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Experimental study of
transport of a dimer on a
vertically oscillating plate
Jiao Wang, Caishan Liu and Daolin Ma

State Key Laboratory for Turbulence and Complex Systems,
College of Engineering, Peking University, Beijing 100871,
People’s Republic of China

It has recently been shown that a dimer, composed
of two identical spheres rigidly connected by a rod,
under harmonic vertical vibration can exhibit a self-
ordered transport behaviour. In this case, the mass
centre of the dimer will perform a circular orbit in
the horizontal plane, or a straight line if confined
between parallel walls. In order to validate the
numerical discoveries, we experimentally investigate
the temporal evolution of the dimer’s motion in both
two- and three-dimensional situations. A stereoscopic
vision method with a pair of high-speed cameras is
adopted to perform omnidirectional measurements.
All the cases studied in our experiments are also
simulated using an existing numerical model.
The combined investigations detail the dimer’s
dynamics and clearly show that its transport
behaviours originate from a series of combinations
of different contact states. This series is critical to
our understanding of the transport properties in the
dimer’s motion and related self-ordered phenomena
in granular systems.

1. Introduction
Granular material under vibration sustains its motion by
continually extracting energy from external environment.
As an equilibrium state maintained via impacts and
friction is reached, it usually presents complicated, yet
self-ordered phenomena, such as the formation of large
vortices [1,2], cluster phenomena [3], ordered separation
[4,5], localized fluidization [6,7], etc. Similar phenomena
can also be found in vibration conveyors and other
mechanical systems subject to vibration [8]. Although
scientific interests in these intriguing phenomena have
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sustained for several decades, the problem of how to characterize the underlying mechanism still
remains open.

Exploring the underlying mechanism requires not only phenomenological analysis via a
variety of experimental observations, but also a suitable numerical model for checking the
variation of properties over ranges that could not always be explored experimentally. Most
often, the dynamics of granular systems is studied via an idealized particle model without
taking account the effects from particle geometry [9–13]. Despite the success of the simple
model in explaining certain physical phenomena, recent studies have revealed that some
anomalous phenomena are closely related to the shape of particles [14]. This motivates researchers
to numerically and experimentally study the granular systems with particles in asymmetric
geometry [2,14].

A dimer, that consists of two identical spheres rigidly connected by a light rod, is a
typical object reflecting the influence from the particle shape on its dynamic properties. By
releasing a dimer upon a vertically oscillating plate, many authors [15–19] have numerically
and experimentally investigated its dynamical behaviours. Among them, Dorbolo et al. [19]
presented impressive experimental results focusing on the planar dynamics of the dimer’s
motion. Depending on initial and driving conditions, the system exhibits various periodic
responses that can be classified into three modes: drift, jump and flutter. In addition, the motion
in a drift mode can be further classified into a negative or positive pattern, corresponding to the
horizontal transport directed from the bouncing ball to the staying ball, or oppositely.

Different from an idealized particle, a dimer bounces upon a vibrating plate by experiencing
frictional impacts occurring either at a single end or at both ends of the dimer. In these cases, the
solutions of post-impact response cannot be directly obtained using a coefficient of restitution,
yet require a sophisticated model to capture the dissipation and dispersion of energy evolving
within the impact dynamics. Recently, we have developed a method [20] to solve these complex
impact events, and have found successful applications for it in a variety of systems [21–24].
The theoretical development in understanding the dynamics of frictional impacts paves the
way of characterizing the physical mechanism underlying the self-organized behaviours in the
dimer system.

Inspired by the interesting phenomena of a two-dimensional dimer system [19], we recently
adopted the method in [20] to model a three-dimensional bouncing dimer [25]. Our numerical
results indicated that the normal motion of the three-dimensional dimer could have the same
three modes as discovered for the two-dimensional version, whereas the mass centre of the dimer
would follow distinct trajectories. In a drift mode of the three-dimensional motion, the trajectory
of the mass centre projected onto a horizontal plane reveals either a circular or spiral-inward orbit,
depending on the friction behaviours during a crucial event of double impacts (DIs). If friction
at the end of the staying ball can enter into a stick state, a circular orbit will be formed in the
three-dimensional drift mode. Otherwise, a spiral-inward orbit will appear.

Focusing attention on the circular orbit in a three-dimensional drift mode, we have performed
systematic simulations [26] and found many characteristics exhibited in the circular orbit: its
excitation depends on a proper combination of the values of Γ (the vibration intensity related
to its frequency and amplitude) and e (the coefficient of restitution in impacts); both the orbit’s
radius and period are approximately proportional to the square of the frequency of vibration and
the cube of the distance between the centres of the dimer’s two spheres; the horizontal velocity
initially specified to the dimer has just a small effect on the orbit shape.

Although the numerical simulations have revealed interesting results, these numerical
phenomena are trustworthy only if they can be validated experimentally. Moreover, further
quantification of the transport mechanism will certainly benefit from a validated numerical
model with the ability to expose its dynamics in detail. In this paper, we will provide
comprehensive experimental investigations for the dimer dynamics in both two- and three-
dimensional scenarios. In our experiments, a vibration generator with a feedback controller is
used to provide a stable oscillating signal. Four dimers with different sizes are tested under
the external vibration with different driving parameters. We use a pair of high-speed cameras



3

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140439

...................................................

ball B2

ball B1

X¢

O¢

Z¢
Y¢

Z

O

X

Y

g

b
q

Figure 1. A dimer bouncing upon a plate undergoing a vertical oscillation. (Online version in colour.)

to sample the images of the dimers in motion. The kinematical quantities related to the degrees of
freedom are then identified through a well-established image processing algorithm with enough
measurement accuracy. By changing the initial and driving conditions, we also experimentally
investigate their effects on the periodic behaviours of the dimer’s drift motion.

