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Thermodynamic aspects of chemical reactions have
a long history in the physical chemistry literature.
In particular, biochemical cycles require a source of
energy to function. However, although fundamental,
the role of chemical potential and Gibb’s free
energy in the analysis of biochemical systems is
often overlooked leading to models which are
physically impossible. The bond graph approach
was developed for modelling engineering systems,
where energy generation, storage and transmission
are fundamental. The method focuses on how power
flows between components and how energy is stored,
transmitted or dissipated within components. Based
on the early ideas of network thermodynamics,
we have applied this approach to biochemical
systems to generate models which automatically
obey the laws of thermodynamics. We illustrate
the method with examples of biochemical cycles.
We have found that thermodynamically compliant
models of simple biochemical cycles can easily be
developed using this approach. In particular, both
stoichiometric information and simulation models
can be developed directly from the bond graph.
Furthermore, model reduction and approximation
while retaining structural and thermodynamic
properties is facilitated. Because the bond graph
approach is also modular and scaleable, we believe
that it provides a secure foundation for building
thermodynamically compliant models of large
biochemical networks.
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1. Introduction
Oh ye seekers after perpetual motion, how many vain chimeras have you pursued? Go and take your
place with the alchemists. Leonardo da Vinci, 1494

Thermodynamic aspects of chemical reactions have a long history in the physical chemistry
literature. In particular, the role of chemical potential and Gibb’s free energy in the analysis
of biochemical systems is developed by, for example, Hill [1], Beard & Qian [2] and Keener &
Sneyd [3]. As discussed by, for example, Katchalsky & Curran [4] and Cellier [5, ch. 8], there
is a distinction between classical thermodynamics which treats closed systems which are in
equilibrium or undergoing reversible processes and non-equilibrium thermodynamics which
treats systems, such as living organisms, which are open and irreversible.

Biochemical cycles are the building-blocks of biochemical systems; as discussed by Hill [1],
they require a source of energy to function. For this reason, the modelling of biochemical cycles
requires close attention to thermodynamical principles to avoid models which are physically
impossible. Such physically impossible models are analogous to the perpetual motion machines
beloved of inventors. In the context of biochemistry, irreversible reactions are not, in general,
thermodynamically feasible and can be erroneously used to move chemical species against a
chemical gradient thus generating energy from nothing [6]. The theme of this paper is that
models of biochemical networks must obey the laws of thermodynamics; therefore, it is highly
desirable to specify a modelling framework in which compliance with thermodynamic principles
is automatically satisfied. Bond graphs provide one such framework.

Bond graphs were introduced by Henry Paynter (see [7] for a history) as a method
of representing and understanding complex multi-domain engineering systems such as
hydroelectric power generation. A comprehensive account of bond graphs is given by
Gawthrop & Smith [8], Borutzky [9] and Karnopp et al. [10] and a tutorial introduction for control
engineers is given by Gawthrop & Bevan [11].

As discussed by, for example, Palsson [12,13], Alon [14] and Klipp et al. [15], the numerous
biochemical reactions occurring in cellular systems can be comprehended by arranging them
into networks and analysing them by graph theory and using the associated connection matrices.
These two aspects of biochemical reactions—thermodynamics and networks—were brought
together some time ago by Oster et al. [16]. A comprehensive account of the resulting network
thermodynamics is given by Oster et al. [17]. As discussed by Oster & Perelson [18] such
thermodynamic networks can be analysed using an equivalent electrical circuit representation;
but, more generally, the bond graph approach provides a natural representation for network
thermodynamics [17,19,20]. This approach was not widely adopted by the biological and
biochemical modelling community and may be considered to have been ahead of its time.
Mathematical modelling and computational analysis of biochemical systems have developed
a great deal since then, and now underpins the new disciplines of systems biology [21], and
‘physiome’ modelling of physiological systems [22–25], where we are faced with the need for
physically feasible models across spatial and temporal scales of biological organization.

In particular, there has been a resurgence of interest in this approach to modelling as it imposes
extra constraints on models, reducing the space of possible model structures or solutions for
consideration. This has been applied from individual enzymes [26,27] and cellular pathways [28]
up to large-scale models [29–31], as a way of eliminating thermodynamically infeasible models
of biochemical processes and energetically impossible solutions from large-scale biochemical
network models alike (see [32] for a review). Additionally, there is new impetus into model
sharing and reuse in the biochemical and physiome modelling communities which has garnered
interest in modular representations of biochemical networks and has promoted development of
software, languages and standards and databases for models of biochemical processes. Model
representation languages such as CellML and SBML promote model sharing through databases
such as the Physiome Model Repository and BioModels Database. Descriptions of models in a
hierarchical and modular format allows components of models to be stored in such databases
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and assembled into new models. Rather than revisiting the detailed theoretical development,
therefore, our aim is to refocus attention on the bond graph representation of biochemical
networks for practical purposes such as these. First we briefly review the utility of the bond graph
approach with these aims in mind.

