
rspa.royalsocietypublishing.org

Research
Cite this article: Bigoni D, Dal Corso F,
Misseroni D, Bosi F. 2014 Torsional locomotion.
Proc. R. Soc. A 470: 20140599.
http://dx.doi.org/10.1098/rspa.2014.0599

Received: 5 August 2014
Accepted: 26 August 2014

Subject Areas:
mechanics

Keywords:
smooth contact, configurational force,
material force, Eshelbian mechanics, motility

Author for correspondence:
D. Bigoni
e-mail: bigoni@unitn.it

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rspa.2014.0599 or
via http://rspa.royalsocietypublishing.org.

Torsional locomotion
D. Bigoni, F. Dal Corso, D. Misseroni and F. Bosi

DICAM, University of Trento, via Mesiano 77, 38123 Trento, Italy

One edge of an elastic rod is inserted into a friction-
less and fitting socket head, whereas the other
edge is subjected to a torque, generating a uniform
twisting moment. It is theoretically shown and
experimentally proved that, although perfectly
smooth, the constraint realizes an expulsive axial
force on the elastic rod, which amount is independent
of the shape of the socket head. The axial force
explains why screwdrivers at high torque have
the tendency to disengage from screw heads and
demonstrates torsional locomotion along a perfectly
smooth channel. This new type of locomotion finds
direct evidence in the realization of a ‘torsional gun’,
capable of transforming torque into propulsive force.

1. Introduction
Motion, based on self-propulsion or locomotion, is a
research topic currently attracting strong attention in
mechanics, robotics and biology. Since pioneering studies
by Gray on serpentine propulsion [1–3], elastic bending
of a rod has been shown to produce an axial tractive force,
whereas torsion has never been linked to locomotion.
In mechanics, torsion of elastic rods is an old, but still
ongoing and important research topic [4–11], which is
linked in this article to locomotion through the following
model problem.

A rectilinear inextensible elastic rod is subjected to
an applied torque at one end, whereas the other edge
is inserted into a perfectly smooth and fitting female
constraint, able to react to the applied moment (figure 1a).
For instance, the elastic rod can be realized as a blade of
thin rectangular cross section inserted in a flathead screw,
or as a cylindrical rod of hexagonal cross section inserted
in a hex socket. In these conditions, if l is the length of the
rod between the application point of the torque M and
the end of the female constraint, D the torsional rigidity
(product of the elastic shear modulus G and the torsion
constant Jt) of the rod, the total potential energy of the
system at equilibrium is

V(l) = −M2l
2D

. (1.1)
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ẑ1

z = z*

t1(z*)

t
2 (z*)

t1(z*)

p1(z*)
q1(z*)

z* 0
z = 0l

lin

l
–

t1(z*)

t 3
(z*)

Figure 1. (a) Structural scheme of the elastic system employed to disclose the Eshelby-like propulsive force related to torsion;
the cross section was sketched triangular, but can have any shape capable of resisting torsion. (b) Perturbative approach
to analyse the Eshelby-like propulsive force P induced by the application of the torque M: the rod is imperfectly clamped
to the sliding sleeve, in the sense that there is a misfit gap and the contact is idealized as with circular rollers. (c) Front
view of the elastic rod, where the misfit gap is visible between cross section and torsional constraint. (e) The imperfect
fitting of the rod/sliding sleeve system yields to contact over a certain line, so that the cross section ‘grasps’ the rollers along
this line (sketched red in the details c and d), where the reaction qi(z), orthogonal to the profile, is acting. (Online version
in colour.)

Would the length l of the rod be fixed, nothing special follows, but, because this length is
a free parameter, an ‘Eshelby-like’ or ‘configurational’ force1 P is obtained as negative of the
derivative of the potential energy with respect to the configurational parameter, namely the
length l

P = −dV(l)
dl

= M2

2D
, (1.2)

parallel to the axis of the rod and expelling the rod from the constraint, if not balanced. This
force, nonlinear in M, was never previously noted. It is, at a first glance, unexpected because
of the smoothness of the female constraint, and simply explains why a screwdriver tends to
disengage from a screw head. Even more interestingly, this axial force (1.2) can be understood
as a propulsive force opening new possibilities for locomotion, while previously Lavrentiev &
Lavrentiev [14] and Kuznetsov et al. [15] related locomotion of snakes and fish to the possibility
of a system of releasing elastic flexural energy. The analytical expression, equation (1.2), for the
propulsive force P is rederived and confirmed in §2 through two different methodologies, namely
the variational and the perturbative approaches, whereas, in §3, the experimental evidence of this
force is provided through its measure for different settings.