Besides the experimental investigations, we also simulate all the cases studied in experiments.
Not only are good agreements achieved between them, but also the transport properties
discovered numerically are validated in our experiments. The combined investigations of
simulations and experiments describe the dimer’s dynamics in detail, and therefore may shed
light on the underlying mechanism in a variety of the intriguing phenomena of granular systems.

The rest of this paper is organized as follows: §2 presents a brief description for the dimer
system with contact and impact processes. In §3, we introduce the experimental apparatus and the
measurement methods. Experimental realizations and comparisons between experimental and
numerical results are performed in §§4 and 5 for the drift modes in two- and three-dimensional
situations, respectively. Conclusion ends the paper in §6.

2. Brief description for the dynamics of the dimer system
Figure 1 shows a dimer bouncing upon a vertically oscillating plate. The dimer has two identical
balls with mass mb and radius r, rigidly connected by a rod with mass mr, diameter Dr, and length
(l − 2r), where l is the distance between the centres of the two balls. We designate B1 and B2 as the
staying ball and bouncing ball, respectively. As the dimer moves in a drift mode, the bouncing height
of B2 is always larger than that of B1.

The plate undergoes a vertically oscillating motion with amplitude Az and angular frequency
ω. At time t the distance of the plate from its equilibrium position takes the form zp =
Az sin (ωt + φ0), where φ0 is the initial phase of the vibration at t = 0. Following Dorbolo et al.
[19], we define an aspect ratio Ar = (l + 2r)/(2r) along with r to describe the dimer’s geometry,
and a dimensionless acceleration Γ = 4π2f 2Az/g along with f = ω/2π to represent the vibration
intensity, where g is the gravitational acceleration. It is worth noting that the aspect ratio is closely
related to the so-called kinetic angle between unilateral constraints, as defined in [27].

Designate (O, XYZ) as an inertial coordinate frame with the XY-plane corresponding to the
equilibrium position of the vibrating plate. On this frame, the centres of B1, B2, and the rod
are located at (x1, y1, z1), (x2, y2, z2), and (xr, yr, zr), respectively. In order to give an attitude
representation for the dimer, we establish a body-fixed coordinate frame (O′, X′Y′Z′) fixed at the
centre of B1. Angle β between axis O′X′ and its projection on the horizontal plane is termed a
dip angle, while θ between the oY-axis in the inertial frame and the projection of O′X′ on the
horizontal plane is defined as a precession angle. Angle γ is related to the spinning motion of the
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Table 1. Contact states possibly triggered in the motion of the bouncing dimer.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

free motion FM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

contact at a single end SCsk, SCsp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

contact at both ends DC(sp,sp), DC(sk,sk), DC(sk,sp), DC(sp,sk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

impact at a single end SIsk, SIsp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

impact at both ends DI(sp,sp), DI(sp,sk), DI(sk,sk), DI(sk,sp)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dimer around O′X′. The rigid dimer possess six degrees of freedom which can be described by
the generalized coordinates selected as q = (x1, y1, z1, θ , β, γ )T ∈ R

6.
We denote the instantaneous possible contact/impact point as p1 on ball B1 and p2 on ball

B2. As far as interaction (impact or contact) is triggered, friction always satisfies Coulomb’s
friction law. To describe the interaction at each contact pi(i = 1, 2) under Coulomb friction, we
decompose the contact force along its normal and two orthogonal tangential directions, and
aggregate the normal and tangential components at the two contacts separately: Fn = [Fn

1 , Fn
2]T

and Fτ = [Fτ
1x, Fτ

2x, Fτ
1y, Fτ

2y]T. Using the Euler–Lagrange equations, we obtain the system dynamics
as follows:

M(q)q̈ − h(q, q̇, t) = Q(q) + W(q)Fn + N(q)Fτ , (2.1)

where the concrete expressions for mass matrix M(q), inertial–force matrix h(q, q̇, t), gravity-
induced matrix Q(q), and two Jacobian matrices W(q) and N(q) are referred to appendix A. In
order to solve equation (2.1), the contact state of the dimer, which is related to the relative motion at
each contact point pi against the plate’s motion, should be distinguished correctly. Table 1 shows
the possible contact states that may be involved in the dimer’s motion.

The meaning of symbol word marking in table 1 is as follows: FM stands for a free motion as
both p1 and p2 are free in air; ‘SC’ means that a single contact is sustained either at p1 or p2; ‘SI’
represents that a single impact occurs either at p1 or p2 while the other one is airborne. For the
symbol words whose first character is ‘D’ (implying ‘double’), these contact states mean that both
points p1 and p2 have interactions with the plate. ‘DC’ is a state in which both p1 and p2 contact
the plate simultaneously; ‘DI’ represents a state of ‘double impacts’, corresponding to the cases
of one ball colliding with the plate while the other one is either contacting or simultaneously
colliding with the plate. Subscripts in these capital symbol words represent the friction state at
the corresponding contact points p1 and p2: ‘sk’ for stick, and ‘sp’ for slip.

For the dimer’s motion in a contact state ‘SC’, or ‘DC’, the normal interaction at a sustained
contact point pi is modelled as a normal constraint established through the relative kinematics at
the contact point. By the normal constraint equation, together with the friction relationship, we
can use an LCP formulation [8,23] to uniquely determine the contact forces Fn and Fτ , except for
certain singular situations that need special treatments [25].

Impacts occur when the dimer is in a contact state ‘SI’ or ‘DI’. In these cases, the momentum
and energy within the dimer will evolve quickly due to the strong interaction at the impact sites.
In order to avoid unnecessary digression, we refer for the details for modelling these impact
events to [20,25,26].