Bond graph approaches have also developed considerably in recent years, in particular,
through the development of computational tools for their analysis, graphical construction and
manipulation, and modularity and reuse [33–38], which are key preoccupations for systems
biology and physiome modelling. Our focus is on how kinetics and thermodynamic properties
of biochemical reactions can be represented in this framework, and how the bond graph
formalism allows key properties to be calculated from this representation. In addition, bond
graph approaches have been extended in recent years to model electrochemical storage devices
[39] and heat transfer in the context of chemical reactions [40]. Cellier [5] extends network
thermodynamics beyond the isothermal, isobaric context of Oster et al. [17] by accounting for both
work and heat, and a series of papers [37,41] shows how multi-bonds can be used to model the
thermodynamics of chemical systems with heat and work transfer and convection and to simulate
large systems. Thoma & Atlan [42] discuss ‘osmosis as chemical reaction through a membrane’.
LeFèvre et al. [43] model cardiac muscle using the bond graph approach.

Bond graphs explicitly model the flow of energy through networks making use of the
concept of power covariables: pairs of variable whose product is power. For example, in the
case of electrical networks, the covariables are chosen as voltage and current. As discussed in
earlier studies [1,5,44,45], chemical potential is the driving force of chemical reactions. Hence,
as discussed by Cellier [5], the appropriate choice of power covariables for isothermal, isobaric
chemical reaction networks is chemical potential and molar flow rates. As pointed out by Beard
et al. [30], using both mass and energy balance ensures that models of biochemical networks are
thermodynamically feasible. Modelling using bond graphs automatically ensures not only mass
balance but also energy balance; thus models of biochemical networks developed using bond
graphs are thermodynamically feasible.

As discussed by Hill [1], biochemical cycles are the building-blocks of biochemical systems.
Bond graph models are able to represent thermodynamic cycles and therefore appropriately
represent free energy transduction in biochemical processes in living systems.

Living systems are complex, and therefore a hierarchical and modular approach to modelling
biochemical systems is desirable. Bond graphs have a natural hierarchical representation [46] and
have been used to model complex network thermodynamics [5,37,41]. Complex systems can be
simplified by approximation: the bond graph method has a formal approach to approximation
[8,10,11] and the potential algebraic issues arising from such approximation [47]. In particular,
complex systems can be simplified if they exhibit a fast and slow timescale; a common feature
of many biochemical (for example, Michaelis–Menten enzyme kinetics) and cell physiological
systems (for example, slow–fast analysis of the membrane potential of electrically excitable
cells). A bond graph approach to two-time-scale approximation has been presented by Sueur &
Dauphin-Tanguy [48].

As well as providing a thermodynamically consistent model of a dynamical system suitable
for simulation, representation of a biochemical system using the bond graph approach enables
a wide range of properties and characteristics of the system to be represented. A number of key
physical properties can be derived directly from the bond graph representation. For example,
chemical reactions involve interactions between species which preserve matter; the number of
moles of each species in a reaction must be accounted for.

As discussed by Oster et al. [17, §5.2], the kinetics of biochemical networks become particularly
simple near thermodynamic equilibrium. However, as discussed by Qian & Beard [49], it
is important to consider the behaviour of biochemical networks in living systems far from
equilibrium. In particular, the analysis of non-equilibrium steady states (where flows are constant
but non-zero and states are constant) is important [2,50].

Using elementary reactions as examples, §2 shows how biochemical networks may be
modelled using bond graphs. The bond graph is more than a sketch of a biochemical network; it
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Figure 1. Simple reactions and their bond graphs. (a) The simple binary reaction is represented by a bond graph using a C
component for each substance and anRe component to explicitly represent the reaction. (b) An alternative representation using
0 (common potential) junctions to allow connections. (c) Two reactions in series extending (b). (d) A single reaction between
four substances requires a single Re component, one C component for each substance and two 1 (common flow) connections.
(e) The stoichiometric coefficient 2 can be incorporated using the bond graph TF c̃omponent. (f ) A simple enzyme-catalysed
reaction. The enzyme E appears on each side of the formula thus creating a cycle in the bond graph (see §5a). (g) The same as
(c) but with an externally imposed flow that adds molecules of A while subtracting the same number of molecules of C thus
allowing a non-equilibrium steady state. (h) A simple biochemical cycle. (Online version in colour.)

