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Immune responses and metabolic 
regulation are tightly coupled in all 

animals, but the underlying mechanis-
tic connections are nowhere completely 
clear. In flies and in humans, prolonged 
or excessive immune activation can drive 
metabolic disruption and cause loss of 
metabolic stores. Conversely, disruptions 
of metabolic homeostasis, such as peri-
ods of malnutrition, can have significant 
impacts on immune function. We have 
recently identified the transcription fac-
tor MEF2 as a critical switch between 
anabolic and immune function in the 
adult Drosophila fat body. A conserved 
phosphorylation determines the affinity 
of MEF2 for the TATA-binding protein, 
effecting a choice between energy stor-
age and immune function. The goal of 
this review is to place this molecular 
event in the broader context of meta-
bolic-immune interaction in Drosophila, 
exploring what is and is not known about 
the ties between these 2 critical physio-
logical functions.

Drosophila Immunity and the 
Humoral Immune Response

Flies have several physiological mech-
anisms that are engaged in response 
to infections. Distinct suites of genes 
respond to infection with viruses, bacte-
ria and fungi, parasites, and parasitoids; 
the activated effector mechanisms include 
cell-autonomous responses to intracellular 
pathogens, oxidative stress and melaniza-
tion responses, cell-mediated responses 
such as phagocytosis and encapsulation, 
and local or systemic secretion of anti-
microbial effectors such as lysozymes and 

antimicrobial peptides.1 Of these path-
ways and mechanisms, the best-studied 
is the humoral immune response to bac-
terial and fungal infection. The humoral 
response is characterized by the tran-
scriptional induction of secreted antimi-
crobial peptides (AMPs) and lysozymes, 
primarily in the fat body. This response 
is rapid (most genes reach their tran-
scriptional peak within 6 h of the initial 
infection event) and very strong (AMPs 
can be induced more than 1000-fold). 
An analogy is often drawn between the 
humoral immune response of the fly and 
the mammalian acute-phase response 
to infection; the acute-phase response 
involves similarly rapid induction of a 
suite of genes encoding secreted proteins 
and a consequent dramatic increase of the 
levels of these proteins in serum. In each 
case, the primary tissue producing these 
secreted proteins is one that, in uninfected 
animals, has key roles in metabolism—for 
mammals, the liver, and for flies, the fat 
body.

Drosophila humoral immunity has 
received significant experimental atten-
tion over the past 2 decades, beginning 
from the groundbreaking observation 
that the Toll and imd signaling pathways 
act in parallel to drive fat body expres-
sion of AMPs in response to detection 
of different classes of microbes.2-4 Sev-
eral recent reviews have covered the cur-
rent state of our knowledge.5,6 To sum-
marize, the Toll and imd pathways are 
activated by distinct types of infection. 
Though the 2 pathways share no core 
components, each pathway culminates in 
activation of at least one NF-κB family 
transcription factor (for Toll, DIF and/or 
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DORSAL; for imd, primarily RELISH). 
Because these factors have similar DNA 
recognition biases, they have overlapping 
repertoires of target genes, though some 
individual targets can be identified that 
are specific to one pathway or the other. 
The Toll and imd pathways have been 
held to be the primary or only signal-
regulated aspects of this response in the 
adult fat body. However, other molecules 
not thought to be involved in the signal 
transduction process are also known to 
be required for normal immune function 
in this tissue. For example, GATA fac-
tors provide critical tissue-specific trans-
activation functions for targets of both 
pathways.7,8

MEF2 Integrates Nutrient  
Signaling with Immunity

Our interest in immune-metabolic 
interactions originated in our previous 
work on the consequences of Mycobac-
terium marinum infection in the fly.9 
We showed that M. marinum infection 
drove a loss of triglyceride and glycogen 
that was associated with systemic dis-
ruption of insulin-pathway signaling 

(observable as a mild increase in free sugar 
combined with progressive reductions in 
AKT activity).10 The AKT-inactivated 
transcription factor FOXO was respon-
sible for some aspects of pathology in this 
model. Similar metabolic effects have 
been observed more recently with other 
persistent pathogenic bacterial infec-
tions,11 while the non-pathogenic intracel-
lular symbiont Wolbachia appears to exert 
an opposing effect,12 suggesting that these 
metabolic effects may be one aspect of the 
difference between pathogens and sym-
bionts. Pathogenic infections in humans 
have broadly similar consequences. 13,14

The fact that foxo mutants still exhib-
ited triglyceride loss and hyperglycemia 
after M. marinum infection suggested 
that impaired AKT function and con-
sequent excessive FOXO activity were 
not the sole drivers of infection-induced 
metabolic dysfunction.10 To find other 
metabolic-immune links, we performed 
a computational screen to identify tran-
scription factor binding sites over- and 
under-represented on genes transcription-
ally regulated by M. marinum infection, 
making use not only of our own expres-
sion data but also of publicly available data 

previously generated in Bruno Lemaitre’s 
laboratory.15-17 This kind of computational 
screen generates many false positives and 
false negatives; rather than trying to sort 
through these predictions computation-
ally, we used our computational analysis 
as the basis for a targeted in vivo RNAi 
screen, testing infection susceptibility of 
fat body RNAi knockdowns for predicted 
regulators of metabolism and immunity. 
The strongest phenotype in this func-
tional screen was given by fat-body Mef2 
knockdowns, which were profoundly 
immunocompromised.