3. Experimental set-up, physical parameters and measurement methods
Experiments are conducted in an experimental apparatus consisting of a vibration generator
(ES-6), a plate made of duralumin, and two high-speed cameras (Lavision HighSpeedStar 4G).
Figure 2 shows a schematic of the experimental system. The duralumin plate in a size of
100 × 60 × 4 cm is firmly fixed on the vibration generator by 16 hexagonal nuts (17-M8). An
accelerator (B&K4386) is glued on the surface of the duralumin plate to measure its acceleration.
With a feedback controller, the plate vertically oscillates following a harmonic signal with given
values of parameters Γ and f .
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Figure 2. Schematic of the experimental equipment for testing dimer motion. (Online version in colour.)

Table 2. Material and geometrical parameters of dimers.

dimer drift (ρa
b ,ρ

b
r )(kg m

−3) r (mm) l (mm) Ar Dr (mm)

D-I 2D (7.85, 1.18)× 103 8.75 66.28 4.8 6.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-II 2D (7.85, 1.18)× 103 8.75 110.10 7.3 6.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-III 2D (7.85, 1.18)× 103 8.75 152.79 9.7 6.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-IV 3D (7.85, 7.85)× 103 2.00 11.94 4.0 2.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aρb denotes material density of the balls.
bρr denotes material density of the rod.

Four dimers with different shapes are separately tested in our experiments. Table 2 presents
the parameters relative to the geometry and material properties of the four dimers. Three of
them, designated as D-I, D-II and D-III, are fabricated with identical steel balls rigidly connected
by a polyester plastic rod with length changed to give different aspect ratio, Ar = l/(2r) + 1.
Without any additional physical limitation, the motion of these three dimers can enter into a two-
dimensional scenario by an initial condition described as follows [19]: the bouncing ball is lifted by
a fraction of the ball diameter, then it is released while keeping the staying ball on the plate.

The remaining one, designated as D-IV, is used for three-dimensional investigation. This dimer
is machined into shape from a piece of steel rod with the same material as the one of the balls in
other three dimers. To trigger a three-dimensional motion, the dimer is initially set on a U-shaped
groove with a flat bottom inclined with angles to both the vertical and horizontal planes. The
inclined angle to the horizontal plane is set as β0 ≈ 30◦, and the angle to the vertical plane is small
enough to allow the dimer to roll on the groove along a nearly straight line trajectory. The groove
is at a small distance above the plate for collision avoidance in vibration.

Previous numerical investigations [26] have indicated that the excitation of a drift mode strictly
depends on a proper combination of the vibration intensity Γ and the coefficient of restitution e.
In addition, the horizontal transport behaviours are also influenced by the values of the friction
coefficients. In order to find a suitable contact interface with proper physical properties that could
satisfy our experimental requirements, we covered the duralumin plate with either a smooth
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(a) (b)

Figure 3. Typical sequence of (a) dimer D-I in a two-dimensional drift mode and (b) dimer D-IV in a three-dimensional
drift mode.

Table 3. Impact and friction parameters related to the two interfaces of the vibrating plate.

interface drift e (μ,μs)a (μI ,μs
I )
b

sheet-I 2D 0.52 (0.08, 0.15) (0.05, 0.15)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sheet-II 3D 0.6 (0.4, 0.8) (0.25, 0.8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aSlip and stick coefficients of friction in contact.
bSlip and stick coefficients of friction in impact.

polypropylene plastic sheet (Sheet-I) or a rough polypropylene plastic sheet (Sheet-II). The three
dimers (D-I, D-II and D-III) are tested separately on the same surface of Sheet-I. Under the contact
surface, we expect to observe both positive and negative drift patterns along with the variation
in the shapes of the three dimers. Dimer D-IV is tested over the contact surface Sheet-II. This
surface provides large friction with coefficients whose values are greater than the necessary ones
for sustaining the mass centre of dimer D-IV to perform a circular orbit.1

Table 3 presents the parameters in impact and friction used in numerical investigations. The
coefficients of restitution are determined from experiments of releasing an independent steel ball,
as the one same in dimer D-I, onto the plate covered with Sheet-I or Sheet-II, separately. The
coefficients of friction are estimated via a fitting method to find their best values. As demonstrated
in the existing experiments given by Dorbolo et al. in [19], impacts change the sliding coefficient
of friction and make it different from the one in contacts. Here, we also assign different values for
the sliding coefficients of the friction in the contact and impact processes, separately.

The positions and attitudes of the dimer are measured using a stereoscopic vision method
[28]. A pair of high-speed cameras are fixed to continuously record the dimer’s motion. The
orientations of the cameras are selected carefully so that the images of the dimer are formed
in a good visual angle. The images are sampled by a frame rate of 1000 frames per second, with
a resolution of 1024 × 1024 pixels. In the cases studied in our experiments, the dimer’s motion
is recorded by the two cameras as a stable drift mode is observed. Figure 3a,b presents a typical
sequence of the trajectories of dimers D-I and D-IV in two- and three-dimensional drift modes,
respectively.

1If the friction is not large enough, as numerically demonstrated in [26], the orbit will spiral inward even though a three-
dimensional drift mode can be formed approximately.
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(a) (b)

Figure 4. Images of a standard calibration board captured by two cameras at the same instant.

(a) (b)

Figure 5. Two synchronous images of dimer D-I captured by two cameras at the same instant, superimposed by the
reconstructed contours of both balls (circles). (Online version in colour.)

A pinhole camera model is used to describe the relation between a spatial point and its
projection position in an image. We obtained the calibration information for the two CCD cameras
by the method described in [29], in which a standard chessboard is used. Figure 4 shows two
images of the calibration board captured by the two cameras at the same instant. Using an in-
house software package based on a well-established image processing algorithm, we analyse the
pictures of the chessboard over different orientations to determine the camera’s matrices. The
matrices contain the intrinsic parameters related to the focal length, the distortion parameters of
the lenses, and the external parameters, such as the entries of the transition matrix between the
pixel coordinate system fixed on the image and the inertial coordinate system fixed in space.