can be directly interpreted by a computer and, moreover, has a number of features that enable key
physical properties to be derived from the bond graph itself. For example, §3 shows how the bond
graph can be used to examine the stoichiometric properties of biochemical networks. Section 4
discusses the role of bond graphs in the structural approximation of biochemical networks.
Section 5 discusses two biochemical cycles, an enzyme catalysed reaction and a biochemical
switch, to illustrate the main points of the paper. Section 6 discusses software aspects of the
bond graph approach and how it could be integrated into preexisting hierarchical modelling
frameworks. Section 7 concludes the paper.

2. Bond graph modelling of chemical reactions
Bond graphs are an energy-based modelling approach. This section introduces the bond graph
methodology in the context of biochemical reactions using the reactions listed in figure 1. The
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section is organized to emphasize the key aspects of bond graph modelling which make it a
powerful approach to the modelling of biochemical systems.

(a) Energy flow, storage and dissipation in a simple reversible reaction
Figure 1a shows the simple interconversion of two molecular species, A and B. As mentioned
above, a thermodynamically consistent representation of biochemical processes demands
consideration of reversible reactions, and so we consider this simple interconversion as the

simplest possible reaction. This interconversion is represented by bonds of the form
μ
⇁
v

each of

which is associated with two variables:1 the chemical potential μ (J mol−1) and a molar flow rate v

(mol s−1).2 The product of these two variables is energy flow or power P = μ × v (W). The bonds
represent the transmission of power in the system and do not create, store or dissipate power. The
half-arrow on the bond indicates the direction in which power flow will be regarded as positive
and thus defines a sign convention.

In figure 1a, the pools of chemical species A and B are represented by C components. These
components reflect the amount of each species present (and hence determine the chemical
potential of each species).3 C : A contains xa moles of species A and the rate of decrease is equal to
the molar flow v; C : B contains xb moles of species B and the rate of increase is v. Thus

ẋa = −v and ẋb = v. (2.1)

Each C component is associated with a chemical potential μ which, assuming a dilute system
within a volume V, is given by Keener & Sneyd [3, §1.2]:

μa = μ0
a + RT ln

xa

V
μb = μ0

b + RT ln
xb

V
, (2.2)

where μ0
a is the standard chemical potential for species A, and similarly for species B. It is

convenient to rewrite equations (2.2) as

μa = RT ln Kaxa, μb = RT ln Kbxb, where Ka = 1
V

eμ0
a/RT and Kb = 1

V
eμ0

b/RT. (2.3)

Each C component stores but does not create or dissipate energy. The corresponding energy flow
is described through the bond to which it is connected.

The reversible reaction between chemical species A and B is represented by a single Re
(Reaction) component which relates the reaction flow v to the chemical affinities (weighted sum
of chemical potentials) for the forward and reverse reactions Af = μa and Ar = μb. As discussed
by Van Rysselberghe [51] and Oster et al. [17, §5.1], the reaction rate, or molar flow, is given by the
Marcelin–de Donder formula:

v = v+ − v−, where v+ = κ eAf/RT and v− = κ eAr/RT, (2.4)

where κ is a constant which determines reaction rate. This can be rewritten in two ways. The de
Donder formula [52, eqn(11)]:

v+

v− = eA/RT, where A = Af − Ar (2.5)

and the Marcelin formula [53, eqn(1)]:

v = κ(eAf/RT − eAr/RT). (2.6)

1The textual annotation in blue is for explanatory purposes, it is not part of the bond graph itself.

2The standard bond graph terminology is that the chemical potential is termed an effort and is analogous to voltage in
electrical systems and force in mechanical systems. Similarly, the molar flow rate is termed a flow and analogous to current in
electrical systems and velocity in mechanical systems.
3The C component stands for ‘capacitor’. The chemical potential is analogous to the voltage associated with a capacitor in an
electrical circuit, which charges or discharges if there is a net influx or efflux into the component.
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This latter formulation is used in the sequel. The Re component dissipates but does not create or
store, energy.

In the particular case of figure 1a, substituting the chemical potentials of equations (2.3) into
equations (2.4) recovers the well-known first-order mass-action expressions:

v+ = κKaxa and v− = κKbxb, v = κ(Kaxa − Kbxb). (2.7)

We note that this notation clearly demarcates parameters relating to thermodynamic quantities
(Ka, Kb) from reaction kinetics (κ) and that the equilibrium constant is given by Kb/Ka.