Mef2 was originally identified as a key 
myogenic transcription factor in flies and 
mice.18-20 In mammals, Mef2c regulates 
B-cell and neutrophil proliferation21-23 and 
myeloid cell fates,24 and is phosphorylated 
in response to inflammatory signaling in 
human monocytes.25 However, the pos-
sibility that Mef2-family proteins might 
be important direct activators of innate 
responses had not previously been exam-
ined. Similarly, Mef2-family proteins can 
promote expression of the glucose trans-
porter Glut4 in muscle and adipose tis-
sue,26 but other roles in adipose biology 
had not been explored.

As our computational screen had sug-
gested MEF2 was a direct regulator of ana-
bolic enzymes and AMPs, we went on to 
test the effects of this knockdown on pre-
dicted target genes. We found that nearly 
all tested AMPs required fat body MEF2 
for normal infection-induced expres-
sion, while many enzymes of triglyceride 
and glycogen synthesis required fat body 
MEF2 for expression in uninfected flies. 
These 2 groups of target genes exhibited 
apparent counter-regulation: expression 
of metabolic MEF2 targets was lost in 
animals that were producing AMPs in 
response to infection. (An overall scheme 
of the role of MEF2 is shown in Fig. 1.)

We identified the relevant MEF2 sites 
in AMP genomic neighborhoods with 
reporters in which GFP was placed under 
the control of regulatory regions from 2 
representative AMPs, Metchnikowin and 
Drosocin. Remarkably, in each case we 
found a strong requirement for a MEF2 
site overlapping the TATA box. We 
found that the TATA-Binding Protein 
(TBP) and MEF2 physically interact in 
vivo only upon infection and that the 

Figure 1. Model of signaling regulation of metabolic and immune function in the adult fat body 
in healthy flies (left) and flies experiencing an infection (right). Some aspects are speculative; for 
example, the stoichiometry of different MeF2-containing complexes is unknown.
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TBP-MEF2 complex can bind the Metch-
nikowin TATA box sequence; this bind-
ing is dependent on residues outside the 
TATA-binding core that are predicted to 
be bound by MEF2. We then identified 
perfect matches to the MEF2-TATA box 
on 20/30 identified AMPs and AMP-like 
peptides. Conversely, the metabolic tar-
gets of MEF2 generally lack TATA boxes 
or obvious MEF2 sites in the core pro-
moter. Instead, their predicted high-affin-
ity MEF2 sites are more distant, and often 
appear in introns or 3′ flanking regions. 
It is still an open question whether these 
distant MEF2 sites are directly required 
for expression of these metabolic targets, 
though prior work suggests that many of 
the predicted MEF2 sites on the genes of 
glycogen synthesis are occupied by MEF2 
in the embryo (the genes of triglycer-
ide synthesis are not, in general, highly 
expressed during the embryonic stages 
examined).27,28

We then examined regulation of the 
MEF2-TBP complex. We found that 
MEF2 immunoprecipitated from healthy 
flies shows significant phosphorylation 
at Threonine 20. This phosphorylation 
is significantly reduced by infection. We 
showed that MEF2 T20 can be phosphor-
ylated in vitro by p70 S6 Kinase (S6K), 
and that S6K activation is reduced by 
infection. Finally, we showed that phos-
phomimetic (T20E) MEF2 is unable 
to associate with TBP independent of 
infection and rescues expression of many 
MEF2 metabolic targets in flies with 
Gram-negative bacterial infection, while 
nonphosphorylatable (T20A) MEF2 can 
associate with TBP in uninfected ani-
mals and enhances AMP transcriptional 
induction. Together, these data suggest a 
model in which, in healthy animals, S6K 
phosphorylates fat-body MEF2 on T20 to 
permit expression of enzymes of triglyc-
eride and glycogen synthesis, while upon 
infection, S6K activity is lost, resulting 
in MEF2 T20 dephosphorylation and 
MEF2-TBP complex formation, permit-
ting expression of antimicrobial peptides 
at the cost of anabolic gene expression.