Based on the calibration information, we digitize the current dimer’s configuration using pairs
of images captured at the same instant. Figure 5 shows two images of dimer D-I synchronously
captured by the two cameras, overlapped by the reconstructed contours of the balls obtained via
the image analysis. Since the images provide no recognizable markers to effectively distinguish
the spinning rotation, only five degrees of freedom of the dimer are identified by our image
processing algorithm. They are the coordinates of the mass centre of the dimer (xr, yr, zr) and
the precession angle θ and dip angle β.

By the stereoscopic vision method, all the variables describing the three degrees of freedom
in two-dimensional motion can always be identified via image analysis. In two-dimensional
experiments, our numerical algorithm in the data processing may generate a recognition error
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of about 0.5 pixel. According to the calibration information, one image pixel corresponds to a
distance in space with a value about 0.2 mm. So, the position error is estimated with a value
about 0.5 × 0.2 = 0.1 mm. Since angular variable β is basically computed through the position
information of the two balls, its error varies with the dimer’s sizes, and decreases along with
increasing the rod length. The errors of β for dimers D-I, D-II and D-III are about 0.0024, 0.0015
and 0.0012 rad, respectively. The relative errors in two-dimensional experiments are all within 5%.

For effectively tracing the trajectory of three-dimensional motion, we have to set the two
cameras with large view fields. The enlarged view fields reduce the measurement accuracy to
a certain extent. In our three-dimensional experiments, the calibration information indicated that
one pixel in an image is associated with a distance of about 0.8 mm. In addition, the small size
in D-IV also makes image recognition generate a relative large error near one pixel. Therefore,
the measurement accuracy in three-dimensional experiments is estimated with a position error
of about 0.8 mm, up to 40% of the regular value of the vertical displacement zr(t). Relative large
errors also exist in identifying angular variables θ (t) and β(t). Therefore, the measured values
for zr(t), θ (t) and β(t) are basically untrustworthy. However, the measurement errors pollute little
xr(t) and yr(t) since they are relatively large enough. In our three-dimensional experiments, only
the measured values of xr(t) and yr(t) are taken as the valid outputs.

4. Two-dimensional drift mode
In this section, we will investigate the two-dimensional drift mode exhibited in dimers D-I, D-II
and D-III, separately. Experimental investigations will be combined with numerical simulations
to explore the details in the dimer’s dynamics. Under the same driving parameters, the effect
from dimer’s shape on the transport behaviours will be studied. We will also change the initial
and driving conditions to examine their effects on the transport behaviours.

(a) Details in the dynamics
By setting Γ = 1.2 and f = 20 Hz, we present the results for dimer D-I as an example to exhibit
the details of the two-dimensional dimer’s dynamics in a drift mode. For comparing with the
experimental results, we perform numerical simulations by specifying the dimer with an initial
condition as follows: q(0) = (0, 0, r + Az sin φ0, 0, β0, 0)T and q̇(0) = (0, 0, 0, 0, 0, 0)T, where β0 and
φ0 are, respectively, the initial values of the dip angle and the phase of the plate at the release
time t = 0. This initial condition generally agrees with our experiment scenario for triggering a
two-dimensional motion.

The excitation of a drift mode is sensitive to both the values of φ0 and β0. In particular, φ0 is
hardly controlled in the experiments of releasing the dimer by hand. As the initial configuration of
a dimer remains unchanged approximately, several trials need to be performed for experimentally
observing a stable drift motion. For activating a drift mode in simulations, β0 can be roughly
estimated through the images captured by two cameras, whereas a fitting method must be used
to determine a proper value of φ0, which is not unique but limited in a specific range.

Figure 6 presents the numerical and experimental results for the values of β(t) and β̇(t).
Numerical results are obtained by setting β0 = 4.9◦ and φ0 = 0.8151 rad, together with the physical
parameters given in tables 2 and 3. Both β(t) and β̇(t) vary periodically accompanying the
vibration, while β̇(t) jumps at each instant of β(t) = 0, corresponding to the instant when an
event of DIs occurs. The same phenomenon can also be numerically obtained when φ0 varies
with values near to φ0 = 0.8151 rad.

The experimental curve of β̇(t) is obtained by an eulerian difference method. Since this
difference method is basically sensitive to the measurement error existing in the values of β(t),
good agreement between the computed and measured curves of β̇(t) in figure 6 means that our
measurement method provides sufficiently accurate data.

In order to reveal the phase of the plate at the instant for the occurrence of DIs, figure 7 shows
the curves of the measured and computed zr(t), superimposed by the curve of the harmonic signal
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for the equilibrium position of the vibration signal after translation. (Online version in colour.)

zp(t). In this figure, we translate curve zp(t) onto a position apart from its equilibrium position with
a distance equal to the radius of the sphere (r = 8.75 mm). The intersection points between the
curves of zr(t) and (zp(t) + r) mark the sequence of the DIs. It is clear that the sequence corresponds
to a fixed phase that appears in the first quadrant of the zp–żp plane. Therefore, we may say that
the event of DIs reveals a phase-locking phenomenon. As the event occurs, the direction of the pre-
impact normal velocity at the bouncing end of the dimer is always opposite to that of the vibrating
velocity of the plate, such that part of energy within the vibration is transferred to the dimer.
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Figure8. Normal velocity żr(t) for dimer D-I:Γ = 1.2, f = 20 Hz,β0 = 4.9◦ andφ0 = 0.8151. Inset details the contact states
during a cycle of the drift mode. (Online version in colour.)

