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In a companion paper, we reported that the goldfish oculomotor
neural integrator could be trained to instability or leak by rotating
the visual surround with a velocity proportional to ��� horizontal
eye position, respectively. Here we analyze changes in the firing
rate behavior of neurons in area I in the caudal brainstem, a central
component of the oculomotor neural integrator. Persistent firing
could be detuned to instability and leak, respectively, along with
fixation behavior. Prolonged training could reduce the time con-
stant of persistent firing of some cells by more than an order of
magnitude, to <1 s. Normal visual feedback gradually retuned
persistent firing of integrator neurons toward stability, along with
fixation behavior. In animals with unstable fixations, approxi-
mately half of the eye position-related cells had upward or unsta-
ble firing rate drift. In animals with leaky fixations, two-thirds of
the eye position-related cells showed leaky firing drift. The re-
maining eye position-related cells, generally those with lower eye
position thresholds, showed a more complex pattern of history-
dependent�predictive firing rate drift in relation to eye drift. These
complex drift cells often showed a drop in maximum persistent
firing rate after training to leak. Despite this diversity, firing drift
and the degree of instability or leak in firing rates were broadly
correlated with fixation performance. The presence, strength, and
reversibility of this plasticity demonstrate that, in this system,
visual feedback plays a vital role in gradually tuning the time
course of persistent neural firing.

We demonstrated in a companion paper (1) how visual feed-
back with an altered retinal slip vs. eye position gain can be

used to detune the goldfish oculomotor neural integrator to ex-
treme instability or leak and how normal visual feedback can retune
the integrator to stability. Here we test the hypothesis that visual
feedback tunes graded (analog) persistent firing of oculomotor
neural integrator neurons themselves.

In the vertebrate oculomotor system, the ability to maintain
stable eye position depends on the activity of a central ‘‘neural
integrator’’ responsible for transforming velocity-encoding com-
mand or sensory signals to position-encoding outputs that feed into
extraocular motoneurons. Experiments in primate (2–6) and cat
(7–9) indicate that the velocity-to-position neural integrator
(VPNI) for horizontal eye movements is localized in part to two
bilateral brainstem nuclei, the nucleus prepositus hypoglossi (NPH)
and the medial vestibular nucleus (MVN), reviewed in ref. 10.
Experiments in goldfish (11, 12) suggest that the horizontal VPNI
is localized in part to a bilateral region of the reticulum analogous
to the mammalian NPH, termed area I.

As shown in Fig. 1a, the spontaneous oculomotor behavior of a
control head-fixed goldfish consists of a cyclic scanning pattern of
sequential saccades and fixations. With each saccade in the tem-
poral direction of the ipsilateral eye, neurons in area I typically show
a brief burst, followed by a sustained discharge during the subse-
quent fixation. Saccades in the nasal direction are followed by a
reduced tonic firing level during the subsequent fixation. Above a
threshold eye position that can differ for each neuron, firing rate is
approximately described by a linear relationship between firing rate
and eye position (ref. 12, but see ref. 13). Given the basic corre-

spondence between sustained tonic discharge and fixation, we
reasoned that, after training to leak or instability, there would be
corresponding changes in the dynamics of neural firing rate. We
therefore used extracellular recording methods to monitor the
effect of training on the firing properties of area I neurons.

In the companion paper (1), we used plots of eye velocity as a
function of eye position to quantify oculomotor performance.
These position–velocity (PV) plots were first used by Becker and
Klein (14) in the study of human oculomotor behavior. A linear PV
plot corresponds to an exponential dependence of drift on position
with a time constant determined by the inverse slope; positive
slopes correspond to an unstable integrator, whereas negative
slopes correspond to a leaky integrator. Here, we have extended the
PV plot analysis to neural firing rates by plotting neural firing rate
drift vs. firing rate. We report that the pronounced behavioral
plasticity described in the companion paper (1) is associated with
similar changes in the firing patterns of integrator neurons.

Methods
For detailed methods, see ref. 1. All data presented were recorded
in the dark.