Numerous questions remain. Appar-
ent MEF2-binding TATA boxes are found 
on many genes that are not antimicrobial 
peptides; does this reflect a requirement 
for the MEF2-TBP complex in other 

biological processes? Is S6K the only rel-
evant in vivo T20 kinase? Are AKT and 
S6K shut down by a common mechanism 
during infection? Is T20 actively dephos-
phorylated during infection? Does MEF2 
bind at different sites in infected and 
uninfected fat body? What is the relevance 
of more distal MEF2 sites on antimicro-
bial peptides?

Unanswered Questions in 
Immune-Metabolic Interaction

Other regulators
Importantly, while our analysis indi-

cates that MEF2 dysregulation may be 
the primary event driving metabolic dys-
function due to infections that exclusively 
activate the imd pathway, the Toll pathway 
is able to inhibit expression of most ana-
bolic enzymes by some other mechanism; 
we do not yet know what that mechanism 
is. Possibilities include, but are not lim-
ited to, direct effects of NF-κB activity, 
cytokine effects, or other uncharacterized 
points of crosstalk between immune and 
metabolic regulation.

NF-κB transcription factors as direct 
metabolic regulators

In mammals, it is now clear that NF-κB 
activation can drive metabolic dysfunction 
both directly and indirectly, though the 
relative importance of this effect is unclear 
in most infections in vivo.29 In flies, some 
recent data hint that the Toll pathway, in 
addition to its well-characterized role in 
immune detection, may also regulate met-
abolic function. For example, flies lack-
ing the essential Toll pathway component 
MyD88 survive longer than wild-type ani-
mals when starved; though the underlying 
mechanism is unclear, this suggests a link 
between Toll pathway signaling and meta-
bolic homeostasis.30 This effect may be 
mediated by effects on peripheral insulin 
sensitivity. Importantly, the direct effects 
of Dif and dorsal in metabolism have yet 
to be examined.

Importance of cytokine signaling
In mammals, cytokines mediate much 

of the interplay between metabolism and 
immunity. In flies, their role is less clear. 
Several signals, including upd3, daw, and 
dpp are activated in hemocytes in response 
to wounding or infection.31,32 The upd3 
relative upd2 can regulate metabolism via 

effects on insulin-like peptide secretion,33 
while the dpp relative and partner gbb pro-
motes lipid storage in the larval fat body.34 
It is unclear to what extent the observed 
regulation of these signaling pathways in 
infection impacts metabolic regulation.

Other points of crosstalk
A few published studies have identi-

fied molecules with roles in both meta-
bolic and immune function, though it is 
generally unclear how these physiologi-
cal functions are related. The deubiqui-
tinase CYLD is required in the fat body 
for normal antimicrobial responses and 
to regulate triglyceride storage.35 CYLD-
deficient flies exhibit increased expres-
sion of the imd pathway target Dipteri-
cin in the absence of infection as well as 
elevated total triglyceride levels. CYLD 
itself physically associates with the imd 
pathway component KENNY, suggest-
ing that the effects observed on immunity 
may be direct; it is unknown whether the 
metabolic effects of CYLD mutation are 
imd-pathway dependent. Similarly, the 
transcription factor ATF3 inhibits antimi-
crobial peptide expression and metabolic 
storage in larvae; it is difficult to directly 
compare the function of Atf3 with that of 
Mef2 because of the many differences in 
experimental approach, but the function 
of Atf3 appears broadly opposite to that we 
ascribe to Mef2.36 In this regard, it may be 
relevant that our computational analysis 
identified an association between CREB/
ATF sites and antimicrobial peptides.17

Mechanism of disrupted nutrient 
signaling

We and others have observed that 
activity of the insulin-responsive kinase 
AKT is inhibited by infection.10,37 Though 
Toll pathway activation is able to inhibit 
AKT activity in a cell-autonomous fash-
ion, it has been suggested that this activ-
ity is not shared by the imd pathway.4 
However, we find that infections that 
should activate only the imd pathway also 
strongly reduce AKT activity, at least in 
adult flies (unpublished data). We also 
observe that infection with Gram-nega-
tive or Gram-positive bacteria reduces p70 
S6 kinase activity.17 It is unclear whether 
p70 S6 kinase repression is secondary to 
AKT inhibition, and it is unclear to what 
extent the documented Toll pathway 
effect on AKT activation drives metabolic 
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dysfunction secondary to persistent infec-
tion in vivo. In this context, the observa-
tion that many infections reduce food 
intake in flies as in other animals, and that 
this has clear functional consequences for 
the immune response, is intriguing.38,39

Summary

Infection-induced metabolic disrup-
tion leading to cachexia is present in 
nearly all animals. Our work shows that 
MEF2 is a key decision point mediat-
ing this event: fat body MEF2 must be 
switched between metabolic and immune 
functions and is fundamentally required 
for both processes. However, our knowl-
edge of the mechanistic links between fat 
body metabolic and immune function—
and, in a larger sense, of the ways in which 
immune activity in general can disrupt 
normal physiological homeostasis—are 
far from complete.
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