Equations (2.7) can also be written in the conventional rate constant form as

v+ = k+xa and v− = k−xb, v = v+ − v− = k+xa − k−xb, (2.8)

where the forwards and backwards first-order rate constants are

k+ = κKa and k− = κKb. (2.9)

The thermodynamic quantities and reaction kinetics are no longer distinguished in the rate
constant formulation of equations (2.8).

(b) Modularity: coupling reactions into networks
A key feature of bond graph representations is to construct and analyse models of large-
scale systems from simpler building blocks. The bond graph of figure 1a cannot be used
as a building block of a larger system as there are no connections available with which to
couple to other reactions. However, the bond graph approach is, in general, modular and
provides two connection components for this purpose: the 0 junction and the 1 junction. Each
of these components transmits but does not store, create or dissipate energy. In figure 1b, the
representation of the simple reversible reaction in figure 1a is expanded to include two 0 junction
connectors. This representation is identical to that in figure 1a except that it makes explicit the
junctions through which other reactions involving species A and B can be coupled to this reaction.
The bond graph of figure 1c makes use of the right-hand 0 junction of figure 1b to build two
connected reactions; where species B is also reversibly interconverts with species C.

The connector in this case is a 0 junction. The 0 junction can have two or more impinging

bonds. In the case of the central 0 junction of figure 1c, there are three impinging bonds: one
(

μb
⇁
v1

)

pointing in and two
(

μb
⇁
vb

and
μb
⇁
v2

)
pointing out. As indicated in figure 1c, the 0 junction has two

properties:

(i) the chemical potentials or affinities (efforts) on all impinging bonds are constrained to be
the same, (the 0 junction is therefore a common potential connector) and

(ii) the molar flows on the impinging bonds sum to zero, under the sign convention that a
plus sign is appended to the flows corresponding to inward bonds and a minus sign for
outward bonds:

v1 − vb − v2 = 0 or vb = v1 − v2. (2.10)

These two properties imply a third: the power flowing out of a 0 junction is equal to the power
flowing in (the 0 junction is power-conserving):

Pa + P2 = μbvb + μbv2 = μb(vb + v2) = μbv1 = P1. (2.11)

In a similar manner, the left-hand 0 junction implies that va = −v1 and the right-hand 0 junction
implies that vc = v2. Figure 1c can easily be extended to give a reaction chain of arbitrary length.
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By contrast, in order to represent the reaction of figure 1d we introduce the 1 junction, which
has the same power-conserving property as the 0 junction but which represents a common flow
connector.4 In particular, with reference to the left-hand 1 junction in figure 1d:

(i) the molar flows on all impinging bonds are constrained to be the same and
(ii) the affinities on the impinging bonds sum to zero when a plus sign is appended to the

efforts corresponding to inward bonds and a minus sign for outward bonds:

μa + μb − Af = 0 or Af = μa + μb. (2.12)

Similarly, the right-hand 1 junction implies that:

Ar − μc − μd = 0 or Ar = μc + μd (2.13)

substituting the chemical potentials of equations (2.12) and (2.13) into equations (2.4) gives the
well-known second-order mass-action expression:

v = κ(KaxaKbxb − KcxcKdxe) = k+xaxb − k−xcxd, (2.14)

where

k+ = κKaKb and k− = κKcKd. (2.15)

Once again, we note that this notation clearly demarcates parameters relating to thermodynamic
quantities (Ka, Kb, Kc, Kd) from reaction kinetics (κ).

(c) Incorporating stoichiometry into reactions
The reaction of figure 1e has one mole of species A reacting to form two moles of species B.
The corresponding bond graph uses the TF5 component to represent this stoichiometry. The TF
component transmits but does not store, create or dissipate energy. Hence, the power out equals
the power in. Thus. in the context of figure 1e:

Arv = μbvb (2.16)

(noting that in this case Ar is the ‘unknown’ as μb is determined by the 0 junction).
A TF component with ratio n is donated by TF : n and is defined by the power conserving

property and that the output flow is n times the input flow. As power is conserved, it follows
therefore that the input effort is n times the output effort. In the context of figure 1e

Ar = 2μb and vb = 2v. (2.17)

Noting that Af = μa it follows from equations (2.4) that:

v = κ(Kaxa − (Kbxb)2) = k+xa − k−x2
b , where k+ = κKa and k− = κK2

b . (2.18)