Besides the crucial event of DIs, other contact states, such as ‘FM’, ‘SI’ and ‘SC’ exist
in every cycle of the drift mode. Transitions among these contact states certainly bring on
distinct behaviours in the dimer’s motion. Relatively, the variables shown in figures 6 and 7
are insensitivity to the transitions among other contact states, except the DIs. For conveniently
detailing the evolution of the contact state within the dimer dynamics, figure 8 plots the
numerical and experimental curves of żr(t). Here, we obtain the experimental values of żr(t)
using a piecewise difference method to treat the measured values of zr(t). Namely, the instants
related to the events of DIs are firstly distinguished according to experimental data, then an
eulerian difference method is adopted to treat the data between two subsequent events of the
double impacts.2

By the inset in figure 8, we can clearly find that the contact states within a cycle of the vibration
evolve as follows: the dimer begins with a free motion, followed by a sequence of SIs at the
end of staying ball, then the sequence transfers into a contact mode at the staying ball while the
bouncing ball still stays in air. The cycle ends with an event of DIs when the bouncing ball lands onto
the plate.

(b) Effect of initial states on drift velocity
As numerically demonstrated in [26], the same drift mode can be excited by different initial
states scattering in a sequence of sets scaled by the initial variable β0. To examine this numerical
prediction, figure 9 shows a group of curves for the horizontal displacement yr(t) of dimer D-I
versus the number of T, where T = 1/f is the period of the vibration. These curves are obtained
from the drift modes of dimer D-I under five different initial configurations β0 with the same
driving parameters Γ = 1.2 and f = 20 Hz. To observe a stable drift mode for each β0, several

2The discrepancy in the curves of figure 8 comes from the experimental data processing, the uncertainty in our experiment
measurements, and the model error induced by the numerical model in which the small scale in the time interval of impacts
is ignored completely.
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β0 = 3.2◦, 4.9◦, 5.4◦, 6.3◦, 7.1◦, respectively.Γ = 1.2, f = 20 Hz. (Online version in colour.)

trials are needed by releasing the dimer at an instant when the plate is in a proper phase φ0. As
shown in figure 9, the same drift mode is observed in these five experiments. In the following,
comparisons between our numerical and experimental results will be given without the concrete
illustration for the initial states specified to the numerical simulations.

(c) Effect of dimer’s geometry on drift velocity
Dorbolo et al. [19] thoroughly studied the effects of dimer’s shape on the transport behaviours.
They found that the changes in dimer’s shape may result in different drift modes classified
into a negative or positive pattern. Namely, the horizontal transport is directed either from the
bouncing ball to the staying ball, or oppositely. The mechanism underlying these distinct horizontal
behaviours was explained by Zhao et al. [21] via numerical simulations. Here, we supplement
more information through numerically and experimentally investigating the drift motions in
dimers D-I, D-II and D-III, separately.

Under Γ = 1.2 and f = 20 Hz, all the three dimers can enter into a drift motion by properly
selecting initial states. Figure 10 presents both the numerical and experimental results of yr(t)
within a time interval of 30 T, where yr(t) is the horizontal displacement of the mass centre of
the dimer. Noise in these curves comes from the periodical fluctuation during transports and
the measurement errors. Good agreements are achieved for each dimer in the comparison of
its numerical and experimental results. Moreover, the three dimers exhibit different transport
behaviours: dimers D-I and D-II transport positively with a velocity decreasing with increasing
the rod length, whereas D-III transports in a negative direction. The electronic supplementary
material provides movies demonstrating the different drift motions.

There is no doubt that friction should be responsible for the occurrence of the horizontal
transport behaviours. Understanding the friction behaviours in the dimer motion requires the
information of the horizontal velocities at the contacting points. Following Dorbolo et al. [19], we
plot in figure 12 the curves of υτ

1y(t) for dimers D-I and D-III, separately. Here, υτ
1y(t) represents

the horizontal component of the simultaneous velocity at contact point p1 that always located at
the bottom of the staying ball B1. Since the point moves on to the surface of the ball as the dimer
rotates, the values of υτ

1y(t) are obtained by a kinematical relationship treating the observed and
calculated data in experiments and simulations [25], respectively.

Besides good agreements between our numerical and experimental results, the curves in
figure 11 show two kinds of asymmetric structures. Let us consider the curves within a single



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140439

...................................................

0 10 20 30

0

5

10

15

20

period

ta
ng

en
tia

l d
is

pl
ac

em
en

t y
r (

m
m

)

 

 
D-I

D-II

D-III

simulation

Figure 10. Horizontal displacements yr(t) passed by D-I (Ar = 4.8), D-II (Ar = 7.3) and D-III (Ar = 9.7) within 30 T.Γ = 1.2,
f = 20 Hz. (Online version in colour.)

0.1 0.2 0.3 0.4

−20

0

20

40

60

ta
ng

en
tia

l v
el

oc
ity

1y
(m

m
s–1

)

 

 

S1

S2

0.1 0.2 0.3 0.4

−10

−5

0

5

time (s)time (s)

(a) (b)

 

 

S1

S2

experiment D-III

simulation D-III

experiment D-I

simulation D-I

Figure 11. Curves extracted from experimental and numerical results of υτ
1y (t) appearing in (a) D-I and (b) D-III. Γ = 1.2,

f = 20 Hz. (Online version in colour.)

cycle of the vibration, and designate Σ1 and Σ2 as the areas enclosed by its positive and negative
parts, respectively. The structure in D-I corresponds to Σ1 > Σ2, whereas the one in D-III is in an
opposite situation.

The probable reason for the formation of two kinds of the structures has been analysed in [21].
The main difference between them is related to the variation of friction state appearing in the
process of DIs: the negative slip state of friction at contact point p1 at the start of DIs changes into a
stick and the positive slip state at the end of the DIs in D-III and D-I, respectively. By qualitatively
analysing the dynamics of double impacts, Zhao et al. [21] gave a statement as follows: a stick
state can be involved in double impacts if μI

s > mrl/(2(J1 + mr2)), where μI
s is the static coefficient

of friction at p1, m the total mass of the dimer and J1 the moment of inertia with respect to the mass
centre of the dimer. As the rod’s mass is ignorable, this condition is simplified into a formula:
μI

s > (Ar − 1)/(7/5 + (Ar − 1)2), agreeing with the one given in [19]. Let us use this condition to



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140439

...................................................

