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ABSTRACT  We developed “fractionation profiling,” a method for rapid proteomic analysis 
of membrane vesicles and protein particles. The approach combines quantitative proteomics 
with subcellular fractionation to generate signature protein abundance distribution profiles. 
Functionally associated groups of proteins are revealed through cluster analysis. To validate 
the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-
coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila 
S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of 
importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse 
range of known and novel cytosolic and membrane-associated protein complexes. We show 
that it also allows the detailed compositional characterization of complexes, including the 
delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an 
interactive database. Fractionation profiling is a universal method for defining the clathrin-
coated vesicle proteome and may be adapted for the analysis of other types of vesicles and 
particles. In addition, it provides a versatile tool for the rapid generation of large-scale pro-
tein interaction maps.

INTRODUCTION
Several thousand proteins are associated with the eukaryotic endo-
membrane system, yet the characterization of their functional inter-
actions remains a mostly unresolved question (Havugimana et al., 
2012). Numerous large-scale studies have been carried out to deter-
mine the localization and interactome of individual proteins using 
fluorescence or affinity tags (Huh et al., 2003; Ewing et al., 2007), 
but these approaches are extremely labor intensive and also suffer 
from potential interference introduced by tagging. An alternative 

strategy is to separate organelles by density gradient centrifugation 
and identify proteins associated with individual fractions through 
mass spectrometry (Dunkley et al., 2004; Foster et al., 2006). Such 
comparative proteomic approaches have yielded valuable insights 
into the composition of major organelles. However, transport vesi-
cles, which are responsible for the selective exchange of contents 
between organelles, are not resolved by these methods.

Clathrin-coated vesicles (CCVs) mediate transport between the 
trans-Golgi network and endosomes and also facilitate plasma 
membrane endocytosis (Robinson, 2004; Faini et al., 2013). Their 
function is critically important in all eukaryotes: in multicellular or-
ganisms, defects in CCV trafficking are embryonic lethal (Robinson, 
2004; Borner et al., 2007; Umasankar et al., 2012) or associated with 
severe developmental phenotypes (Tarpey et al., 2006; Montpetit 
et  al., 2008). Similarly, unicellular trypanosomes, the causative 
agents of sleeping sickness, are not viable without clathrin-mediated 
endocytosis (Allen et al., 2003). To date, the CCV composition from 
only three sources has been characterized by proteomics: rat brain 
(Blondeau et al., 2004), rat liver (Girard et al., 2005), and HeLa cells 
(Borner et al., 2006, 2012; Hirst et al., 2012). Because standard bio-
chemical fractionation procedures never yield “pure” fractions, an 
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similarity (Figure 2). Known CCV proteins clustered tightly in the pe-
riphery of the plot. Hence fractionation profiling successfully segre-
gated CCV from non-CCV proteins. Of importance, the cluster 
analysis extends to all other proteins in the data set; numerous 
known protein complexes with diverse functions also formed tight 
clusters throughout the plot, as discussed later.

The Predictor database
To harness the profiling data, we designed an interactive analysis 
tool (see Materials and Methods). The “Predictor” (Supplemental 
Table S1) searches the profiling data against query proteins and pro-
vides a classified output of proteins with similar profiles. Profile simi-
larity calculations are based on distances in multidimensional log 
space. Of importance, the Predictor is not based on PCA. The pur-
pose of the PCA plot in Figure 2 is to provide a graphical illustration 
of profile clustering. The reduction of a six-dimensional data set to a 
two-dimensional scatter plot necessarily causes a loss of discriminat-
ing power. As a result, some clusters of known protein complex sub-
units (colored dots) appear to overlap with unrelated proteins (gray 
dots). The Predictor, however, achieves much higher resolution than 
shown in Figure 2 by calculating distances in six-dimensional space. 
See Materials and Methods for further details.

Clathrin heavy chain (CHC) is the major CCV protein, and pro-
teins with similar profiles are candidate CCV constituents. To test 
whether the Predictor can recover the known HeLa CCV proteome, 
we searched the database of 2827 complete profiles against CHC. 
The Predictor classified 93 hits as “very high confidence” CCV pro-
teins; 84 of these are previously reported CCV proteins. Based on 
their functional annotation, eight of the remaining nine proteins are 
strong candidate novel CCV proteins, and only one is a definite false 
positive, suggesting a predictive accuracy of 90–98% (at the 60% 
sensitivity threshold; see Supplemental Table S2 for a detailed anal-
ysis of the predictions and new CCV proteins). A further 75 proteins 
were classified as “high-confidence” predictions, bringing the total 
number of predicted CCV proteins to 168. These include 112 known 
CCV proteins, as well as 45 strong candidate novel coat and cargo 
CCV proteins, with <7% definite false positives (at the 80% sensitiv-
ity threshold; Supplemental Table S2). Collectively these data sug-
gest that fractionation profiling can identify known and novel CCV 
proteins with exceptional accuracy and coverage.

Application of fractionation profiling to S2 Drosophila cells 
reveals the first insect CCV proteome
Although Drosophila is a widely used model organism, the compo-
sition of its CCVs remains poorly characterized. To test whether frac-
tionation profiling is transferable to other cell systems, we chose to 
investigate Drosophila S2 cells. We applied fractionation profiling 
without further optimization (Figure 3A). Clathrin and associated 
proteins had profiles similar to those in HeLa cells (Figure 3B). For 
proteomic analysis, we prepared a reference and three subfractions 
from SILAC-labeled S2 cells, repeated the preparation with reversed 
labeling, and analyzed the six sample pairs by mass spectrometry. In 
total, we identified >3000 proteins, of which 1799 were quantified 
across all six samples. PCA shows that subunits of known protein 
complexes form clusters, as expected (Figure 3C). Known fly CCV 
proteins, including clathrin, AP-1, and AP-2, formed a distinct clus-
ter in the periphery of the plot. We then constructed a Predictor for 
the S2 profiling data (Supplemental Table S3). A search against 
Drosophila clathrin heavy chain revealed a list of 29 candidate CCV 
proteins predicted with the highest level of confidence (Table 1). 
Remarkably, the human homologues of 27 of these are known CCV 
proteins; most of these proteins have not been characterized in 

assignment of identified proteins as genuine CCV components or 
contaminants is highly ambiguous (Blondeau et  al., 2004; Girard 
et al., 2005). Recently we showed how selective interference with 
CCV formation through gene silencing (Borner et al., 2012) or drug-
induced knocksideways (Hirst et al., 2012) in conjunction with quan-
titative mass spectrometry can be used to define the contents of 
CCVs objectively and with high accuracy. A limitation of these per-
turbation-based approaches, however, is that they require gene 
knockdown or transgene expression and are thus restricted to cell 
types amenable to these techniques. There is no universal method 
for the proteomic analysis of CCVs and, more generally, transport 
vesicles. To fill this niche, we developed “fractionation profiling,” 
which is based exclusively on quantifying subcellular fractionation 
behavior. The method requires no chemical or genetic manipulation 
and reveals the composition of CCVs with high specificity and sen-
sitivity. Furthermore, our data suggest that fractionation profiling 
will work in a wide variety of cell types. Although we initially de-
signed the method for the analysis of transport vesicles, we also 
demonstrate its potential for discovering and characterizing protein 
complexes.

RESULTS
Development of the fractionation profiling approach
HeLa cells are still the only human cell type with a well-characterized 
CCV proteome (Borner et al., 2012), and we hence developed and 
validated fractionation profiling in these cells. We previously showed 
that a “mixed vesicle fraction” can be prepared from HeLa cells by 
standard biochemical fractionation techniques (Borner et al., 2006, 
2012). This fraction is highly enriched in CCVs but also contains 
other membrane vesicles, as well as large cytosolic protein com-
plexes. The aim of fractionation profiling is not to obtain a “pure” 
CCV fraction but to determine the subcellular fractionation behavior 
of CCVs and identify all proteins that share it. First, we established 
differential centrifugation conditions that allow the further division 
of the vesicle fraction into three subfractions of roughly equal total 
protein content (Figure 1A). In parallel, we prepared a reference 
fraction from metabolically “heavy” labeled cells (stable isotope la-
beling by amino acids in cell culture [SILAC] method; Ong et al., 
2002). This reference combines the contents of all three subfrac-
tions. Electron microscopy shows that CCVs and other structures 
have characteristic enrichment and depletion profiles across the 
subfractions (Figure 1B). Gel electrophoretic analysis (Figure 1, C 
and D) confirms that CCV-associated proteins share the same sharply 
defined profile, with a pronounced peak in fraction 1 and almost 
complete depletion from fraction 3. This signature profile is clearly 
resolved from coat components of major non-CCV transport vesi-
cles and other particles, such as AP-3, AP-4, and ribosomes.