(d) Non-equilibrium steady states: reactions with external flows
As has been discussed by many authors, in cells biochemical reactions are maintained away from
thermodynamic equilibrium through continual mass and energy flow through the reaction. The
reaction of figure 1g corresponds to the reaction in figure 1c except that an external flow v0 > 0 has
been included. This corresponds to adding molecules of A and removing molecules of C at the
same fixed rate. As discussed by Qian et al. [50], the reaction has a non-equilibrium steady-state
(NESS) corresponding to v1 = v2 = v0. This is a steady state because the flows va = vb = vc = 0 and
hence ẋa = ẋb = ẋc = 0; it is not a thermodynamic equilibrium because v1 �= 0 and v2 �= 0.

4The common flow 1 junction is the dual component of the common effort 0 junction.

5Oster et al. [17] use the symbol TD in place of TF.
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(e) Thermodynamic compliance
The bond graph approach ensures thermodynamic compliance: the model may not be correct, but
it does obey the laws of thermodynamics. To illustrate this point, consider the biochemical cycle
of figure 1h. As discussed by, for example, Qian et al. [50], a fundamental property of such cycles
is the thermodynamic constraint that

k+1k+2k+3k+4

k−1k−2k−3k−4
= 1. (2.19)

This property arises from the requirement for detailed balance around the biochemical cycle.
However, as is now shown, the thermodynamic constraint of equation (2.19) is automatically
satisfied by the bond graph representation of figure 1h.

Similar to equation (2.8), the four reaction flows can be written as

v1 = κ1(Kaxa − Kbxb), . . . , v4 = κ4(Kdxd − Kaxa). (2.20)

Alternatively, the four reaction flows of equations (2.20) can be rewritten as

v1 = (k+1xa − k−1xb), . . . , v4 = (k+4xd − k−4xa), (2.21)

where
k+1 = κ1Ka, . . . , k+4 = κ4Kd, k−1 = κ1Kb, . . . , k−4 = κ4Ka. (2.22)

Hence
k+1k+2k+3k+4

k−1k−2k−3k−4
= κ1Kaκ2Kbκ3Kcκ4Kd

κ1Kbκ2Kcκ3Kdκ4Ka
. (2.23)

As each factor of the numerator on the right-hand side of equation (2.23) appears in the
denominator, and vice versa, then equation (2.19) is satisfied.

3. Stoichiometric analysis of reaction networks
Stoichiometric analysis is fundamental to understanding the properties of large networks [12,13,
54]. In particular, computing the left and right null space matrices leads to information about
pools and steady-state pathways [55–58]. For example, when analysing reaction networks such
as metabolic networks, one may seek to determine for measured rates of change of metabolite
concentrations, what are the reaction rates in the network. This question is addressed below.
Initially, we will address the inverse problem: for given reaction velocities, what are the rates
of change of concentrations of the chemical species? In bond graph terms, this asks the question:
‘given the reaction flows V, what are the flows Ẋ at the C components?’. This can be addressed
directly from the bond graph using the concept of causality.

The bond graph concept of causality [8,10,11] has proved useful for generating simulation
code, detecting modelling inconsistencies, solving algebraic loops [47], approximation,
inversion [59–61] and analysis of system properties [62]. This section shows how the bond
graph concept of causality can be used to examine the stoichiometry of networks of biochemical
reactions. As in §2, this is done by analysis of particular examples. However, as discussed in §6,
this approach scales up to arbitrarily large systems.

(a) The stoichiometric matrix
Figure 2a is similar to the bond graph of figure 1a except that two lines have been added
perpendicular to each bond; these lines are called causal strokes. It is convenient to distinguish
between the flows on each side of the Re component by relabelling them as vf and vr (vf = vr = v)
and this is reflected in the annotation. The implications of the causal stroke are twofold:

(i) the bond imposes effort on the component at the stroke end of the bond and
(ii) the bond imposes flow on the component at the other end of the bond.
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Figure 2. Causal strokes and the stoichiometric matrix. The bond graph notion of causality provides an algorithm for
determining the stoichiometric matrix by explicitly showing how the Re flows propagate to the C flows. (a) The C components
impose a potential onto the Re component; the Re component imposes a flow into the C components. (b) As (a) and note
that exactly one bond imposes a potential on to each 0 (common potential) junction. (c) As (a) and note that exactly one bond
imposes a flow on to each 1 (common flow) junction. (d) As the external flow v0 impinges on to 0 junctions, it does not affect
the causality of the parts in common with (b). (Online version in colour.)