Electrophysiology. Surgery, recording of extracellular action poten-
tials from single units, spike detection, and area I mapping were as
previously described (12, 15). Eye movements, planetarium velocity
training signals, head position, and extracellular voltage recordings
were simultaneously digitized (Digidata and Clampex, Axon In-
struments, Foster City, CA). The extracellular voltage was recorded
through a 2–5 M� beveled sharp glass electrode containing 2 M
NaCl and fast green FCF (Sigma), by using a Neurodata IR-283
amplifier (Cygnus Technology, Delaware Water Gap, PA) with
capacitance compensation. The extracellular voltage was amplified
1,000-fold, filtered (high-pass 300 Hz, low-pass 10 kHz, 8-pole
Bessel), ac-coupled, and digitized at a 35- to 60-�s sample interval.
A systematic grid search for eye position-related neurons 400–1,000
�m below the floor of the fourth ventricle was carried out, starting
400 �m lateral to the midline rhombomere marking (often a blood
vessel) midway between the obex and facial lobe (12). Large action
potentials were sought by making electrode penetrations at 25-�m
intervals in the mediolateral direction, and then eye position-
related neurons were searched for by making penetrations at
200-�m intervals, then at smaller intervals, first caudally, then
rostrally. The sizes of action potentials and cell types at each
location were noted to guide the search. The electrode position was
optimized, in most cases, to give spikes from the cell of interest of
peak negative amplitude 400–900 �V and spikes from neighboring
cells of �300 �V, compared with a background noise of �100–200
�V peak to peak. In untrained animals, area I was defined
functionally as the region containing predominantly eye position-
related neurons with large biphasic (putative somatic) action po-
tentials, crisp transitions in firing rate associated consistently with

Abbreviation: PV, position–velocity.
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saccades, and persistent firing during fixations at a rate that
depended on eye position (12). The firing patterns of these cells
during and after training were noted and used to guide the search
for eye position-related neurons in pretrained animals. In the latter
experiments, cells with clear eye position sensitivity were sought in
the usual location of area I. Recordings of individual position-
related neurons frequently lasted many hours.

Firing Rate Analysis. This analysis was performed on all well isolated
neurons recorded for at least 2 min, with firing in clear relation to
eye position. Of 84 such area I cells (in 28 fish), 7 cells were followed
during retuning with a stationary surround, 9 cells were followed
during training to the opposite condition, 11 cells were followed as
the animal was trained from control to unstable, 11 cells were
followed from control to leaky, and 53 cells were followed for at
least 20 min across different states of tuning. Custom MATLAB
software (The MathWorks, Natick, MA) was used to detect action
potentials off-line with a 2D windowing algorithm (peak negative
voltage and average voltage over specified sample points relative to
peak). Instantaneous interspike interval as a function of time was
calculated from the spike times at the eye position digitization
sample interval (3.5–6 ms). This waveform was inverted to give the
instantaneous firing rate as a function of time (Fig. 1), which was
then smoothed progressively more strongly away from saccades
(Supporting Methods, which is published as supporting information
on the PNAS web site) (13).

Neural PV Plots. In a temporal integrator described by first-order
kinetics (equation 1 in ref. 1), the response to a transient stimulus

is an exponential waveform (in figure 2a of ref. 1). This type of
response has the fundamental property that poststimulus drift is
proportional to the output. Integrator stability can therefore be
assessed from the slope of PV plots (1, 14, 15). The output of a
neural integrator can also be measured directly from the firing of
its constituent neurons. By analogy with eye PV plots, firing rate
drift vs. firing rate, or neural PV, plots were used to quantify the
stability of neural responses. To maximize the number of points in
neural PV plots and corresponding eye PV plots (Figs. 2 and 3), as
many consecutive fit intervals as possible of duration tf � 0.3 s were
used in each fixation, excluding a period ta � 0.3 s after and tb � 0.1 s
before saccades. To reduce sensitivity to outliers, minimum abso-
lute deviation (MAD) lines (16) were fitted through all points on
neural PV plots, excluding those with very low spike rates (�0.25
spikes per s) and fixations with no spikes. The average firing rate
drift, �fdrift�, was defined as the mean firing rate drift of all
nonexcluded points in units of spikes per s2. MAD lines were fitted
through all points on corresponding eye PV plots. Linear regression
and t tests were used to assess the statistical significance of changes
in neural PV slope (17). Smoothing the firing rates less caused no
systematic changes in the PV slopes obtained but did increase the
scatter in the data.