For proteomic analysis, an aliquot of the SILAC heavy reference 
fraction was pooled with each (SILAC light) subfraction. The experi-
ment was then repeated with reversed metabolic labels. Thus six 
sample pairs were obtained and analyzed by quantitative mass 
spectrometry (Figure 1E). In total, we identified >4500 proteins 
(Supplemental Table S1), with 2827 proteins quantified across all six 
samples. For every protein, we determined the abundance in each 
subfraction relative to the reference. The resulting six ratios consti-
tute a protein’s profile. As expected, coat components of CCVs 
show very closely matched profiles and are clearly distinguishable 
from non-CCV proteins (Figure 1F).

To sort proteins into groups with related profiles, we first per-
formed principal components analysis (PCA). This allowed the rep-
resentation of the variation in our six-dimensional data set as a two-
dimensional scatter plot and clustered proteins based on profile 
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FIGURE 1:  Development of the fractionation profiling approach. (A) Workflow. HeLa cells were metabolically labeled 
with heavy (Lys-8/Arg-10) or light (Lys-0/Arg-0) amino acid isotopes. Equivalent vesicle-enriched membrane fractions 
(Ves Frac) were prepared by biochemical fractionation. The light Ves Frac was subfractionated by a series of three 
centrifugation steps with increasing speed (pellets 1–3). In parallel, the heavy Ves Frac was centrifuged once at high 
speed to obtain the reference pellet. (B) Characterization of subfractions by electron microscopy. Pellets were fixed and 
cross-sectioned. CCVs are the predominant profiles in pellet 1 and very abundant in pellet 2. Pellet 3 contains mostly 
smooth membrane vesicles and nonvesicular protein particles (e.g., proteasomes and ribosomes). The reference fraction 
has an intermediate composition. (C) Analysis by gel electrophoresis (Coomassie stain). All fractions have distinct 
compositions. Clathrin heavy chain (small arrow) is enriched in fractions 1 and 2 and depleted from fraction 3. Several 
other prominent bands show the opposite trend. (D) Analysis by Western blot. Clathrin heavy chain (CHC) and 
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Fractionation profiling reveals the composition of protein 
complexes
Stably associated proteins are expected to show near-identical 
fractionation behavior and thus similar profiles; in turn, this may 
be exploited to predict the composition of protein complexes. To 
test this, we focused on the HeLa data set, as the annotation of 
the human protein database is much more comprehensive than 
that of Drosophila. We first investigated the well-characterized 
and abundant CCT chaperonin T-complex (Figure 4A). All eight 

Drosophila. An extended search with lower stringency revealed up 
to 50 candidate CCV proteins (Supplemental Table S4). To validate 
some of our predictions, we tagged four candidate coat proteins 
(Figure 3D). All four showed extensive colocalization with estab-
lished markers of CCVs. In sum, fractionation profiling was success-
fully implemented to characterize CCVs from S2 cells. Given the 
evolutionary distance between humans and Drosophila, it is highly 
likely that the approach will be applicable to a wide variety of cell 
types.

FIGURE 2:  Cluster analysis of fractionation profiles accurately identifies CCV proteins and reveals functionally 
associated proteins in HeLa cells. The 2827 complete fractionation profiles from HeLa cells were subjected to PCA to 
achieve dimensionality reduction of the six-dimensional profiling data set. Projections along the first and second 
principal components are shown (x- and y-axis, respectively; cumulative R2 = 0.893). Each protein is represented by a 
scatter point. Proximity of proteins indicates similar profiles and thus likely functional association. Core subunits of 
known complexes are highlighted in color and include AP-1 to AP-4, the anaphase-promoting complex (APC), the 
ARP2/3 complex (ARP2/3), the biogenesis of lysosome-related organelles complex-1 (BLOC), clathrin heavy and light 
chains (Cla), the T-complex (CCT), COPI (COP), the dynactin complex (DyAc), the LAMTOR complex (LAMT), the 
mitochondrial ribosomal large subunit (mRP), the proteasome core (PS20) and regulatory particle (PS19), Retromer 
(Retro), ribosomal small (RPS) and large (RPL) subunits, the signalosome (Sig), and the TRAPP complex (TRAPP). In 
addition, flotillins (Flot) and known cargo proteins of the ARF6-dependent endocytic pathway (ARF6) are indicated. 
Strikingly, in all cases, tight clustering of complex subunits is observed, suggesting that the method is capable of 
identifying functionally linked proteins. Known CCV proteins predicted by fractionation profiling are shown in red. They 
cluster in the immediate vicinity of clathrin and its adaptors (AP-1 and AP-2) and can thus be distinguished from 
non-CCV proteins. Hence fractionation profiling accurately predicts the composition of HeLa CCVs.
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associated proteins (AP-1, AP-2, and GGA2) have equivalent profiles. Nonclathrin vesicle coats (AP-3, AP-4) and large 
protein particles (EF-2, ribosomal elongation factor 2) have distinct patterns. Data in B–D are in excellent agreement. 
(E) Fractionation profiling as a proteomic method. Fractions 1–3 and Ref1 were prepared as in A. Fractions 4–6 and Ref2 
were prepared similarly but with reversed metabolic labels (heavy 4–6, light Ref2). Fractions 1–3 were pooled with Ref1 
and fractions 4–6 with Ref2 and analyzed by mass spectrometry. For each identified protein, six ratios of enrichment/
depletion relative to the reference fraction were obtained. (F) Proteomic profiles of clathrin (AP-1, AP-2) and nonclathrin 
(AP-3, AP-4) adaptor protein subunits, showing the relative abundance distribution across the six subfractions (log2 
scale). Subunits of the same AP-complex have near-identical profiles, demonstrating the accuracy of the method. 
Clathrin, AP-1, and AP-2 have extremely similar profiles, suggesting that they are all part of the same subcellular 
structure (i.e., CCVs). In contrast, nonclathrin adaptors AP-3 and AP-4 have profiles different from clathrin and different 
from each other. Note that each profile consists of two independent data triplets obtained with slightly different spin 
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FIGURE 3:  Application of fractionation profiling to S2 cells reveals the composition of Drosophila CCVs. (A) Drosophila 
S2 lysates were subfractionated as in Figure 1A. Gel electrophoresis (Coomassie stain) reveals that all subfractions have 
different compositions. The probable clathrin heavy chain band is indicated (arrow). (B) Western blotting of fractions 
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The yeast Gid complex is a multisubunit E3 ligase with key regu-
latory functions in glucose metabolism (Menssen et al., 2012). The 
mammalian homologue has been termed the CTLH complex 
(Kobayashi et al., 2007), and its components have been implicated 
in regulation of endosomal trafficking (Heisler et al., 2011) and cell 
spreading (Valiyaveettil et  al., 2008). Pull-down experiments have 
identified six members of the CTLH complex: ARMC8, C20orf11, 
MAEA, MKLN1, RANBP9, and RMND5 (Kobayashi et al., 2007). Our 
profiling data support this composition (Figure 4, E and F) but clearly 
indicate the presence of three further subunits: C17orf39 and 
WDR26, the human homologues of yeast GID4 and GID7, respec-
tively; and VPRBP (the HIV-VPR binding protein), which has no ho-
mologue in yeast. VPRBP is a particularly intriguing new discovery. 
This protein associates as a substrate adaptor with the CRL4A E3 li-
gase CUL4A/DBB1/RBX1 (Romani and Cohen, 2012). The CRL4A 
complex is also present in our profiling data, but its profile is distinct 
from that of the CTLH complex (Figure 4, G and H). Furthermore, 
VPRBP has a LisH protein interaction domain, which is also present 
in several CTLH subunits (Menssen et al., 2012). Our data therefore 
suggest that VPRBP may have an additional function as a substrate 
adaptor in CTLH. Of importance, the HIV protein VPR is known to 
“highjack” VPRBP and its associated E3 ligase to trigger degrada-
tion of as-yet-unidentified targets (Romani and Cohen, 2012). We 
propose that the CTLH complex may also become a target of HIV-
VPR and that it may play a role in HIV pathogenesis.