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lb
m

ax
 (m

m
)

experiment D-I

experiment D-II

simulation D-I

simulation D-II

1.20 1.25 1.30 1.35
5

10

15

20

(a) (b)

vibration intensity G
1.20 1.25 1.30 1.35

vibration intensity G

m
ea

n 
dr

if
t v

el
oc

ity
d

(m
m

s–1
)

experiment D-I

experiment D-II

simulation D-I

simulation D-II¯

Figure 12. (a) The mean drift velocities ῡd and (b) the maximum height of the bouncing end, versusΓ for D-I and D-II under
f = 20 Hz. (Online version in colour.)

check the three tested dimers (Ar = 4.7, 7.3, 9.8). With the same μI
s = 0.16, this condition can only

be satisfied by D-III, so it drifts along a direction opposite to the one of other two dimers.3

When observing in the electronic supplementary material, video (see footnote 3), we can
find that the connecting rod in D-III slightly bends accompanying its drift motion. The cause
of the physical phenomenon is partly due to the flexibility of the rod as it has a long length,
and is also due to the stick state occurring in the event of double impacts. The appearance of
the stick state in the end of the contacting ball allows the rod to manifest low-order bending
mode when the bouncing ball is detached from the plate. Owing to the rod flexibility in D-
III, figure 11b reveals that there is a relative large discrepancy between the numerical and
experimental results. Nevertheless, this factor has little effect on the quantities describing the
global horizontal transport. See, e.g. figure 10.

(d) Effects of driving parameters on drift motion
Besides dimer’s geometry, the driving parameters in vibration also influence the transport
property. In [26], we have numerically found that the excitation of a drift mode would strictly
depend on a proper combination of the vibration intensity Γ and the coefficient of restitution e.
For a given e, the drift mode can be excited only if the value of Γ is limited in a specific range.
Under the same intensity Γ and the same coefficient of restitution e, the experimental results
[19] given by Dorbolo et al. have revealed that the mean drift velocity, designated as ῡd here, is
approximately inversely proportional to the driving frequency f . Nevertheless, the correlation
between Γ and ῡd was not quantitatively investigated in their experiments.

In the present paper, we perform our investigations just focusing on the effects of Γ over the
transport property as dimers drift positively on the same contact surface. We test dimers D-I and
D-II by setting the vibration with the same frequency f = 20 Hz, while limiting the value of Γ in
a scope from 1.2 to 1.35. Under these driving parameters coupled with a proper initial state, and
setting Sheet-I as the contact surface, both the dimers can enter into a positive drift mode.

3The amplitude and direction of the mean drift velocity essentially depend on the difference between areas Σ1 and Σ2. Even
though no stick state appears in the process of DIs, a negative drift mode may also occur when a dimer with a suitable shape
drifts on a surface with proper friction.
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Figure 12a shows the values of the mean drift velocity ῡd obtained by averaging the observed
and computed values of yr(t) within 30 T. For all the cases of Γ = 1.2, 1.25, 1.3 and 1.35 under
the same f = 20 Hz, both the numerical results of dimer D-I and D-II can agree with their
corresponding experimental findings. By figure 12a, we can also find that for each dimer the
value of ῡd varies with the change of Γ .

(e) Energy confined in the normal motion
As has been demonstrated previously, the initial state has little effect on the transport property
in two-dimensional experiments. Moreover, the event of DIs, corresponding to a scenario that the
bouncing ball collides against the plate while the staying ball contacting the plate, plays a dominant
role of extracting external energy to maintain a periodic drift mode. The normal motion of the
dimer can then be approximately characterized by the impact behaviour of the bouncing ball
during the crucial event of DIs. To illustrate this point, figure 12b shows the bouncing height
hmax = lβmax of the bouncing ball in dimers D-I and D-II under different driving conditions studied
in our experiments.

Although the shapes between the two dimers are different, and Γ varies in a relative large
range, the values of hmax in the studied cases change little. From this phenomenon, we may
conjecture that the bouncing-dimer dynamics takes certain similarities in comparison with
the fundamental bouncing-ball problem [9,12]. Note that there are many mature theoretical
results existing in the bouncing-ball problem. This similarity may be beneficial to theoretically
quantifying the physical mechanism underlying the transport behaviour of the dimer system.

5. Three-dimensional drift mode
In this section, we will experimentally investigate the three-dimensional drift dynamics by testing
dimer D-IV moving on contact surface Sheet-II. Evolution of the contact state within the three-
dimensional drift dynamics will be illustrated by the image frames captured by the high-speed
camera. Under different initial and driving conditions, the circular orbit and related properties
performed by the three-dimensional dimer will also be experimentally validated.

(a) Evolution of contact state in three-dimensional drift mode
Similar to the cases in the two-dimensional version, a three-dimensional drift mode within each
cycle of the vibration also contains many different contact states that can be repeated periodically.
To clearly expose the evolution of the contact states, we present in figure 13 the images that are
captured at a sequence of instants in between with an equal time interval (T + T/6). The sequence
starts from an image frame tdi

i of a DI state in the ith cycle, following an image frame tfm
i+1 of a free-

motion state (FM) in the next cycle, then an image frame tsi
i+2 of a SI state in (i + 2)th cycle. The SI at

the staying ball continually occurs before the dimer’s motion enters into an SC state, corresponding
to the subsequent frames tsc

i+3, tsc
i+4 and tsc

i+5. After that, the bouncing ball comes back to the
plate, and triggers a repeated DI state (image tdi

i+6). Besides the sequence of image frames, the
electronic supplementary material also provides a movie demonstrating the three-dimensional
drift motion.