Thus, as indicated on the bond graph:6 the flows are given by

ẋa = −va = −vf = −v and ẋb = vb = vr = v (3.1)

and the efforts by
Af = μa and Ar = μb. (3.2)

In general, the reaction flows can be composed into the vector V, and the state derivatives into
the vector X and these are related by the stoichiometric matrix N:

Ẋ = NV. (3.3)

In the case of figure 2a:

X =
(

xa

xb

)
V = v and N =

(
−1
1

)
. (3.4)

The system of figure 2b has three C components and the state X can be chosen as

X = (xa xb xc)T. (3.5)

There are two reaction flows v1 and v2 corresponding to Re : 1 and Re : 2, respectively. The flow
vector V can be chosen as

V = (v1 v2)T. (3.6)

Following the causal strokes and observing the sign convention at the 0 junction

ẋa = va = −v1, ẋb = vb = v1 − v2 and ẋc = vc = v2. (3.7)

Using (3.5) and (3.6), it follows that

Ẋ = NV, where N =

⎛
⎜⎝−1 0

1 −1
0 1

⎞
⎟⎠ .

6Although in mathematics x = y, y = x and x − y = 0 are the same, this is not true in imperative programming languages; the
left-hand side is computed from the right-hand side. This latter interpretation is used in the rest of this section.
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(c) (d)
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vf = va
vb = vr
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v1

µa va
µb
v1

µb
v2

µb vc
µc
v2

µc µc

A
1

B
2

C

va

µa

µa
v

µc
vc

Af

v
Ar

v

µc
v

µd
v

vb

µb

µb
v µd

vd
A + B C + D

µa
v1

µa va
µb
v1

µb
v2

µb vb
µc
v2

µc vc

v0

µc

v0
1

v0

µa

v0 v0
A

1
B

2
C

C : A C : BRe C : B C : CC : A

C : A C : B C : CC : A

C : B

C : C

C : D

1 Re 1

0 0

0 0

0 0 0Re : 1 Re : 2

0 0 0Re : 1 Re : 2

Figure 3. Causal strokes and the stoichiometric matrix subspaces. The bond graph notion of causality provides an algorithm for
determining the subspaces of the stoichiometric matrix by explicitly showing how the C flows propagate to other C flows and
to the Re flows. (a) C : A imposes a flow into Rewhich in turn imposes a flow into C : B. (b) C : A imposes a flow into Re : 1 and
thence, together with C : B. imposes a flow into the 0 junction and thence intoRe : 2 and C : C. (c) C : A imposes a flow into the
1 junction and thence into C : B and Re; Re in turn imposes a flow into the 1 junction and thence into C : C and C : D. (d) As the
external flow v0 impinges on to 0 junctions, it does not affect the causality of the parts in common with (b). (Online version in
colour.)

The system of figure 2d is similar to that of figure 2b but with an additional input v0 and so V is
defined as

V = (v0 v1 v2)T. (3.8)

Using the summing rules at the left and right 0 junctions, it follows that:

Ẋ = NV, where N =

⎛
⎜⎝ 1 −1 0

0 1 −1
−1 0 1

⎞
⎟⎠ .

The system of figure 2c has 4 C components and the state X can be chosen as

X = (xa xb xc xd)T. (3.9)

There is one reaction flows v corresponding to Re. The flow vector V is thus scalar in this case:

V = v. (3.10)

Following the causal strokes and observing the sign convention at the 0 junction,

ẋa = va = −v, ẋb = vb = −v, ẋc = vc = v and ẋd = vd = v. (3.11)

Using (3.5) and (3.6), it follows that

Ẋ = NV, where N = (−1 −1 1 1)T. (3.12)

In bond graph terms, this particular arrangement of causal strokes is known as integral
causality. Naturally, this analysis extends to arbitrarily large systems and can be carried out
algorithmically in automated software.



11

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140459

...................................................

(b) Stoichiometric null spaces
The causal analysis of §3a asks the question: ‘given the reaction flows V, what are the flows
Ẋ at the C components?’. This section looks at the inverse question: ‘given the flows Ẋ at the C
components, what are the reaction flows V?’