Fractionation profiling predicts the existence of novel 
protein complexes and trafficking pathways
The foregoing data demonstrate the predictive power of our ap-
proach for known protein complexes. However, profiling also pre-
dicts the existence of novel complexes (Figure 5, Supplemental 
Figure S2, and Supplemental Table S5). For example, we provide 
the first evidence that the BAR-domain proteins SNX4 and SNX30 
(van Weering et al., 2010) form a stable dimer (Figure 5, A and B). A 
recent study identified a novel protein dimer C17orf75/WDR11, im-
plicated in protection against ricin toxicity (Bassik et al., 2013). Our 
profiling data suggest that these proteins are in fact part of a tri-
meric complex, which also includes the protein FAM91A1 (Figure 5, 
C and D). The protein C10orf32 has been implicated in susceptibil-
ity to arsenic poisoning (Pierce et al., 2012); here we propose that 
C10orf32 is in complex with the uncharacterized protein LOIH12CR1 
(Figure 5, E and F). These examples illustrate that our approach cov-
ers a broad spectrum of important novel protein associations.

subunits have extremely similar profiles, and querying the Predic-
tor with any subunit retrieves the other seven subunits as top hits. 
Furthermore, the mass spectrometric data allow an estimation of 
relative protein abundance. For the T-complex, an equimolar stoi-
chiometry of all subunits is suggested (Figure 4B), as previously 
reported (Yebenes et al., 2011). Hence profiling correctly predicts 
the composition of the T-complex de novo. Next we tested 
whether fractionation profiling can also predict the organization of 
more elaborate complexes. The 26S proteasome consists of two 
subcomplexes— the 20S core and the 19S regulatory particle. The 
latter is further divided into lid and base (Tomko and Hochstrasser, 
2013). A search of the predictor with consensus profiles for the 
19S or 20S particles identified 32 (of 33) subunits of the 26S pro-
teasome, as well as several accessory factors. To gain further in-
sights into complex arrangement, we applied PCA to the subunit 
profiles (Supplemental Figure S1A). Core and regulatory particles 
were clearly discriminated. Furthermore, the separation of lid and 
base, as well as the arrangement of core inner and outer ring, 
were also discernible. Finally, profiling predicts that most core and 
regulatory subunits are present in roughly equimolar quantities, 
unlike most accessory factors, which are present in substoichio-
metric amounts (Supplemental Figure S1B).

Encouraged by this proof of principle, we investigated the struc-
ture of less-well-studied mammalian protein complexes. TRAPP is a 
multisubunit vesicle-tethering complex (Yu and Liang, 2012). In 
yeast, the core complex TRAPPI (subunits 1–6) can associate with 
subunits 9 and 10 to form TRAPPII or with subunit 8 to form TRAP-
PIII; all three TRAPPs have different functions. The mammalian 
TRAPP has only recently been characterized through genetic inter-
actions and pull-down experiments (Bassik et al., 2013). PCA of our 
profiling data clearly support the postulated existence of a mam-
malian TRAPPIII complex consisting of subunits 1, 2, 2L, 3–5, 6A/6B, 
8, and 11–13 (Figure 4C). In addition, we provide the first experi-
mentally determined estimated TRAPPIII subunit stoichiometry 
(Figure 4D). In agreement with the yeast model, our data suggest an 
equimolar stoichiometry for all core subunits 1–6, except for subunit 
3, which is present in two copies. In addition, it appears that the re-
cently identified subunits 11 and 12 are also present in single cop-
ies, with subunit 13 probably less tightly associated. Finally, the fact 
that subunit 8 (the defining feature of TRAPPIII) is almost as abun-
dant as the core subunits 1–6 implies that the majority of TRAPPI is 
part of TRAPPIII and that very little TRAPPI is “free” or part of TRAP-
PII in HeLa cells.

shown in A confirms that CHC and the associated adaptor AP-1 have similar profiles, which are distinct from the 
nonclathrin adaptor AP-3. (C) Proteomic analysis of S2 fractions from two independent profiling experiments identified 
1799 proteins with complete profiles. PCA of the profiles reveals clustering of subunits of known protein complexes, 
including AP-1, AP-2, AP-3, the anaphase-promoting complex (APC), the T-complex (CCT), clathrin heavy and light 
chains (Cla), the Exocyst (Exo), the mitochondrial ribosome (mRP), the proteasome core (PS20) and regulatory particle 
(PS19), signalosome (Sig), and the V-ATPase (vATP0, integral membrane subcomplex; vATP1, peripheral subcomplex). 
Of importance, proteins whose mammalian homologues are known CCV proteins cluster in the vicinity of clathrin 
(marked in red, CCV). Fractionation profiling successfully reveals the composition of the Drosophila CCV proteome. 
(x-, y-axes = first and second principal components; cumulative R2 = 0.917). To illustrate that even a single fractionation 
profiling experiment is sufficient to produce meaningful clustering, this plot shows PCA of the first triplet only (i.e., three 
data points). Joined PCA of both triplets (all six data points) results in a very similar plot. (D) Four candidate Drosophila 
CCV coat components predicted by fractionation profiling were C-terminally tagged and transiently expressed in S2 
cells. Proteins were visualized by immunofluorescence microscopy. All four proteins colocalize with established markers 
of clathrin-coated vesicles, confirming their association with CCVs in S2 cells. LqfR, SCYL2, and SMAP2 colocalize tightly 
with AP-1, a marker of TGN/endosomal CCVs. SES1/2 localizes to plasma membrane clathrin-coated pits. Because 
clathrin light chain (CLC) marks both endocytic and intracellular clathrin-coated structure, it shows only partial 
colocalization with SES1/2. Some areas of colocalization are indicated (white arrowheads). Scale bar, 10 μm.
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route. Finally, we investigated whether this pathway is related to 
flotillin- or caveolin-mediated endocytosis (Sandvig et al., 2011). 
PCA shows that profiles of these markers of clathrin-independent 
endocytic pathways are clearly different from those for the ARF6 
cargo cluster (Figure 5H).

DISCUSSION
Here we developed proteomic fractionation profiling, a simple yet 
powerful tool for mapping functional protein associations. We have 
mainly used fractionation profiling for the analysis of CCVs and pro-
tein complexes, but the method is likely to work equally well for the 
characterization of other types of vesicular transport intermediates. 
Our results are presented in the interactive Predictor database 
(Tables S1 and S3).

Profiling also makes predictions about the subcellular distribu-
tion patterns of integral membrane proteins. In this case, similar 
profiles suggest similar trafficking itineraries. As an example, we 
investigated the ARF6-dependent endocytic pathway. Eyster et al. 
(2009) identified a group of four plasma membrane proteins 
(CD44, CD98 [SLC3A2/SLC7A5], CD147 [BSG], and ICAM1) that 
are endocytosed in a clathrin-independent manner and follow an 
ARF6-dependent recycling route. Indeed, these proteins have ex-
tremely similar profiles (Figure 5G), to the extent that a search with 
CD44 identifies all other three proteins as top hits. In addition, this 
cluster includes the monocarboxylate transporter (SLC16A1/
MCT1), a key regulator of nutrient uptake, with a proposed role in 
tumor proliferation (Pinheiro et al., 2012). We predict that this pro-
tein follows the same endocytic and ARF6-dependent recycling 

Rank
Drosophila 
gene (UniProt)

Protein ID 
(UniProt)

Relative  
abundance

Predicted  
role

Human 
homologue

Known hCCV 
protein?

1 Chc P29742 1,000,000 Coat CLTC Yes

2 Clc E1JI22 1,042,971 Coat CLTA/B Yes

3 Ack Q9VZI2 13,163 Coat TNK2 Yes

4 lqfRa Q8IN05 9986 Coat CLINT1/EpsinR Yes

5 Rabex-5 Q9W0H9 1435 Coat RABGEF1 Yes

6 Ocrl O46094 11,232 Coat OCRL Yes

7 AP-γ Q9W388 128,156 Coat AP1G1 Yes

8 Bap Q24253 125,375 Coat AP1B1/AP2B1 Yes

9 Pi3K68D Q7K3H0 21,936 Coat PIK3C2A Yes

10 Fur1 P30430 916 Cargo FURIN Yes

11 AP-50 O62530 59,444 Coat AP2M1 Yes

12 AP-47 O62531 151,582 Coat AP1M1 Yes

13 Aux Q9VMY8 38,059 Coat DNAJC6/auxilin Yes

14 Lqf Q9VS85 8993 Coat Epsin1/2/3 Yes

15 CG2747 Q7KSW1 4262 Coat HEATR5B/p200 Yes

16 AP-2σ Q9VDC3 39,042 Coat AP2S1 Yes

17 Lerp B7Z0Q8 12,518 Cargo CIMPR Yes

18 α-Adaptin P91926 69,120 Coat AP2A1/2 Yes

19 Syx6 Q7JY00 2707 Cargo STX6 Yes

20 CG7800-RA Q9VHV3 214,353 Cargo — —

21 Gga Q9W329 13,059 Coat GGA1/2/3 Yes

22 CG8243-RAa A1Z7K6 4122 Coat SMAP2 Yes

23 CG12393a B7Z022 7991 Coat SES1/2 Yes

24 Syx16 Q9VR90 11,908 Cargo STX16 Yes

25 CG1951a Q9VAR0 14,984 Coat SCYL2/CVAK104 Yes

26 AP-1σ Q9VCF4 20,672 Coat AP1S1/2/3 Yes

27 svr P42787 26,406 Cargo CPD Yes

28 Aut1 Q9VVS6 2200 Coat ATG3 —

29 Vps45 Q9VHB5 26,257 Coat VPS45 Yes

The Drosophila S2 cell Predictor (Supplemental Table S3) was searched against clathrin heavy chain (Chc). Predictions are ranked in order of similarity to Chc. Only 
the predictions with the highest level of confidence and a minimum of five data points are shown here (see Supplemental Table S4 for the complete list of predicted 
Drosophila S2 CCV proteins). Relative abundance is indicated in arbitrary units. The last column indicates whether the human homologue of an identified protein is a 
known CCV constituent.
aProtein subcellular localization investigated by immunofluorescence microscopy (Figure 3D).