(b) Effects of initial conditions on a circular orbit
We perform three-dimensional experiments in a scenario as follows: initially dimer D-IV is set by
hand on the bottom of the inclined groove, and takes a configuration of its rod axis parallel to
the bottom edge of the groove. After release, the dimer will first roll on the groove, then collide
against the vibrating plate to trigger a three-dimensional motion.

Suppose that ẋ1(0) corresponds to the value of the horizontal velocity of the staying ball at
the instant when it contacts the plate. We assign ẋ1(0) with different values to distinguish the
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Figure 13. Evolution of contact state in a three-dimensional drift motion.Γ = 1.0, f = 20 Hz.

initial states of the dimer. In our experiments, we design five initial states, designated as Cj (j =
1, 2, . . . , 5) as follows: the values of ẋ1(0) from cases C1 to C5 follow an arithmetical sequence
with a common difference of 0.05 m s−1, starting from 0.2 to 0.4 m s−1. From each value of ẋ1(0),
we estimate the initial position of the dimer lying on the groove, then release it to start a three-
dimensional experiment.

All the cases from C1 to C5 are experimentally investigated under the same vibration with Γ =
1.0 and f = 20 Hz. Similar to two-dimensional experiments, for triggering a three-dimensional
drift mode in case Cj, several trials are usually needed in order to make the plate with a proper
phase at the instant when the dimer is released.

In terms of our numerical discoveries [26], the mass centre of the dimer in all the cases should
perform a nearly same circular orbit. To validate this property, we calculate the circle template
of each case Cj as follows: Suppose that the measured point (xr(t), yr(t)) is located in a circle with
radius R̄e and centre coordinates (XC, YC), whose standard equation is expressed as

[2xr(t), 2yr(t), 1]

⎡
⎢⎣

Xc

Yc

R̄2
e − X2

c − Y2
c

⎤
⎥⎦= x2

r (t) + y2
r (t). (5.1)

By (5.1), together with the experimental outputs in each tested case Cj, we can use a least square
method to determine the values of Xc, Yc and R̄e. If the circle template of Cj can be followed by
the corresponding experimental data, and the values of R̄e in all the tested cases are nearly the
same, the property that the shape of the circular orbit is independent of the initial state can be
confirmed.

Considering that translation and rotation operations do not change the shape of a circle, we
translate all the experimental data into a coordinate system to make (XC, YC) located at its origin.
Then, we perform a rotation transform to make each experimental curve rotate a certain angle
around the origin. After that, these experimental curves can be separately expressed on the
different portion of a circle plane. Figure 14 shows the horizontal trajectories of the mass centre
of the dimer in the five independent experimental cases, together with the corresponding radius
R̄e and the angle of circumference α. All of them are nearly located on a same circular orbit with
radius R̄e ≈ 207 mm, except the case C3.

Case C3 provides a suspicious result that deviates much from those in the other cases.
We attribute the error to the mis-operation made in the experiment. The reason for that is
explained as follows: The numerical discoveries in [26] have indicated that the radius R̄e is
approximately proportional to f 2. As f = 20 Hz corresponds to a radius with a correct value of
R̄e ≈ 207 mm, the measured value of R̄e ≈ 186 mm in case C3 should correspond to a frequency
f = 19 Hz. Therefore, a mistake of assigning an incorrect value of frequency to the vibration
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Figure 14. Horizontal trajectories of the mass centre of dimer D-IV in five different initial states from case C1 to C5 under the
same vibration:Γ = 1.0, f = 20 Hz. (Online version in colour.)

generator is possibly made in performing C3. To reveal the experiments under different ẋ1(0)
with values following an approximate arithmetical sequence, we still hold this suspicious
result in figure 14.

As indicated in [26], the mean drift velocity ῡe will be significantly affected by the initial value
of ẋ1(0). The value of ῡe can be obtained by measuring the arc length in each experimental curve,
then using it divided by the time interval in the drift motion. In terms of the values of R̄e and ῡe,
the period of the circular orbit is given by T̄e = 2π R̄e/ῡe. Figure 15 shows the values of T̄e versus
those of ẋ1(0) in the five cases. Clearly, except for case C3, T̄e linearly decreases as ẋ1(0) increases.

(c) Numerical investigations related to three-dimensional experiments
To compare the experimental results with the numerical ones, a deterministic initial state should
be specified to the dimer. To simplify simulations, we neglect the dynamics of the rolling stage
of the dimer on the groove, and specify the initial state of the dimer to be approximately
characterized as q(0) = (0, 0, r + Az sin φ0, 0, β0, 0)T, q̇(0) = (ẋ1(0), 0, 0, 0, 0, 0)T, where β0, φ0 and
ẋ1(0) are the initial values of the dip angle, the vibration phase and the horizontal velocity of
the dimer, respectively.

Basically the initial state specified to simulations cannot precisely coincide with the full
scenario in our experiments. However, numerical findings in [26] indicated that the initial state
essentially has little effect on the radius of the circular orbit, though the value of ẋ1(0) has an
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impact on the mean drift velocities. In addition, under the same Γ and e, only the values of β0 and
φ0 are responsible for the excitation of a drift mode. These peculiar property of dimer’s motion in
a stable drift mode allows the simulations to be advanced by the initial states with three adjustable
parameters (β0, φ0, ẋ1(0)).

We assign β0 = 30◦ based on the inclined angle of the groove relative to the horizontal plane
(figure 2). Under the given values of Γ , e and β0, numerical investigations indicate that a three-
dimensional drift mode can be excited as φ0 = π/6 (the value is not unique). On the basis of the
arithmetical sequence designated to ẋ1(0), together with fitting, good agreements between our
numerical and experimental results can be achieved when the values of ẋ1(0) from C1 to C5 are
modified as ẋ1(0) = 0.2156, 0.2650, 0.3145, 0.3628, 0.4227 m s−1, respectively.