Torsional locomotion is finally proved in §4 through realization of a prototype, which
generates a propulsive force from a release of torsional energy.

2. The existence of the torsionally induced axial force
The existence of the propulsive force P, equation (1.2), can be proved with a variational argument
and recurring to a perturbation technique.

1In the context of the virtual work principle, the Eshelby force is the generalized force associated with the axial kinematical
(Lagrangean) variable, P − S in the following. The nomenclature ‘Eshelby-like’ force, used here to denote the propulsive
force P, has been introduced by Bigoni et al. [12,13] for a different system subjected to bending. Results presented in this
article confirm and extend their results to structures undergoing torsional deformation.
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(a) Variational approach
The total potential energy V of a rod, which can slide into a frictionless sleeve, subjected on the
left end to an axial dead load S and on the right end to a torque M is (figure 1b)

V(θ (z), lin) = D
∫ l̄

lin

[θ ′(z)]2

2
dz − Mθ (l̄) − Slin, (2.1)

where z is the coordinate along the rod’s axis, θ (z) is the cross-section rotation in its plane, l̄ is
the total length of the rod and lin = l̄ − l defines its portion lying inside the constraint, so that the
kinematical boundary condition θ (lin) = 0 and the statical boundary condition θ ′(l̄) = M/D follow.

Considering the rotation field θ (z) and the length lin as the sum of the equilibrium
configuration {θeq(z); leq} and the respective variations {εθvar(z); εlvar} through a small parameter
ε, the boundary conditions define as compatibility equations θvar(leq) = −θ ′

eq(leq)lvar = 0 and
θ ′

var(leq) = −θ ′′
eq(leq)lvar/2, restricting the variations in the rotation field and in the length.

Equilibrium can be obtained by imposing the stationarity of the functional V to any small
variation in the rotation field θvar(z) and in the length lvar. The first variation δεV can be
obtained as

δεV = −
∫ l̄

leq

Dθ ′′
eq(z)θvar(z) dz +

[
D

θ ′
eq(leq)2

2
− S

]
lvar, (2.2)

so that the equilibrium equations are

θ ′′
eq(z) = 0 z ∈ [leq, l̄]

and D
θ ′

eq(leq)2

2
− S = 0,

⎫⎪⎬
⎪⎭ (2.3)

the latter providing the axial equilibrium and showing the Eshelby-like or configurational force
P, equation (1.2), once the former is solved taking into account the statical boundary condition
θ ′(l̄) = M/D.

(b) Perturbative approach
The Eshelby-like force (1.2) can be obtained by introducing the assumption that the female
constraint, though perfectly frictionless, has some geometrical imperfection. In particular, (i) there
is a gap between the rod’s cross section and the female, and (ii) the profile of the female is not
sharply cut, but has a curvature (sketched for the sake of simplicity as circular in figure 1b,e).
This imperfection will be shown to lead to the configurational force P = M2/2D (independently
of the misfit gap and of the female’s profile) and therefore to remain unchanged in the limit when
the imperfection tends to zero (differently from the propulsive forces generated by bending [13]).
This approach was introduced by Balabukh et al. [16] for a system subjected to bending, and is
extended now to torsion where its results are complicated by the three-dimensional nature of
the problem.

The elastic rod (with a polygonal cross section) of z-axis is assumed to be constrained by N
(equal to 3 in figure 1) smooth cylindrical rigid profiles having a plane normal to their axes
containing the z-axis. The shape of the cross-section boundary of each rigid profile (assumed
circular for the sake of simplicity in figure 1b,c,d) is described by gi = hi(z), with i = 1, . . . , N. The
contact points may vary along z, so that the contact points are defined by the set C(z). Considering
perfectly frictionless contact, at each contact point, a reaction orthogonal to the profile is acting
(figure 1c,d,e), expressed by the line force qi(z), with i ∈ C(z), with transversal component ti(z) and
axial component pi(z) given by

pi(z) = ti(z)h′
i(z), (2.4)

where a prime denotes a derivative with respect to z. The cross section of the elastic rod (triangular
in figure 1), considered rigid in its plane, is subjected to an internal twisting moment m(z) varying
along the elastic rod in the zone of contact and in equilibrium in its plane with the contact
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forces ti(z), so that the principle of virtual work written for an incremental torsion angle dθ and
corresponding incremental displacements dgi = h′

i(z)dz can be written as

∑
i∈C(z)

ti(z)dgi = m′(z)dθ , (2.5)

which, employing the constitutive equation dθ = m(z)/Ddz and the definition (2.4), becomes