TABLE 1:  The Drosophila S2 CCV proteome: top predictions.
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tial mass spectrometric analysis time, owing to the large number of 
fractions. Here we introduced a comparatively simple method—
fractionation profiling—which requires analysis of only six fractions, 
yet provides very accurate predictions. Furthermore, the method is 
particularly suitable for the analysis of membrane-associated protein 
complexes. The HeLa data cover >3500 protein profiles, approxi-
mately one-third of the HeLa proteome (Nagaraj et al., 2011). The 
Predictor does not rigidly assign complex boundaries. However, we 
identified 6980 pairs of profiles with “very high similarity,” which are 
comparable to predicted binary interactions. We therefore estimate 
that at least several hundred protein complexes are covered by our 
data set. These include large cytosolic particles such as ribosomes 
and proteasomes (megadalton range), but also smaller assemblies, 
such as the CTLH complex (∼600 kDa). Very small cytosolic com-
plexes are probably not pelleted under the conditions used here; 
however, complexes associated with membranes are very well re-
solved, regardless of size. Even small dimers (such as SNX4/SNX30; 
∼100 kDa) are readily identified. Indeed, our analysis includes nu-
merous membrane-interacting complexes that not represented in 
either Havugimana’s (2012) or Kristensen’s (2012) study, such as AP-
4, BLOC-1, CTLH, LAMTOR, and TRAPP. In addition, our method 
predicts groups of integral membrane proteins with similar traffick-
ing pathways, such as ARF6-dependent endocytic cargo proteins, 
and thus goes beyond the analysis of complexes.

The information gleaned from a profiling analysis is threefold. 
First, searching the Predictor against a protein of interest identifies 
candidate functionally associated proteins. The Predictor provides a 
classified output, which allows users to evaluate the relevance of the 
retrieved proteins. The Predictor can hence identify novel com-
plexes or candidate novel subunits of known complexes. Second, 
the Predictor provides estimated relative abundances of the re-
trieved proteins. We demonstrated the validity of this feature by 
correctly predicting the stoichiometry of numerous known com-
plexes (Figure 4 and Supplemental Figure S1). Third, the retrieved 
profiles can be further analyzed by PCA to give insights into the 
structural organization of protein complexes. To test this, we first 
predicted the subcomplex arrangement of the 26S proteasome 
(Supplemental Figure S1A); we then used the method to define the 
composition of the HeLa TRAPPIII complex (Figure 4C) and also to 
map the association of VPRBP with CTLH versus the CRL4A E3 li-
gase (Figure 4H). To our knowledge, there is no published method 
as simple as fractionation profiling that grants similarly detailed in-
sights into protein complex composition and organization.

Conclusion
Here we exploited fractionation profiling as a tool for characterizing 
CCV composition. We also used it to analyze a number of known 
and uncharacterized protein complexes to illustrate the power of 
the approach. These examples represent only a small proportion of 
the information in the profiling data sets. We therefore present the 
complete data as a community resource (the Predictor, Supplemen-
tal Tables S1 and S3). Readers are strongly encouraged to search the 
database against proteins of interest. The Predictor is very easy to 
use; a quick-start guide is included in the file, and a detailed manual 
is provided separately (Supplemental Predictor Manual).

Finally, we propose that fractionation profiling can be adapted 
to other cell biological questions. In principle, any homogeneous 
subcellular structure should be amenable to a profiling analysis, 
provided it is possible to prepare an enriched fraction as the start-
ing point. Good candidate targets include, for example, neuronal 
secretory granules (Bonnemaison et  al., 2013) and the elusive 
“Glut4 storage vesicles” in adipocytes (Leto and Saltiel, 2012). 

Fractionation profiling for the analysis of vesicle 
composition
Fractionation profiling is based on identifying proteins with similar 
subcellular distributions. This concept has been exploited in several 
published methods, including localization of organelle proteins by 
isotope tagging (LOPIT; Dunkley et al., 2004) and protein correlation 
profiling PCP; Foster et al., 2006). Both approaches rely on density 
gradient centrifugation to separate organelles; quantification of 
protein distribution across the gradient is achieved by isotope tag-
ging (LOPIT) or label-free quantification (PCP). Although these 
methods are conceptually powerful, they necessitate large numbers 
of fractions, long measuring times, and complex data analysis. Cru-
cially, neither method was able to resolve transport vesicles, such as 
CCVs. Fractionation profiling pairs the superior accuracy of SILAC 
quantification with the robustness and simplicity of differential cen-
trifugation. It requires minimal amounts of starting material and in-
strument time and is computationally straightforward. We show that 
fractionation profiling can determine the composition of CCVs from 
HeLa cells with excellent sensitivity and specificity, comparable to 
our perturbation-based multivariate profiling approach (Borner 
et  al., 2012). Unlike our previous method, however, fractionation 
profiling does not involve the use of small interfering RNA knock-
down, which is a distinct advantage, since not all cell types are ame-
nable to knockdown. To demonstrate that the approach is not lim-
ited to HeLa cells, we applied it to evolutionarily distant Drosophila 
S2 cells. Without requiring any cell-specific optimization, fraction-
ation profiling provided the first comprehensive insect CCV pro-
teome. Furthermore, our data also allow the first specific interspe-
cies comparison of CCV content and thus identify evolutionarily 
conserved core machinery and cargo (Table 1).

Our findings suggest that the approach will be applicable to 
most cell types amenable to SILAC labeling and thus provide a 
long-awaited universal tool for characterizing the composition of 
CCVs. Additional strengths of the method are its relative simplicity 
and rapid yield of results. In our experience, even a single fraction 
triplet already generates a very accurate draft CCV proteome 
(illustrated in Figure 3C). An exciting prospect is the application of 
the method to unicellular eukaryotes. For example, trypanosome 
pathogenicity depends on clathrin-mediated endocytosis (Allen 
et al., 2003), yet the trypanosome CCV composition remains largely 
unknown. Fractionation profiling could quickly provide answers 
and thus identify new drug targets for treatment of sleeping sick-
ness. We expect that fractionation profiling has the potential to 
become a standard tool for the proteomic analysis of CCVs.

Fractionation profiling as a tool for mapping protein 
complexes
A second major result of this work is that fractionation profiling al-
lows the characterization of protein complexes. Several previous 
studies used comparative approaches to investigate protein interac-
tion networks. For example, Havugimana et al. (2012) analyzed cell 
lysates by multiple chromatographic techniques. The distribution of 
3000 proteins was quantified by mass spectrometry across >1000 
subfractions, and 622 putative complexes were identified (from 
∼14,000 binary interactions). Similarly, Kristensen et al. (2012) used 
size-exclusion chromatography to separate cell lysates into 50–100 
fractions and applied protein correlation profiling (Foster et  al., 
2006) to identify 291 complexes from 3400 quantified proteins (and 
∼7000 binary interactions). Although both studies yielded impres-
sive catalogues, they are largely restricted to cytosolic protein com-
plexes, as the used separation techniques cannot easily cope with 
membrane fractions. Furthermore, both methods require substan-
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FIGURE 4:  Fractionation profiling predicts the composition and stoichiometry of protein complexes. (A, B) The 
chaperonin T-complex (eight subunits). (A) Fractionation profiles, showing the protein abundance in each fraction 
relative to the reference (log2 scale). Profiles of individual T-complex subunits are nearly superimposable. (B) Estimated 
stoichiometry, normalized to the median of all subunits. Fractionation profiling correctly predicts the equimolar 
stoichiometry of the complex. (C, D) The TRAPP complex (14 subunits). Yeast TRAPP exists in three configurations: 
the TRAPPI core (1, 2, 2L, 3– 5, 6A, and 6B) can associate either with subunits 9 and 10 to form TRAPPII or with subunit 
8 to form TRAPPIII. (C) PCA of subunit profiles reveals that in HeLa cells, the majority of TRAPP is assembled into 
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centrifugation at 4000 × g for 3 min. Supernatants were then centri-
fuged at 209,000 × g (55,000 rpm, MLA-80 rotor; Beckman Coulter, 
High Wycombe, UK) for 40 min to pellet membranes. Pellets were 
resuspended in 400 μl of MES buffer with 60 strokes in a 1-ml 
Wheaton homogenizer (tight pestle, clearance ∼25–75 μm). An 
equal volume of F/S buffer (12.5% [wt/vol] Ficoll [PM400; GE Life 
Sciences, Little Chalfont, UK] and 12.5% [wt/vol] sucrose in MES buf-
fer) was added and carefully mixed, and samples were centrifuged 
at 21,700 × g (20,000 rpm, TLA-110; Beckman Coulter) for 34 min. 
Supernatants were diluted 1:5 in MES buffer. Up to this stage, the 
preparation procedure is identical for the (SILAC heavy) reference 
and (SILAC light) subfraction samples (and essentially as described 
in Borner et al., 2012).