Based on the initial states and the physical parameters shown in tables 2 and 3, figure 16 shows
the curves of xr(t) and yr(t) versus time for the five different cases. After a transition stage within a
very short time interval, all the curves follow the shape of a harmonic function with a nearly same
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Figure 17. A ln–ln plot for the evolutions of (a) the radius R̄, and (b) the period T̄ , versus frequency f : Γ = 1.0, ẋ1(0)=
0.2156 m s−1,β0 = 30◦,φ0 = π/6. (Online version in colour.)

amplitude but different periods. This confirms that the mass centre of the dimer with different
velocities drifts on a nearly same circular orbit. Figure 16 also shows the experimental curves
marked online by different colours for the five cases. By the numerical results, the equivalent
radius R̄s and period T̄s are also computed, and, respectively, shown in figures 14 and 15. Except
for case C3, they can always agree with the corresponding experimental results.

(d) Investigations for other properties of the circular orbit
To investigate the effects of frequency on the property of the circular orbit, we test dimer D-IV
under different driving parameters: f takes three different values of 20, 25 and 30 Hz, while Γ = 1
is kept unchanged. For all the three experimental cases, the dimer initially lies on the position
of the groove as the same one in case C1. Namely, the value of ẋ1(0) = 0.2156 m s−1 remains
unchanged in all three cases.

Figure 17 presents the ln–ln plots of the equivalent radius and period versus f . Besides
good agreements between our numerical and experimental results, the slope of the line traced
by the discrete points is nearly equal to 2. This confirms that both the radius and period
of the circular orbit are nearly proportional to f 2, agreeing with our numerical findings
given in [26].

6. Conclusion
In this paper, we have performed combined investigations of experiments and simulations for
dimers bouncing on a vertically oscillating plate. Experimental investigations are implemented
via a stereoscopic vision method with a pair of high-speed cameras to perform accurate
measurements. Numerical simulations are carried out according to an existing numerical model
recently developed in [25].

The combined investigations present experimental and numerical results in good agreements,
and describe the dimer’s dynamics in detail. Within a stable drift mode in both two- and three-
dimensional situations, the dimer moves in various contact states including ‘FM’, ‘SI’, ‘SC’ and
‘DI’, forming a sequence in each cycle. This sequence evolves periodically accompanying the
vibration. The dimer harvests the external energy mainly through a crucial event of DI occurring
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at a fixed phase of the plate naturally selected by the dimer’s dynamics, while the subsequent
sequence of SIs at the staying ball modulates the energy to allow the dimer to approach a stable
drift mode. Friction in these contact states is responsible for the formation of the asymmetric
structures of the variables relevant to the dimer’s horizontal motion. A transport behaviour can
then appear in the trajectories of the mass centre of the dimer, following a circular orbit and a
straight line in three- and two-dimensional scenarios, respectively.

By changing driving conditions, we test the two- and three-dimensional drift motions
of dimers with different shapes. Through the combined investigations of simulations and
experiments, we conclude as follows: Both the dimer’s shape and the frequency of vibration
are the significant factors of influencing the shape of the trajectory of the horizontal transport;
the coefficient of restitution e and the vibration amplitude (often scaled by Γ ) are the important
factors responsible for the excitation of a periodic mode.

For the three-dimensional drift motion in a circular orbit, we find that both the orbit radius
and period are approximately proportional to f 2, agreeing with our recent numerical discoveries
[26]. In addition, similarity exists between the normal motions of the dimer and the fundamental
bouncing-ball system. This means that further quantification of the mechanism underlying the
dimer’s transport behaviours is possible, though the various contact states complicate the dimer’s
dynamics. The study presented in this paper may help understand the intriguing phenomena
exhibited in granular systems and a variety of mechanical vibrating systems.

Funding statement. This work was performed under the support of the National Natural Science Foundation of
China (NSFC: 11132001).

Appendix A. Matrices for the dimer’s dynamics
This appendix lists the forms of some matrices used in equation (2.1) for the dynamics of the
dimer system:

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 M14 M15 0
0 m 0 M24 M25 0
0 0 m 0 1

2 mlcβ 0
M14 M24 0 M44 0 J2sβ

M15 M25
1
2 mlcβ 0 M55 0

0 0 0 J2sβ 0 J2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A 1)

where M14 = − 1
2 mlcβcθ , M15 = 1

2 mlsβsθ , M24 = − 1
2 mlcβsθ , M25 = − 1

2 mlsβcθ , M44 = ( 1
4 ml2 +

J1)c2
β + J2s2

β , M55 = 1
4 ml2 + J1, m is the total mass of the dimer, and J1, J2 are, respectively,

the principal inertias of the dimer with respect to its mass centre, s(·) and c(·) are,
respectively, the abbreviations for sine and cosine functions, for example, sβ means sin β,
and so on.

W(q) =
[

0 0 1 0 0 0
0 0 1 0 lcβ 0

]T

, (A 2)

N(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
0 0 0 0
0 −lcθ cβ 0 −lsθ cβ

−rsθ (lsβ − r)sθ rcθ (r − lsβ )cθ

−rcθ cβ −rcθ cβ −rsθ cβ −rsθ cβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A 3)
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h(q, q̇, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ml
2

(cβsθ (θ̇2 + β̇2) + 2sβcθ θ̇ β̇)

ml
2

(cβcθ (θ̇2 + β̇2) − 2sβsθ θ̇ β̇)

ml
2

sβ β̇2

((
2J1 − 2J2 + ml2

2

)
sβ θ̇ − J2γ̇

)
cβ β̇

−
((

J1 − J2 + ml2

4

)
sβ θ̇ − J2γ̇

)
cβ θ̇

−J2cβ θ̇ β̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A 4)

and
Q(q) = [0 0 − mg 0 − 1

2 mglcβ 0]T. (A 5)
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