With this in mind, the causal stroke on the bond impinging on the C : A component in figure 3a
is now at the C end of the bond, thus imposing flow on the Re component and so vf = va. There
is now a causal issue: as vr = vf, it follows that vr is also determined by the C : A component and
vr = va. Hence the flow on the bond impinging on C : B is determined and the causality must
be as shown. Thus causal considerations show that the flow va determines the flow vb which
therefore cannot be independently chosen. In bond graph terms, this particular arrangement of
causal strokes is known as derivative causality. To summarize,

v = va = −ẋa and ẋb = v = −ẋa. (3.13)

The system of figure 3a has two C components and

X = (xa xb)T. (3.14)

It is convenient to decompose X into two components: x the independent part of X and Xd the
dependent part of X. In particular,

x = xa = LxXX, where LxX = (1 0) (3.15)

and

Xd = (xb) = LdXX, where LdX = (0 1). (3.16)

The full state X can be reconstructed from x and Xd using

X = LT
xXx + LT

dXXd. (3.17)

Using this decomposition, equations (3.13) can be written as

Ẋd = Ldxẋ, (3.18)

where

Ldx = (−1). (3.19)

Combining these equations,

Ẋd = LdXẊ = Ldxẋ = LdxLxXẊ. (3.20)

Defining

G = LdX − LdxLxX (3.21)

it follows that the state dependency can also be expressed as

GẊ = GNV = 0, (3.22)

where, in this case

G = (0 1) + (1 0) = (1 1). (3.23)

As discussed in the earlier studies, as (3.22) is true for all V

GN = 0 (3.24)

and thus G is a left null matrix of N. In this particular case, GẊ = 0 corresponds to

ẋa + ẋb = 0 or xa + xb = const. (3.25)

Thus, the total amount of A and B is constant.
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The system of figure 3b has three C components and

X = (xa xb xc)T. (3.26)

Following the same arguments as for figure 3a, it follows that

x =
(

xa

xb

)
= LxXX, where LxX =

(
1 0 0
0 1 0

)
(3.27)

and
Xd = (xc) = LdXX, where LdX = (0 0 1) and Ldx = (−1 − 1). (3.28)

In this case,

G = LdX − LdxLxX = (0 0 1) − (−1 − 1)

(
1 0 0
0 1 0

)
= (1 1 1). (3.29)

In this particular case, GẊ = 0 corresponds to

ẋa + ẋb + ẋc = 0 or xa + xb + xc = const. (3.30)

Thus, the total amount of A, B and C is constant.
The system of figure 3c has four C components and

X = (xa xb xc xd)T. (3.31)

Following the same arguments as for figure 3a, it follows that

x = (xa) = LxXX, where LxX = (1 0 0 0) (3.32)

and
Xd = (xb xc xd)T = LdXX, (3.33)

where

LdX =

⎛
⎜⎝0 1 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ and Ldx =

⎛
⎜⎝ 1

−1
−1

⎞
⎟⎠ . (3.34)

In this case,

G = LdX − LdxLxX =

⎛
⎜⎝0 1 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠−

⎛
⎜⎝ 1

−1
−1

⎞
⎟⎠ (1 0 0 0) =

⎛
⎜⎝−1 1 0 0

1 0 1 0
1 0 0 1

⎞
⎟⎠ . (3.35)

In this particular case, GẊ = 0 corresponds to

xb = xa + const., xa + xc = const. and xa + xd = const.

Thus, the amount of B equals the amount of A plus a constant, the total amount of A and C is
constant and the total amount of A and D is constant.

Continuing the analysis of the system of figure 3b but including the extra input of figure 3d,
the flow vector has an extra component v0 and can be defined as

V = (v0 v1 v2)T, (3.36)

where v1 and v2 are the two reaction flows. It is convenient to decompose V into two components:
v the independent part of V and Vd part of V dependent on Ẋ and v. In particular,

v = v0 = KvVV, where KvV = (1 0 0) (3.37)

and

Vd =
(

v1
v2

)
= KdVV, where KdV =

(
0 1 0
0 0 1

)
. (3.38)
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Moreover, following the causal strokes in figure 3d the flow vector V can be written in terms
of the state derivative Ẋ and the independent flow v as

V = KVXẊ + KVvv, (3.39)

where

KVX =

⎛
⎜⎝ 0 0 0

−1 0 0
−1 −1 0

⎞
⎟⎠ and KVv =

⎛
⎜⎝1

1
1

⎞
⎟⎠ . (3.40)

In the particular case that the system is in a steady state and so Ẋ = 0:

V = Kv, where K = KVv (3.41)

Substituting into equation (3.3) it follows that NKv = 0. As this must be true for all v, it follows
that NK = 0 and thus K is a right null matrix of N.