For the preparation of the “reference” fraction, the diluted su-1.	
pernatant was centrifuged at 195,500 × g (60,000 rpm, TLA-110) 
for 40 min to yield the “reference pellet.”

For the generation of “subfractions,” the diluted supernatant 2.	
was first centrifuged at 66,500 × g (35,000 rpm, TLA-110) for 
20 min to yield the 35K pellet. The supernatant was transferred 
to a fresh centrifuge tube, mixed by pipetting, and centrifuged 
at 110,000 × g (45,000 rpm, TLA-110) for 20 min to yield the 45K 
pellet. The supernatant was again transferred to a fresh tube and 
centrifuged at 195,500 × g (60,000 rpm, TLA-110) for 40 min to 
obtain the final 60K pellet.

The spin parameters of the reference pellet correspond to those 
of the 60K subfraction pellet. Hence the contents of the reference 
pellet correspond to those of all three subfraction pellets combined 
(35K + 45K + 60K).

The recommended procedure for sample resuspension is to re-
suspend all pellets in 1× sample buffer (made from NuPAGE 4× LDS 
sample buffer [Life Technologies, Paisley, UK] diluted with water). 
Each subfraction pellet should be redissolved in 20 μl and the refer-
ence pellet in 60 μl. This method is particularly suitable for small sam-
ple yields (e.g., if limited starting material is available). Alternatively, 
samples may be dissolved in a suitable volume of SDS buffer (2.5% 
[wt/vol] SDS, 50 mM Tris-HCl, pH 8) for estimation of protein yields 
before gel electrophoresis.

Note that for HeLa cells, the two repeats of the fractionation profil-
ing were deliberately performed with slightly different spin parame-
ters (35K, 45K, and 60K, first triplet; 30K, 40K, and 60K, second trip-
let). The profiles obtained with the different sets of spins are correlated 
but appear somewhat shifted on the y-axis in Figure 1F. The intention 
behind this “imperfect” repeat was to enhance the resolution of sub-
cellular structures by teasing out more differences in fractionation 
behavior. Inspection of the PCA loadings plot corresponding to 
Figure 2, however, indicates that both sets of spins make very similar 
contributions to the analysis. The gain in resolution is thus likely to be 
relatively small. For the S2 cells, we used identical spin conditions for 
both repeats. In our experience, either method performs well.

Conversely, the approach may be focused primarily on protein 
complexes, for example, by subfractionating nuclear or mitochon-
drial extracts. The transfer to other biological targets will probably 
require some optimization of the fractionation conditions. Never-
theless, the experimental design and subsequent data analysis can 
be modeled on the approach presented here, as discussed further 
in a dedicated section at the end of Materials and Methods. Frac-
tionation profiling is an extremely versatile yet conceptually straight-
forward tool for mapping functional protein interactions, with many 
potential future applications beyond those demonstrated here.

MATERIALS AND METHODS
Fractionation profiling
The following protocol describes the procedure as used in this study 
for the analysis of CCVs. The final section discusses conceptual as-
pects of the approach, limitations, and caveats, as well as consider-
ations for future applications.

Overview
A fractionation profiling experiment consists of two parallel sample 
preparations: a “reference” sample (e.g., from SILAC heavy-labeled 
cells) and a set of “subfractions” (e.g., prepared from SILAC light-
labeled cells). Labels are usually swapped for a repeat experiment. 
The first part of the protocol follows the method for preparing a 
CCV-enriched fraction described in Borner et al. (2012).

Preparation of cell lysates
All operations were performed at 4°C. Adherent HeLaM cells 
(recommended 1000 cm2 confluent/lysate) were washed once in 
ice-cold phosphate-buffered saline (PBS) and once in ice-cold MES 
buffer (0.1 M 2-(N-morpholino)ethanesulfonic acid [MES], pH 6.5 
[adjusted with NaOH], 0.2 mM ethylene glycol tetraacetic acid, and 
0.5 mM MgCl2). Cells were drained carefully and scraped into 10 ml 
of ice-cold MES buffer. Cells were lysed in a 30-ml Potter-Elvehjem 
homogenizer (clearance ∼100–150 μm) with 20 strokes of a motor-
ized pestle.

Suspension Drosophila S2 cells (recommended ∼0.5–1 ml of pel-
leted cells/lysate) were washed once in ice-cold PBS and once in 
ice-cold MES buffer. Cells were resuspended in 6 ml of ice-cold MES 
buffer and first lysed in a Potter-Elvehjem homogenizer as described. 
To improve the lysis of the relatively small S2 cells, primary lysates 
were additionally passed through a 21-gauge (0.8-mm) needle eight 
times.

Subcellular fractionation
All operations were performed at 4°C. Lysates were centrifuged at 
4000 × g for 32 min to pellet unbroken cells and large debris. Super-
natants were treated with 50 μg/ml ribonuclease A (≥2.5 Kunitz 
units/ml) for 1 h, and partially digested ribosomes were pelleted by 

TRAPPIII. Subunits 11–13 are also part of this complex. Core subunits are shown in blue, the TRAPPIII subunit 8 is 
shown in red, the TRAPPII subunits 9 and 10 are shown in green, and subunits 11–13 are shown in gray. (D) Estimated 
stoichiometry of mammalian TRAPP. (E–H) The CTLH complex (six known plus three novel subunits). Yeast homologues 
of mammalian proteins are indicated (GID; Menssen et al., 2012). (E) Subunit profiles. Three candidate novel subunits—
C17orf39, WDR26, and VPRBP—were identified. (F) Estimated stoichiometry of the mammalian CTLH complex predicts 
a core of ARMC8, C20orf11, MAEA, RanBP9, and WDR26, with Muskelin, C17orf39, RMND5a, and VPRBP possibly less 
stably associated. (G) VPRBP has been proposed to function as a substrate adaptor in the E3 ligase CRL4A (Romani and 
Cohen, 2012). The CRL4A ligase consist of three proteins (CUL4A, DDB1, RBX1), which are also present in the profiling 
set. Consensus (median) profiles of CRL4A and CTLH were plotted. The profile of VPRBP matches that of CTLH. (H) PCA 
of subunit profiles confirms that VPRBP (red) profiles closely with CTLH subunits (blue) and not with CRL4A subunits 
(black). Error bars of abundance scores correspond to MADs; n = 6 replicate measurements.
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FIGURE 5:  Fractionation profiling predicts novel protein complexes and trafficking pathways in HeLa cells. (A–F) As a 
primer for a systematic analysis of novel protein–protein associations, the Predictor database was searched for pairs of 
near-identical profiles. We identified 989 such pairs , derived from 266 proteins in 58 groups (Supplemental Table S5). 
Clustering by PCA (Supplemental Figure S2) revealed many known stable protein complexes but also novel associations 
among uncharacterized proteins. A few examples are shown here. (A, B) The SNX4/SNX30 dimer. (A) Fractionation 
profiles, showing the protein abundance in each fraction relative to the reference (log2 scale). (B) Estimated 
stoichiometry. (C, D) The C17orf75/WDR11/FAM91A trimer. A previous report suggested the association of C17orf75 
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taminants. Abundance ratios were then log2 transformed. For HeLa 
cells, we identified 4523 proteins (minimum, one ratio in the six 
samples); 3549 had at least one complete fractionation triplet (i.e., a 
usable profile), and 2827 had complete profiles (six ratios). For S2 
cells, the corresponding numbers were 3163 (minimum, one ratio), 
2483 (minimum, one data triplet), and 1799 (complete profile). All 
identifications are presented in Supplemental Tables S1 (HeLa) and 
S3 (Drosophila S2).

PCA was performed as described in Borner et al. (2012), using 
SIMCA-P+ 11.5 (Umetrics, Crewe, UK). Scatter plots in Figures 2–5 
and Supplemental Figures S1 and S2 were also generated in SIMCA-
P+ and further annotated in PowerPoint (Microsoft, Reading, UK). 
Line and column plots shown in Figures 1, 4, and 5 and Supplemen-
tal Figure S1 were prepared within Prism 6 (GraphPad Software, La 
Jolla, CA) and further annotated in PowerPoint (Microsoft).

Construction of the Predictor database
The Predictor provides a very simple interface that allows users to 
query the profiling data (Supplemental Tables S1 and S3). Its pur-
pose is to predict groups of functionally associated proteins on the 
basis of common subcellular fractionation behavior. Using the Pre-
dictor requires only the most basic familiarity with Excel (Microsoft). 
The Predictor contains all proteomic data presented in this study in 
a compact yet highly accessible format. A quick-start guide is in-
cluded in the same file. In addition, a detailed manual, including 
guidance to the interpretation of results, is provided as a separate 
document (Supplemental Predictor Manual).