∑
i∈C(z)

pi(z) = (m2(z))′

2D
. (2.6)

Therefore, a propulsive force P is generated that can be obtained as

P =
∫ ẑ

0

∑
i∈C(z)

pi(z)dz, (2.7)

where ẑ is the point at which complete detachment from the rigid profiles occurs (ẑ = max
i

{ẑi}).
A substitution of equation (2.6) into equation (2.7) and subsequent integration yields formula
(1.2) for the propulsive force P, because m(0) = 0, and m(ẑ) = M by equilibrium. Note that the
thrust P is independent of the shape of the female’s profile and of the amount of the initial gap,
present between the rod and the smooth profiles, meaning that the amount of propulsive force,
equation (1.2), is not affected by imperfections of the female constraints.

3. Experimental proof of the torsionally induced axial force
The system sketched in figure 1b has been realized to provide a direct experimental measure
of the axial thrust P, equation (1.2). In particular, the torsional apparatus (figure 2a) has been
designed and manufactured at the Instabilities Lab (http://ssmg.unitn.it/) of the University of
Trento. The torque M is provided through a pulley (180 mm diameter) loaded at a constant rate
with a simple hydraulic device in which water is poured into a container at 10 gr s−1 (the applied
load is measured with a miniaturized cell from Leane, type XFTC301, R.C. 500 N). The elastic rod
under twist is constrained against rotation by employing roller bearings from Misumi Europe
(press-fit straight type, 20 mm diameter and 25 mm length), modified to reduce friction. Where
the torque is applied, the elastic rod has been left free to slide axially through a double system,
consisting of a linear bushing (LHGS 16-30 from Misumi Europe) mounted over a linear bearing
(type easy rail SN22-80-500-610, from Rollon), so that longitudinal friction has been practically
eliminated.2

Experimental results, presented in figure 2 for different cross section, length, elastic modulus
and constraint condition of the elastic rod subjected to torsion, fully confirm the theoretical
predictions. In particular, results obtained with rods of different lengths l and different misfit
gaps � between the rod’s cross section and the female constraint (c) show unequivocally
the indifference of the Eshelby-like force from these parameters. Moreover, tests have been
conducted with different elastic moduli for the rod employing high-density polyethylene (HDPE)
and polycarbonate (PC) and different (thin rectangular, square, triangular and trapezoidal,
corresponding to D = {31.29; 36.37; 156.97; 638.86} Nm2, respectively) cross sections (b). In all
cases, the theoretical predictions have been found to be extremely close to experimental
results (see the movie available as the electronic supplementary material for a sample of
the test).

2The Eshelby-like force has been measured using a Gefran OC-K2D-C3 (R.C. 50 N) load cell and all data have been acquired
with a NI CompactDAQ system, interfaced with LABVIEW v. 8.5.1 (National Instruments). The torsional device has been
mounted on an optical table (from TMC, equipped with four Gimbal piston air isolators) to prevent spurious vibrations,
which have been checked to remain negligible employing two IEPE accelerometers (PCB Piezotronics Inc., model 333B50).

http://ssmg.unitn.it/
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Figure 2. (a) The torsional apparatusworking at imposed twistingmomentM, with a detail of the realization of the frictionless
sleeve to constrain a rod with triangular cross section. Torsionally induced axial thrust Smeasured as a function of the applied
torque M and compared with theoretical predictions equation (1.2) for: (b) elastic rods differing in cross section and material
(rectangular and square in PC, triangular and trapezoidal in HDPE) and (c) elastic rods in PC with rectangular cross section
having different lengths (l = {90; 180}mm) and a null and a 3 mmmisfit gap�. (Online version in colour.)