Results
Persistent Firing Can Be Detuned to Extreme Instability and Leak.
Goldfish eye fixations were trained to instability or leak as described
in ref. 1. Horizontal eye position was offset and amplified and used
to drive a planetarium positioned above the fish. The planetarium
projected spots on the wall of the tank holding the fish. The firing
pattern of a typical area I neuron in the dark under control
conditions is shown in Fig. 1a. After training to instability (with the
planetarium rotating with velocity proportional to eye position),
many area I neurons developed an unstable pattern of firing rate
drift (Fig. 1b) resembling the instability of the eye fixations. At high
rates firing rate would increase, at intermediate rates it was stable,
and at low rates it would decrease. Similarly, after training to leak
(with planetarium velocity proportional to minus eye position),
many area I neurons developed a leaky pattern of firing rate drift,
decaying downward from high rates, being stable at intermediate
rates, and, in many cases, decaying upward from low rates (Fig. 1c),
resembling the leaky eye fixations.

By analogy with eye PV plots (15), firing rate drift vs. firing rate
(neural PV) plots were used to quantify the stability of neural
responses, as illustrated in Fig. 2 (see Methods). The slope kE of the
eye PV best-fit line was used to characterize fixation performance.
Persistent firing stability was characterized by the slope kf of the
neural PV best-fit line and also by the average firing rate drift,
�fdrift�. The latter measure was included because different cells
are recruited at different eye position thresholds (12), and so steady
up- or downward drift in the rate of a particular cell can contribute
to instability or leak of the total population response. Effective time
constants were defined as �E � 1��kE� and �f � 1��kf�.

A typical area I neuron stable control firing pattern is shown in
Fig. 2a. The neural PV plot is nearly flat, with �f � 14.3 s. The firing
pattern of an area I neuron in a fish trained to extreme instability
is shown in Fig. 2b. Both the eye and the neural PV plots exhibit
pronounced instability, with steep positive slopes, giving effective
time constants of �1 s for both the eyes and the persistent firing.
An area I neuron from a fish trained to extreme leak is shown in
Fig. 2c, also with an effective time constant of persistent firing of
�1 s. In all, two and five cells were trained to instability with �f �
1 s and �f � 2 s, respectively. Six and nine cells were trained to leak
with �f � 1 s and �f � 2 s, respectively.

Neural Firing Rate Drift Patterns Are Diverse. Different area I cells
normally have different eye position thresholds, spanning a large
fraction of the oculomotor range (12). Neurons from control
animals had a median neural PV slope kf of �0.11 s�1 (range, �0.26

Fig. 1. Area I persistent firing can be detuned by manipulating retinal slip.
(a) Normal pattern of horizontal eye movements and firing of area I neurons
in the goldfish oculomotor neural integrator. Between saccades, eye position
and firing rate are approximately stable. Instantaneous firing rate [inverse
interspike interval (1�ISI)] is shown in cyan; smoothed firing rate is shown in
black. (b) Unstable fixations and area I neuron firing in the dark, after training
to instability for 22 h with training gain g (ref. 1) between 1 and 2.6 s�1. (c)
Leaky fixations and area I neuron firing, in the dark, after training to leak for
22 h with training gain g between �1.9 and �3.3 s�1. R, right; L, left; sp�s,
spikes per s; deg, degrees.
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to 0.048 s�1; n � 31 cells), corresponding to a leaky median effective
time constant of persistent firing �f � 9.1 s (range, 3.9 s leaky to
20.8 s unstable). Higher-threshold cells tended to be leakier.

Forty neurons were recorded from area I in fish trained to
instability. Some cells had high thresholds, switching on partially
through fixations and increasing their firing rates very rapidly as the
eyes moved in the ON (ipsilateral) direction (Fig. 3a; n � 7 cells,
17.5%). Neurons with medium thresholds exhibited instability (n �
11 cells, 27.5%), which in some cases was bidirectional, with firing
increasing at high rates and decreasing at low rates (Figs. 1b and 2b;
n � 3 cells, 8%). Other neurons, with lower thresholds, tended to
exhibit more complex firing drift patterns and less overall instability
than the eyes (Fig. 3b; n � 22 cells, 55%, of which 9 were followed
from control, confirming that they started off as normal area I
neurons).