Overview
Abundance profiles were tabulated in the raw data tables (Supple-
mental Tables S1 and S3; see Complete Data tab). Using standard 
Excel spreadsheet functions, an interactive interface (the Predictor) 
was created, which allows users to input one or several query genes 
and specify various search parameters. The Predictor then retrieves 
the corresponding profiles from the raw data table and calculates a 
consensus query profile. This query profile is automatically com-
pared with all other profiles in the raw data table. Profiles are then 
sorted by similarity to the query profile, as shown in the results table. 
In addition, the Predictor provides various graphical summaries for 
both query and output profiles, including estimates of relative pro-
tein abundance. The details of the calculations are provided in what 
follows.

Distance calculations and ranking
A complete profile consists of six (log-transformed) abundance ra-
tios, R1–R6, which indicate the protein’s distribution across different 
subcellular fractions. Proteins with similar profiles have similar sub-
cellular distributions. To evaluate profile similarities, users can 
choose between two alternative measures of profile distance. For a 
given query profile, the distance to any other Protein X in the data-
base is calculated as follows:

Sample preparation for mass spectrometric analysis
Two alternative protocols were used for sample mixing:

Equal-proportions mixing (recommended): Each subfraction 1.	
sample (35K, 45K, and 60K, all SILAC light labeled if the refer-
ence is SILAC heavy) was combined with one-third of the refer-
ence sample. Using the recommended resuspension volumes, 
each of the three samples should be ∼40 μl. Two microliters of 
1 M dithiothreitol (DTT) was added to each sample (50 mM final), 
and samples were incubated at 90°C for 3 min.

Equal-protein mixing: An alternative protocol was to estimate the 2.	
protein concentration in each fraction by bicinchoninic acid assay 
(Thermo Fisher Scientific, Cramlington, UK) and mix equal protein 
quantities of reference and subfractions. This method optimizes 
protein load, but a proportion of the sample is lost for the protein 
assay. It is hence recommended only for preparations with large 
yields. DTT was added from a 1 M stock to a final concentration 
of 50 mM, and samples were incubated at 90°C for 3 min.

The two methods result in slightly different ratios; it is hence rec-
ommended to use the same method between repeat fractionation 
profiling experiments to ensure reproducibility of profiles.

Mass spectrometry analysis and raw data processing
Samples were separated by one-dimensional gel electrophoresis, 
using precast gradient gels (NuPAGE; Invitrogen). Gels were stained 
with colloidal Coomassie, and each lane was cut into 10 pieces. A 
typical fractionation profiling experiment thus comprised 30 gel 
slices, which were subjected to tryptic digest (Shevchenko et  al., 
2006). Peptide extracts were cleaned up and stored at 4°C on Stag-
eTips (Rappsilber et al., 2007). Samples were eluted from StageTips, 
separated on a 20-cm reverse-phase column, and analyzed on a Q 
Exactive mass spectrometer (Thermo Fisher Scientific), essentially as 
described (Nagaraj et al., 2012).

Each fractionation profiling experiment included two triplets of 
samples; each sample consisted of 10 gel slices/mass spectrom-
etry runs. All (60) raw files were jointly processed with MaxQuant, 
version 1.3.0.5 (Cox and Mann, 2008), and its built-in Andromeda 
search engine (Cox et al., 2011), using UniProt (www.uniprot.org) 
reference databases for human or Drosophila proteins. Cam (C) 
was set as a fixed modification and oxidized (M) and acetyl 
(Protein N-terminus) as variable modifications. Both peptide and 
protein false discovery rates were set to 0.01; the minimum pep-
tide length was seven amino acids. Calculations of ratios were 
performed on razor and unique peptides with the requantify and 
match-between runs features enabled. The minimum ratio count 
was two.

Data analysis
The protein identification lists from MaxQuant (Cox and Mann, 
2008) were filtered by removing matches to the reverse database, 
proteins only identified with modified peptides, and common con-

and WDR11; profiling clearly indicates a stable complex that includes FAM91A. (C) Profiles. (D) Estimated stoichiometry. 
(E, F) The LOH12CR1/C10orf32 dimer. (E) Profiles. (F) Estimated stoichiometry. (G, H) Cargo of the ARF6-dependent 
endocytic pathway. CD44, CD98 (SLC3A2 heavy chain, SLC7A5 light chain), ICAM1, and BSG (CD147) are known cargo 
proteins of a clathrin-independent endocytic pathway. (G) Profiles of these proteins are almost identical, confirming their 
similar trafficking itineraries. A further protein, SLC16A1 (monocarboxylate transporter 1), is identified as part of the 
same cluster. (H) PCA of individual profiles shows that the ARF6-cargo cluster (red) is distinct from flotillins (blue) and 
caveolins (green). SLC16A1 (black) is part of the ARF6 cluster. Error bars of abundance scores correspond to MADs 
(n = 6 replicate measurements).
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(2827 × 2827 profiles). The corresponding 3,994,551 distances were 
sorted from highest to lowest. These calculations were performed 
in the Perseus module of the MaxQuant software suite (www 
.perseus-framework.org) using a custom plug-in, which is available 
on request. In this ranked list of distances, we located the distances 
corresponding to the star rankings determined as described and 
converted them into proportions (e.g., only the top 989 distances 
were smaller than the three-star cut-off, corresponding to the top 
0.0247%). The analogous distance matrix was then calculated for 
the S2 data set (1799 × 1799 profiles = 1,617,301 distances), and 
distances were again sorted from lowest to highest. The percent-
age cut-offs determined for the HeLa set were then applied to the 
S2 set to locate the corresponding distance cut-offs (e.g., 0.0247% 
[the three-star percentage cut-off in the HeLa set] of 1,617,301 cor-
responds to the top 400 distances; hence the distance of entry 400 
specifies the three-star distance cut-off for the S2 set).

CCV scoring
A particular strength of the Predictor is to identify proteins associ-
ated with CCVs. The indispensable core component of all CCVs is 
clathrin heavy chain (commonly known as CHC, but CLTC in UniProt 
nomenclature). Hence all proteins with profiles similar to CLTC are 
candidate CCV proteins. Although all CCV proteins occupy the 
same subcellular compartment, the profile distances between 
known CCV proteins are still somewhat larger than those encoun-
tered in tight CORUM protein complexes, and a different scoring 
method was devised to account for this. The HeLa CCV proteome is 
well characterized, with 151 predicted constituents (Borner et al., 
2012; Hirst et al., 2012). Of these, 140 were represented with com-
plete profiles in our analysis. For each CCV protein, we calculated 
the profile distance to CHC and sorted distances from lowest to 
highest. We then determined the distance cut-offs that include the 
top 40% of known CCV proteins (three-star similarity), top 60% (two 
stars), top 80% (one star), and top 90% (B, borderline similarity). 
Classifiers are automatically applied to the predictor’s output and 
included in the annotation. For example, the predictor classifies 93 
proteins as two- or three-star CCV proteins, of which 84 (60% of 140) 
are in the reference data set of 140.

Because no suitable reference database of fly CCV proteins was 
available, a simple proxy was used to determine similarity guides. 
We assumed that the S2 data set contains roughly the same propor-
tion of CCV proteins as the HeLa set, scaled down by the lower com-
plexity of the Drosophila genome. Thus the number of HeLa pro-
teins in each star category was multiplied by (1799/2827) to account 
for the smaller number of proteins identified in the S2 set and further 
multiplied by the ratio of estimated genes in Drosophila relative to 
humans (∼14,000/21,000). For example, there are 93 × 1799/2827 × 
14,000/21,000 = 39 proteins classified as two- or three-star CCV 
components in the S2 set of proteins with complete profiles.

In Figure 2, all known CCV proteins predicted with two- or three-
star confidence are annotated as CCV (in red), except clathrin, AP-1, 
and AP-2 subunits, which are shown in black, blue, and green, re-
spectively. In Figure 3C, proteins predicted as CCV proteins with 
two- or three-star confidence are annotated as CCV (red) if their hu-
man homologues are known CCV proteins, except clathrin, AP-1, 
and AP-2 subunits, which are shown in black, blue, and green, 
respectively.

Abundance and stoichiometry estimation
The relative abundance of identified proteins was estimated from the 
mass spectrometric data using the iBAQ method (Schwanhausser 
et al., 2011), as implemented in MaxQuant (Cox and Mann, 2008). 

