) follows from the inequality

(P < |hlmax]. 7 (4)

and rearrangement of factorials.

Turning to the second part, we recall that Stirling’s formula shows that if k and N — oo,
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(¥ )< Gmrm) (0]

where ¢ € (1 - (6k)71, 1 + (12N)~1). The coefficient multiplying the exponent in

2
T

V2rk(1 — k/N)"Y2(1 = k/m)~ /7Bm(1 — 8/2) — oo

under our assumptions, and this yields (A.38).
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Fig. 1.
Schematic diagram of the DT and ASPCA thresholding schemes under the single

component setting. The x-axis represents the indices of different coordinates of the first
eigenvector and the vertical lines depict the absolute values of the coordinates. The
threshold for the DT scheme is y(log N/n)*4 while the thresholds for the ASPCA scheme is
v(log N/n)Y/2. For some generic constants y, >y > y_ > 0, with high probability, the schemes
select all coordinates above the upper limits (indicated by the multiplier v4) and discard all
coordinates below the lower limits (indicated by the multiplier y_).
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Table 1

Comparison of lower bounds on eigenvector estimation and worst case rates of various procedures

Estimator Dense Thin Sparse
Lower bound O(N/n) O(n~(@-92))  O((log N/n)1-92)
PCA Rate optimal®  Inconsistent Inconsistent
DT Inconsistent  Inconsistent  Not rate optimal
ASPCA Inconsistent  Inconsistent  Rate optimal

*
When N/n — 0.

TSo long as DT is consistent.
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