Thirty-two neurons were recorded in area I in fish trained to leak.
High-threshold cells exhibited downward leak (Fig. 3c; n � 10 cells,
31%). Lower-threshold cells often showed bidirectional leak, down-
ward at high rates and upward at low rates (Fig. 1c; n � 12 cells,
38%). Many cells in these two groups seemed to exhibit null point
shifts, just like the eyes. In other words, the asymptotic rate at which

the firing decayed appeared, on average, to shift in the direction of
the intervening saccade (n � 13 cells, 41%). A rate that was very
leaky after an ON direction saccade would often become approx-
imately stable after one or more additional ON direction saccades
(compare rates of 10–20 spikes per s across fixations in Fig. 2c). The
remaining cells, which mostly had even lower thresholds, exhibited
more complex patterns of drift and were less leaky than the eyes
(n � 10 cells, 31%). In half of these, the main change from the
control state was a drop in maximum persistent firing rate (Fig. 3d),
which may have contributed to leak at extreme eye positions
through reduced support to motoneuron firing.

The majority of complex drift patterns were hysteretic�predictive
(Fig. 3b and d) often showing more decay preceding a switch to the
OFF direction (contralateral) saccades, relative to other fixations
with comparable drift velocities. This observation cannot be ex-
plained by eye velocity encoding (or the lack of it) by these neurons.
Identified area I neurons were followed from control to detuned
states (n � 22 cells); generally, those with lower thresholds devel-
oped complex drift patterns (n � 15 cells), whereas those with
higher thresholds developed simple drift patterns more consistent
with the eye movements (n � 7 cells).

Fig. 2. Persistent firing can be detuned to time
constants of �1 s. (Left) Ipsilateral eye position
and area I cell firing rates. Instantaneous firing
rate (inverse interspike interval) is shown in cyan;
smoothed firing rate is shown in black and dark
blue. (Right) Fitted 300-ms line segments gener-
ating PV plots are shown in red (10 min of data).
Best-fit line slopes kE and kf and effective time
constants �E and �f are shown for eye and neural
PV plots, respectively. Mean firing rate drift
�fdrift� is shown in spikes per s2 (sp�s�s). (a)
Control. (b) Animal with unstable fixations, cell
with bidirectional firing rate instability. (c) Ani-
mal with leaky fixations, cell with downward fir-
ing rate leak and apparent null point shifts. R,
right; L, left; sp�s, spikes per s; deg, degrees; av.,
average.
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Another interesting observation may help to make sense of the
complex drift patterns. Under control conditions, approximately
half of area I cells (n � 15 of 31 cells), generally those with lower
eye position thresholds, demonstrated a phenomenon we term
‘‘nonmonotonic persistent firing.’’ Above a certain firing rate
ceiling, persistent firing of these cells stopped increasing with
ipsilaterally (ON) directed saccades and, in many cases, even
decreased. Although such cells could fire transiently at higher rates
during saccadic bursts or during vestibular stimulation, these inputs
did not raise the poststimulus persistent firing rate beyond the
ceiling level, although the eyes were moved to and held at more
extreme positions in the ON direction (see Fig. 5, which is published
as supporting information on the PNAS web site). When detuned,
such cells almost always showed complex drift. Conversely, cells
with monotonic persistent firing (always increasing with eye posi-
tion in the ipsilateral direction) almost always detuned to simple
drift.

It is worth emphasizing that, after training, the persistent firing
patterns of both monotonic and nonmonotonic cells were changed
from the control state, generally in a manner consistent with the
degree of instability or leak exhibited by the fixations.

Neural Firing Rate Drift Detunes and Retunes in Line with Fixations.
Many recordings were maintained while fixations were detuned or
retuned over a range of behaviors (see Methods). Three examples
are shown in Fig. 4a and b, all from data taken in the dark. Neural
PV slope kf and average firing drift �fdrift� are plotted against eye
PV slope kE. The first cell (Fig. 4 a and b Left) was recorded while
the fish was detuned from stability to instability. There were strong,
significant positive trends in both kf and �fdrift� with kE. Initially,
in the control state, the cell was leaky (kf, �0.22 s�1), but as the
animal trained to instability, the firing also trained to instability,
eventually resulting in a kf of 0.25 s�1.