4. Torsional locomotion and torsional guns
Gray [1–3] has been the first to point out that a release of flexural elastic energy of a rod free
of sliding in a frictionless channel can produce a locomotion force and Gray employed this
force to explain fish and snake movement, so that a snake can propel itself producing bending
by the backbone and its muscles. Within the terminology introduced in this article, the axial
thrust produced during flexural deformation is the Eshelby-like force related to the release of
elastic energy associated with curvature changes [17].3 It is therefore obvious to conclude that
the configurational force P, equation (1.2), can be interpreted as a propulsive force capable of
producing longitudinal motion through the application of a torque M.

To definitely prove that a torsional deformation can generate a longitudinal propulsion, a
proof-of-concept device has been developed as shown in figure 3a,b. In particular, an elastic strip
(19.5 mm wide and made in PC, weight 0.62 N) has been used, realized with two pieces with
different rectangular cross section (one is 1.8 mm and the other 5.3 mm thick), so that one half
of the strip, called ‘soft’ in the following, has D1 = 3.02 Nm2, whereas the other, called ‘stiff’, has
D2 = 67.36 Nm2. The elastic strip is constrained with two pairs of roller bearings (at a distance
l̃ = 535 mm) leaving the possibility of axial motion, but allowing the application of a torque M
or a relative rotation Θ . Initially, the elastic strip is inserted within the rollers, so that the soft
part of the strip has a length l1, and the stiff one has a length l2 = l̃ − l1. If a relative rotation
Θ or a constant torque M is imposed between the two roller pairs, the total potential energy is,
respectively,

V(Θ , l1) = D2Θ
2

2(l1(D2/D1 − 1) + l̃)
and V(M, l1) = − ((D2/D1 − 1)l1 + l̃)M2

2D2
, (4.1)

so that the propulsive forces can be calculated as the negative of the derivative taken with respect
to l1

P(Θ , l1) = D2(D2/D1 − 1)Θ2

2(l1(D2/D1 − 1) + l̃)2
and P(M) = (D2/D1 − 1)M2

2D2
, (4.2)

two formulae (the former holding for l1 < l̃) showing that the axial thrust is constant when M is
imposed while it is a decreasing function of l1 when Θ is fixed. The elastic properties of the rod
affect the amount of the propulsive force P. For instance, for a material with low shear modulus G,
the torsional rigidities D1 and D2 of the projectile would decrease, whereas the propulsive force

3Change in curvature is essential to produce energy release, so that (in the words of Gray [3]) ‘a snake cannot glide round the
arc of a circle or along a perfectly straight line’.
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Figure 3. (a) Scheme of themodel and (b) photo of the prototype of the torsional gun. An elastic stripmade up of two laminae
with different cross sections (so that one is ‘stiff’,D2 = 67.36 Nm2 and the other ‘soft’,D1 = 3.02 Nm2) is held between two pairs
of roller bearings (at a distance l̃ = 535 mm). The system can be quickly twisted, so that a release of torsional elastic energy
produces a propulsive force P that is enough to eject the elastic lamina. (c) The torsional gun in action: a sequence of three
photos taken at 30 fps, showing that the propulsive force overcomes the gravity. (Online version in colour.)

P would increase (decrease) for a given twisting moment M (for an imposed angle Θ).4 With the
employed materials and geometrical set-up (l1 = 215 mm and l2 = 320 mm) and for an imposed
angle Θ = π/2, the device realizes an initial propulsive force P = 0.68 N, enough to overcome
gravity when the device is held in a vertical configuration.

During manual use of the torsional gun, neither Θ nor M is precisely imposed, but a quick
hand torsion of the device originates a propulsive longitudinal force able to eject the rod, even
against gravity, see figure 3c and the movie available as the electronic supplementary material.

Note that, different from a bow or a catapult, in the ‘torsional gun’ the elastic deformation is
stored in the projectile. The prototype of a torsional gun proves in an indisputable way that an
axial motion can be produced via torsion, even in the absence of friction, so that a ‘flat animal’
can climb a frictionless narrow channel by employing a muscular torque.

5. Conclusion
Locomotion associated with torsional deformation of an elastic rod in a frictionless system
has been introduced and substantiated both theoretically and experimentally, opening a new
perspective in animal propulsion and in the mechanical design of deformable systems. The proof-
of-principle ‘elastic gun’ shows how a torque can be transformed into a longitudinal thrust
(or vice versa) without employing any mechanism, thus proving the realization of torsional
locomotion.

4The effects of a longitudinal extensibility of the rod could affect the propulsion process, although this aspect is not explored
in this article (the rod is assumed inextensible). Furthermore, the propulsion could also be affected by buckling.
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