Average absolute profile distance (“Manhattan distance”): 1.	
Av abs distance = [ABS(R1Query − R1Protein X) + ABS(R2Query − 
R2Protein X) + … ABS(R6Query − R6ProteinX)]/6

Average squared profile distance (the average “squared Euclid-2.	
ean distance”): Av squared dis = [(R1Query − R1Protein X)2 + (R2Query 
− R2Protein X)2 + … (R6Query − R6Protein X)2]/6

Both methods produce distance values ≥0. However, they pro-
duce slightly different hierarchies within the output. The squared-
distance method is more stringent; because all differences are 
squared, large deviations from the query profile are accentuated 
much more than with the absolute-distance calculation. Conversely, 
the squared distance is more likely to produce false negatives, since 
a single inaccurate ratio can “distort” the whole profile similarity.

The predictor also allows to search the database with and for 
“incomplete” profiles, that is, profiles with fewer than six abun-
dance ratios. In such cases, only the differences of available ratios 
are summed and divided by the number of available data points. 
Distances are thus normalized to the number of available data 
points, and these “average” distances are comparable between 
complete and incomplete profiles. To maintain high predictive 
power, however, it is recommended that query and output profiles 
should contain at least one complete fraction triplet (see earlier 
discussion).

Once the predictor has calculated the distance of the query pro-
file to every protein in the database, proteins are ranked according 
to similarity with the query (hierarchical output).

Note that the Predictor’s distance calculations do not involve 
prior PCA. The PCA plots in Figures 2–5 and Supplemental Figures 
S1 and S2 represent graphical illustrations of profile clustering but 
are not required for the Predictor.

Similarity evaluation
In addition to the hierarchical output, the absolute distances to the 
query are also provided, together with a simple “star” system to 
guide the interpretation of the results (e.g., three stars denote pro-
teins whose profile is almost identical to the query; two stars denote 
a useful cut-off for proteins commonly found in a complex, etc.). To 
derive these qualifiers, we scored distances of subunits within well-
established mammalian protein complexes. Guided by the CORUM 
database (Ruepp et  al., 2010), we assembled a calibration set of 
known protein complexes represented in our HeLa fractionation pro-
filing data set. We included only complexes with at least four subunits 
with complete profiles. Our reference set included 21 complexes, 
with 232 proteins in total (Supplemental Table S6). PCA showed that 
the subunits of most calibration complexes cluster tightly. Therefore 
subunits within a calibration cluster have mostly very similar profiles. 
For each of the 21 complexes, we calculated a consensus “center” 
(i.e., median) profile and determined the distance of each subunit to 
the center of its complex. The resulting 232 distances are representa-
tive of typical profile distances encountered in known stable protein 
complexes. Distances were sorted from highest to lowest, and dis-
tance values were identified to include the top 40% (almost identical; 
three stars), 80% (very similar; two stars), 90% (similar; one star), or 
95% (borderline similar, annotated as “B”) of all calibration profiles. 
Cut-offs were determined for both distance scoring methods (see 
earlier description). Similarity filters are automatically applied to the 
Predictor’s output and included in the annotation.

Because the CORUM database (Ruepp et al., 2010) covers only 
mammalian proteins, a proxy was devised for the Drosophila data 
set, using the information derived from the HeLa data set. First, a 
distance matrix of all complete HeLa profiles was generated 
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ture for 30 min, washed with 0.1 M cacodylate buffer, and postfixed 
using 1% osmium tetroxide for 1 h. Pellets were then washed before 
being incubated with 1% tannic acid in 0.05 M cacodylate buffer, pH 
7.2, for 40 min to enhance contrast. Pellets were dehydrated in eth-
anol before being embedded in Araldyte CY212 epoxy resin (Agar 
Scientific, Stansted, UK). Ultrathin sections (70 nm) were cut using a 
diamond knife mounted to a Reichert Ultracut S ultramicrotome 
(Leica Microsystems, Milton Keynes, UK) and picked up onto coated 
electron microscopy grids. The sections were stained with lead cit-
rate and observed in a FEI Tecnai Spirit (Eindhoven, Netherlands) 
transmission electron microscope at an operating voltage of 80 kV.

Fractionation profiling: conceptual aspects, limitations 
of the method, and suggestions for future applications
We expect that fractionation profiling in its present form can be 
used for the characterization of clathrin-coated vesicles from most 
cell types, provided they are amenable to SILAC labeling and me-
chanical lysis. In addition, the approach can be adapted to other 
biological questions. Here we discuss key aspects of the method 
that we consider critical to the success of future applications.

Suitable targets
Fractionation profiling is best suited for the analysis of vesicles of fairly 
uniform size and density, as these produce sharply defined abun-
dance distribution profiles. We expect the method to perform well 
with different types of coated vesicles, synaptic vesicles, and dense-
core vesicles. In addition, our data show that large protein particles, 
such as proteasomes, can also generate highly characteristic profiles. 
Conversely, if a vesicle population is very heterogeneous (e.g., intrin-
sically heterogeneous or rendered variable through fragmentation 
during cell lysis), it is likely to be more evenly distributed across the 
gradient, and such a profile may be less easily discerned from those 
of other heterogeneous vesicles. However, even in those cases, the 
method will generate useful information, albeit in a more limited way. 
Subunits of stable, obligatory protein complexes will always produce 
similar profiles, and these are usually very tightly clustered.

In essence, fractionation profiling is capable of providing insights 
at two cellular levels: whole vesicles and particles, as well as smaller 
assemblies, such as protein complexes and membrane domains. 
The difference is the “range” of the predicted associations. For ho-
mogeneous vesicles such as CCVs, it is possible to predict the com-
plement of the entire structure, as well as to predict protein com-
plexes within the assembly (e.g., the AP-1 and AP-2 complexes are 
readily predicted as individual complexes and as components of 
CCVs). For other proteins with less characteristic profiles, it is possi-
ble to predict immediately close proteins with confidence but not 
the composition of the associated compartment. An example is the 
AP-3 complex, which has a broad distribution in our analysis (Figure 
1D). The different subunits are readily predicted as a tight complex, 
as is the known interaction with the BLOC-1 complex, but there are 
few high-confidence predictions beyond these immediate associa-
tions. This suggests that our vesicle preparation contains endosomal 
membrane patches coated with AP-3 domains but perhaps not 
many free AP-3 vesicles (which would most likely produce a sharper 
profile). Thus, if the aim of a fractionation analysis is to characterize 
a whole organelle, a fairly homogeneous population will be re-
quired. The analysis of tight protein complexes, however, will work 
even with very heterogeneous preparations.

Profile optimization
The most discriminating profiles show strong differences among the 
different subfractions, ideally with a clear peak or depletion in one 

Each fractionation profiling data set consists of six sample pairs 
(SILAC heavy/light). In all cases, half the sample is the invariant “ref-
erence.” Thus for each protein there are up to six reference iBAQs. 
These were normalized to total reference iBAQ for each sample to 
account for differences in mass spectrometer performance between 
runs. The median iBAQ value was then calculated for each protein. 
All median iBAQs were normalized to the iBAQ of clathrin heavy 
chain (one of the most abundant proteins in the preparation). Clath-
rin heavy chain was then arbitrarily assigned an “abundance score” 
of 1,000,000. Hence a protein with an abundance score of 10,000 is 
present with 1% of the copy number of clathrin.

For the stoichiometry estimates in Figures 4 and 5 and Supple-
mental Figure S1, abundance scores were additionally normalized to 
the median abundance score of the core subunits of the complex of 
interest. Figures show the fold differences relative to the median 
score, on a log2 scale, to create equal distances for substoichiometric 
and superstoichiometric deviations. As a robust measure of the 
spread of individual abundance estimations, the median absolute de-
viation from the median (MAD) abundance score was calculated for 
each protein (indicated in Supplemental Tables S1 and S3). Error bars 
in Figures 4 and 5 and Supplemental Figure S1 also show MADs.

Cell culture and SILAC labeling
HeLa cells were maintained and SILAC (Ong et al., 2002) labeled as 
described (Borner et al., 2012). Drosophila S2 cells were grown in 
Schneider’s medium supplemented with 10% (vol/vol) fetal calf se-
rum at 26–28°C in 175-cm2 tissue culture flasks. SILAC labeling was 
performed based on the method described in Bonaldi et al. (2008). 
Schneider’s medium for SILAC labeling (without arginine and lysine) 
was purchased from Dundee Cell Products (Dundee, UK).

Gel electrophoresis, Western blotting, and 
immunofluorescence microscopy
Gels were Coomassie stained and scanned as described (Antrobus 
and Borner, 2011). Western blotting was performed as in Borner 
et al. (2012). Immunofluorescence microscopy was performed as de-
scribed for Dmel2 cells (Hirst et al., 2009). The following antibodies 
were used: dAP1G (Hirst et al., 2009), dCLC (Heerssen et al., 2008), 
and anti-V5 (46-0705; Life Technologies). Images were adjusted for 
brightness and contrast in Photoshop (Adobe Systems Europe, 
Maidenhead, UK) or PowerPoint (Microsoft).