The second cell (Fig. 4 a and b Center; see also Fig. 2b) was
recorded in a fish trained to extreme instability then retuned to
stability by using a stationary surround. The firing pattern retuned
along with the fixations, again resulting in strongly positive, highly
significant trends in neural instability and firing drift with eye
instability.

The third cell (Fig. 4 a and b Right) was recorded while the animal
was trained from stability to leak, then trained to instability. Again,
there were strongly positive, significant correlations in both plots.

In all, 15 cells recorded for long periods showed significant trends

Fig. 3. There is unexpected diversity of firing
rate drift after training. (Left) Ipsilateral eye po-
sition (upper trace) and area I cell firing rate
(lower trace). (Right) Neural PV plots (10 min of
data). (a) Unstable fixations, high-threshold cell
with rapid increase in firing toward left extreme
of range. (b) Unstable fixations, low-threshold
cell with complex pattern of history-dependent�
predictive mildly unstable firing rate drift. (c)
Leaky fixations, high-threshold cell with rapid
downward leak in firing rate. (d) Leaky fixations,
low-threshold cell with nearly stable firing but
maximum persistent firing rate reduced from
control (green dashed line, 72 spikes per s). L, left;
R, right; deg, degrees; sp�s, spikes per s.
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in neural PV slope kf and�or average firing drift �fdrift� with eye
PV slope kE (P � 0.05). Most cells recorded over more than one
state of tuning showed a significant change in kf in the same
direction as the change in kE (n � 39 of 53 cells, 74%).

Pooling the entire data set of 84 neurons revealed a very
striking overall correlation between neural and eye PV slopes,
across the range of behaviors explored (Fig. 4c). Generally, kf

was more negative than kE. A strong correlation also was seen
between average firing drift �fdrift� and kE (data not shown;
R2, 0.43; slope, 21 spikes per s; P � 10�15; intercept, �1.5 spikes
per s2). Because of recruitment of different cells at different eye
position thresholds, a constant component of firing rate drift in
a particular neuron could also contribute to instability or leak of
fixations, because progressively more of such components of a
given sign would be added together by the motoneurons as the
eyes moved to more extreme positions. The diversity of firing

rate drift patterns at a given state of fixation detuning is reflected
by the vertical spread of the data points. Despite this diversity,
it is clear that detuning of fixations goes hand in hand with
detuning of persistent firing in area I. This was not a foregone
conclusion a priori; for example, the plasticity could have
occurred entirely downstream of area I, possibly in the motoneu-
rons, or in parallel with and bypassing area I.

Discussion
Despite many years of study, we still do not understand the basic
mechanisms generating graded persistent neural firing during
working memory in cortex and other brain areas. There are strong
arguments for studying a simple in vivo model system exhibiting
graded persistent firing, such as the goldfish oculomotor neural
integrator.

We have shown that, over tens of minutes to hours, the goldfish
oculomotor system makes use of external visual feedback to tune

Fig. 4. Detuning of persistent firing and fixations
are correlated. Trends in neural PV slope kf and
mean firing rate drift �fdrift� vs. eye PV slope kE.
3D plots, with one firing measure plotted on the
ordinate, another represented by the bar. Solid bar
up from point represents positive values; dashed
downward bar represents negative values; dashed
diagonal cyan lines indicate kE � kf; solid lines
indicate linear regression best fits, with slopes and
significance (P) noted. (a and b) Single cells. (a) kf vs.
kE. (b) �fdrift� vs. kE. (Left) Trained from control to
unstable. (Center) Retuned with stationary sur-
round from unstable to stable. (Right) Trained
from control to leak, then to instability. All data are
from fixations in the dark. (c) Entire data set. Dif-
ferent colors represent different fish, and different
symbols represent different cells. kf vs. kE with
�fdrift� are shown as bars, as in a. The solid brown
line indicates the linear regression fit.
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the stability of persistent firing in its neural integrator. This finding
is a clear demonstration of continuous tuning by sensory feedback
of the dynamics of persistent neural firing in an in vivo model
system, rather than just changes in overall activity or selectivity
associated with learning (18, 19). Tuning is implicitly predicted by
the parameter sensitivity of many models of persistent neural firing,
which generally involve some form of net positive feedback internal
to the integrator. A negative result, no tuning, would have argued
against these parameter-sensitive models. The experimental dem-
onstration that persistence can be smoothly tuned and detuned is an
important piece of evidence supporting these models against other
possibilities not requiring a tuning mechanism.