Drosophila constructs and transient gene expression
LqfR-V5, SCYL2-V5, SMAP2-V5, and SES1/2-V5 constructs for ex-
pression in S2 cells were assembled in the constitutive vector 
pAc5.1V5 (Life Technologies). Genes were amplified using RedTaq 
from Drosophila Dmel2 cDNA made in-house from Dmel2 lysates, 
and various restriction sites were added at the 5′ and 3′ ends: SCYL2 
(EcoR1 and Apa1), LqfR (Kpn1 and Apa1), SES1/2 (EcoR1 and Xba1), 
and SMAP2 (EcoR1 and Xba1). All constructs were fully sequenced; 
SMAP2 and SES1/2 were free of all changes, and LqfR and SCYL2 
had one conservative substitution each. Constructs were transfected 
using TransIT-2020 (Mirus Bio, Madison, WI) following the manufac-
turer’s instructions, and cells were fixed 5–7 d posttransfection to 
moderate expression levels. In brief, for each transfection, we com-
bined 1 μl of TransIT and 500 μg of DNA in 50 μl of serum-free me-
dium, added this to 0.6 × 106 cells in serum-free medium, incubated 
for 4 h, and then recovered to full growth medium.

Electron microscopy
Pelleted fractions were fixed with 2% paraformaldehyde/2.5% glu-
taraldehyde in 0.1 M cacodylate buffer, pH 7.2, at room tempera-
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low amount of protein is distributed over more subfractions, it may 
decrease the number of protein identifications and indirectly (via 
reduced sequencing coverage) even the quantification accuracy. 
Finding the optimum number of subfractions hence depends on a 
number of considerations. The more complex the mixture, the more 
fractions are advisable, if the quantity of starting material is not limit-
ing. For CCVs, two biological replicates of three fractions (i.e., six 
data points) yield very solid data; for other organelles or subcellular 
preparations, the number will need to be optimized case by case. 
Based on our experience, we expect that 6–10 data points will be 
sufficient for most applications.

Mass spectrometric analysis
Our experimental setup maximizes the accuracy of the quantitative 
mass spectrometry. Tight profile clustering is hence achieved with a 
relatively small number of subfractions/data points. Key to this strat-
egy is the use of the SILAC method (Ong et al., 2002), which is ex-
tremely accurate for measuring small or medium differences in pro-
tein abundance by mass spectrometry. The approach is based on 
metabolic labeling of cells in culture by supplementing the growth 
medium with different isotopes of the amino acids arginine and 
lysine before subcellular fractionation. All proteins from the “refer-
ence” sample are distinguishable from proteins in the subfractions 
by a mass shift. This allows pooling of reference and subfraction 
samples before enzymatic digestion for mass spectrometric analy-
sis, thus avoiding variability introduced by sample preparation. Fur-
thermore, mass spectrometric analysis of SILAC samples compares 
ion intensities of isotopic variants of the same peptide within the 
same mass spectrometry run. This avoids normalization errors re-
quired for “label-free” quantification, which compares ion intensi-
ties of the same peptide between different mass spectrometry runs. 
Instrument performance differences between runs are therefore less 
problematic with SILAC. A drawback of the method is that the dy-
namic range of quantification is limited by the isotope labeling effi-
ciency. In practice, SILAC is extremely accurate for the determina-
tion of relative differences less than ∼20-fold. In fractionation 
profiling, the differences in protein abundance between subfrac-
tions and the reference fraction are deliberately kept small to be 
within that range. Furthermore, the subfractions and the reference 
have almost the same overall protein composition; they differ mostly 
in the relative abundance of proteins (i.e., the same species of pro-
teins are present but in different proportions). This facilitates the 
identification of proteins across all subfractions, avoiding gaps in the 
data matrix. Finally, the high-performance mass spectrometer (Q 
Exactive) we used here allows the quantification of multiple pep-
tides/SILAC pairs per fraction for each protein, resulting in very ro-
bust quantification.

Caveats and limitations of the approach
Fractionation profiling identifies groups of proteins with similar frac-
tionation behavior and, by inference, similar subcellular distribution 
at steady state. Both false-positive and -negative classifications can 
occur. Similar profiles may arise by chance; structures with similar 
size and density will have similar fractionation properties and thus 
may not be resolved by the method. The resolution is also lower for 
profiles near the baseline (i.e., broad uniform distribution across the 
subfractions), and the Predictor alerts users when queried with such 
a profile.

Conversely, there are several reasons why the predictor may not 
show a previously established interaction. First, the interaction may 
be transient and thus not substantial at steady state. Second, a bind-
ing partner may be mostly engaged in another interaction and thus 

fraction. The CCV profile is a case in point, with a moderate peak in 
fraction 1 and strong depletion from fraction 3. Of importance, the 
depletion from fraction 3 is by far the most characteristic trait of the 
CCV profile and contributes most to setting it apart from other 
profiles.

Spin conditions (speed and duration) will need to be optimized 
for each individual target vesicle (initially by Western blotting for 
marker proteins). The speeds we used here for CCVs may serve as a 
starting point, as most membrane vesicles will pellet in this range. 
Ideally, the different subfractions should have fairly similar total pro-
tein content to simplify downstream processing.

Note that vesicle profiles may differ between cell types. For ex-
ample, the profiles of CCVs from HeLa and S2 are similar but not 
identical. Analysis of several marker proteins associated with the or-
ganelle of interest (e.g., by Western blotting) may help to identify 
such profile shifts and, if required, fine-tune the spin conditions. In 
the case of S2 cells, however, cell-type-specific optimization was not 
required; small shifts do not appear to pose a problem.

Sample purity
Every fractionation profiling experiment begins with a preparation 
enriched in the organelle of interest. How enriched/pure this prepa-
ration needs to be is difficult to predict in general. As a reference, 
we quantified the proportion of CCV proteins in our preparation, 
based on the relative abundance estimates that are part of the Pre-
dictor output. Briefly, we summed the relative abundance scores of 
all CCV proteins and divided this by the summed abundance scores 
of all proteins in the preparation. This gives the proportion of pro-
tein molecules (copy number) associated with CCVs in the prepara-
tion. Next we weighted these numbers by the molecular weights of 
individual proteins, to estimate the proportion of protein mass as-
sociated with CCVs. According to these calculations, the HeLa CCV 
preparation contains 4.6% CCV proteins (proportion of copy num-
ber) and ∼9.6% CCV protein (proportion of total protein mass). The 
main reason for the discrepancy between these numbers is that 
clathrin heavy chain—the predominant CCV protein—has a very 
high molecular weight. The S2 preparation is about half as pure, 
with 2.4% CCV proteins (copy number) and 5.1% CCV protein (total 
mass).

Although we have not investigated the requirements for CCV 
enrichment systematically, it seems likely that higher purity will im-
prove the analysis. First, it will increase the number of identified 
relevant proteins. It will also increase the average number of quanti-
fication events per protein and thus the quantification accuracy. Of 
importance, if a protein is associated with more than one organelle, 
it will only be classified as a CCV protein if its predominant associa-
tion within the preparation is with CCVs, and so a high proportion of 
CCVs in the preparation will enhance the discriminating power (see 
also the final section, Caveats and limitations of the approach). Nev-
ertheless, as our analysis shows, even a preparation that contains 
>95% “contaminating” non-CCV proteins is readily amenable to 
fractionation profiling.

Number of subfractions
The number of analyzed subfractions is another important aspect of 
the experimental design. Here we tried to minimize this number to 
keep the mass spectrometric analysis time as short as possible while 
maintaining high accuracy of prediction for CCVs. Theoretically, a 
larger number of fractions or experimental repeats will improve ac-
curacy, but the trade-off is that more gaps will appear in the data 
matrix, as proteins are less likely to be identified in all subfractions. 
In addition, the yield of the CCV preparation is rather low, and if this 
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profile with this predominating partner. Third, a protein may have 
multiple stable binding partners, resulting in a “mixed” profile.

A related situation arises when a protein is present at multiple 
subcellular localizations. As with multiple binding partners, the out-
come depends highly on the composition of the preparation. For 
example, assume that protein X is equally found in compartments A 
and B. If A and B are both present in similar proportions in the sam-
ple preparation, protein X will have a hybrid profile, which may be 
difficult to interpret or even without predictive value. If compart-
ment A is strongly enriched in the preparation but compartment B is 
not, then the A profile will dominate, and vice versa. A good exam-
ple of this situation is the cation-independent mannose 6-phosphate 
receptor (IGF2R), a cargo protein of CCVs. It is abundant in CCVs 
but also present at the trans-Golgi network and on endosomes, 
fragments of which are present in the vesicle fraction. Because the 
CCVs are strongly enriched in the preparation compared with the 
other membrane compartments, IGF2R has a clear CCV profile. This 
example further highlights how fractionation profiling benefits from 
a sample preparation highly enriched in the organelle of interest.
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