Tuning of the time course of graded persistent activity can also
occur in higher brain areas during the learning of time prediction
tasks (20). The firing rate buildup of many area I neurons in fish
with unstable fixations resembles climbing activity seen in cortex or
thalamus during time or trajectory prediction (21), suggesting that
the goldfish oculomotor neural integrator may also prove to be a
model system for time-varying persistent firing. Indeed, the inte-
grator can be regarded as a simple predictive circuit whose purpose
is to minimize retinal slip. It does this by generating rapid feed-
forward preemptive eye movements to compensate for the pattern
of world motion expected on the basis of current vestibular inputs,
avoiding the feedback delays and oscillations associated with the
optokinetic response (22).

There were a number of surprises in this study. A priori, there was
no reason to suspect that we would be able to reduce the persistent
firing time constants of some cells to �1 s (in the case of both
instability and leak). This result suggests that visual feedback is a
powerful tuning mechanism for persistent firing in this system.
Second, the wide diversity of neural firing drift patterns in individ-
ual fish at all states of tuning was unexpected. Interestingly, many
area I cells had roughly stable neural PV plots or had complex
history-dependent�predictive firing drift patterns in animals with
very detuned fixations, and a few cells even had the opposite pattern
of drift to the eyes. Finally, in animals with unstable fixations, no
cells active over most of the oculomotor range were found exhib-
iting symmetrical bidirectional instability (upward drift at high rates
and downward drift at low rates), imitating the eye movements.
Instead, most low-threshold cells showed complex firing rate drift.

Two recurrent synaptic feedback models, namely the line attrac-
tor (23) and the spiking conductance-based model with an outer-
product synaptic weight matrix (24), predict that under control
conditions all cells in the integrator should have similar neural PV
plots over their active ranges and that they should all detune in

roughly the same manner when synaptic weights are changed
uniformly (24). One would not expect to see the diversity of firing
rate drift patterns on different neurons observed here. Nor do
published versions of these models demonstrate systematic firing-
rate null point shifts in the direction of saccades, where a rate that
is leaky in one fixation becomes stable after one or more saccades.
Furthermore, cells active over most of the oculomotor range should
show bidirectional instability in animals with unstable fixations (the
achievement of bidirectionality requires additional tonic inhibition
in the case of the conductance-based model). These predictions
differ somewhat from the experimental data. Detuned area I firing
patterns may be consistent with multiintegrator models with several
different time constants (25, 26), which could result from nonuni-
form detuning of a line attractor or outer-product model. However,
taken together with other striking features of area I firing patterns
in animals with well tuned integrators, such as nonmonotonic
persistent firing (see supporting information) and firing rate–firing
rate hysteresis (13), as well as evidence that area I firing rates have
unexpectedly long time constants after inactivation of approxi-
mately one-third of the cells (E. A., R. B., and D. W. T., unpublished
data), the results above suggest that the original line attractor (23)
and outer-product weight matrix (24) models may be too simplistic.
However, more complex variants of these recurrent synaptic feed-
back models could be more consistent with the data, for example
those involving higher-dimensional attractors, non-outer-product
weight matrices or mixed excitatory�inhibitory networks (27).

The diversity of firing rate drifts may also be consistent with
models involving other forms of tuned positive feedback, such as
multiple single-cell integrators with many coupled bistable den-
drites (28), dendritic wave fronts (29, 30), tuned intracellular
positive feedback between calcium, calcium-activated conductances
and spiking (21), or hybrid cellular-network mechanisms (31, 32).

Although area I is clearly involved in the plasticity of the
oculomotor neural integrator, the plasticity may not be restricted to
area I. Indeed, the changes in area I neurons could result from
plasticity in other areas of the brainstem and�or cerebellum.

In conclusion, we have shown, in this in vivo biological model
system, that external sensory feedback can gradually, yet power-
fully, detune and retune the time course of analog persistent neural
firing.
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