(c) Reduced-order equations
The stoichiometric analysis of §3a,b has many uses; one of these, reducing the order of the
ordinary differential equations (ODEs) describing a system,7 is given here. Reducing system order
gives a smaller set of equations to solve and may avoid numerical problems, for example, arising
from failure to recognize conserved moieties in a reaction system.

From equation (3.18), the derivatives Ẋd of the dependent state Xd can be written as linear
transformation of the derivatives ẋ of the independent state x as

Ẋd = Ldxẋ. (3.42)

Integrating this equation gives
Xd − Xd(0) = Ldx(x − x(0)), (3.43)

where Xd(0) and x(0) are the values of Xd and x at time zero. Using equations (3.15), (3.16) and
(3.21), equation (3.43) can be rewritten as

Xd = Ldxx + Xd(0) − Ldxx(0) = Ldxx + (LdX − LdxLxX)X(0) = Ldxx + GX(0). (3.44)

Using equation (3.17) to reconstruct X from Xd given by equation (3.44) and x gives

X = (LT
xX + LT

dXLdx)x + LT
dXGX(0) = Lx + GXX(0), (3.45)

where
L = LT

xX + LT
dXLdx and GX = LT

dXG. (3.46)

Equation (3.44) gives an explicit expression for reconstructing the full state X from the
independent state x and the initial state X(0).

From equation (3.3), the state X is given by the system ODE as

Ẋ = NV(X, u), (3.47)

where u represents external flows (for example, v in figure 3d). Using equations (3.15) and (3.45),
the ODE in X of equation (3.47) can be rewritten as the reduced order ODE in x as

ẋ = LxXNV(Lx + GXX(0), u) (3.48)

and the full state reconstructed using equation (3.45).

4. Model reduction and approximation of reaction mechanisms
As discussed in the Introduction, complex systems can be simplified by approximation. However,
it is crucial that such approximation does not destroy the compliance with thermodynamic
principles reflected in the original system.

7Order reduction is also discussed in [63–67].
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In their analysis of the sodium pump, which transports sodium ions out of electrically excitable
cells such as cardiomyocytes, Smith & Crampin [26] consider simplification of the linear chain of
reactions:

· · · X1;
k−

1−⇀↽−
k+

1

X2
k−

2−⇀↽−
k+

2

X3
k−

3−⇀↽−
k+

3

X4 · · · , (4.1)

where the middle reaction in the chain is fast relative to the other reactions. The three reactions
have flows v1 . . . v3 given by

v1 = k+
1 X1 − k−

1 X2, v2 = k+
2 X2 − k−

2 X3 and v3 = k+
3 X3 − k−

3 X4. (4.2)

Reaction (4.1) corresponds to the bond graph of figure 4a which has the flows of equations (4.2),
where

k+
1 = κ1K1, k−

1 = κ1K2, (4.3)

k+
2 = κ2K2, k−

2 = κ2K3, (4.4)

and k+
3 = κ3K3, k−

3 = κ3K4. (4.5)

If κ2 � κ1 and κ2 � κ3, equation (4.4) can be rewritten as

κ2 = 1
ε

, (4.6)

where ε is a small positive number. v2 (4.2) and (4.4) can then be rewritten as

εv2 = K2X2 − K3X3 (4.7)

assuming non-zero v2 this means that as ε → 0, X2 and X3 are in equilibrium and

X3 = ρX2, where ρ = K2

K3
. (4.8)

This also means that the difference in affinities associated with reaction 2 is zero

Af
2 − Ar

2 = K2X2 − K3X3 = 0. (4.9)

Thus, the corresponding reaction component Re : r3 can be removed from the bond graph to give
figure 4b. This implies that the C : X3 component is in derivative causality and thus the bond graph
represents a differential-algebraic equation and an ordinary differential equation. However, as
discussed by Gawthrop & Bevan [11], as C : X2 and C : X3 are on adjacent 0 junctions, they may be
replaced by the single C : X23 component as in figure 4c.

Figure 4c represents the same system as figure 4b if C : X23 contains the same molar mass as
C : X2 and C : X3. Moreover, using equations (4.8)

X23 = X2 + X3 = (1 + ρ)X2. (4.10)

The equilibrium constant K23 of C : X23 must also correspond to those of C : X2 and C : X3 so that

K2X2 = K3X3 = K23X23 (4.11)

hence

K23 = K2

1 + ρ
= ρK3

1 + ρ
. (4.12)

The bond graph of figure 4c corresponds to the reaction scheme [26, §3.1]:

· · · X1
α+

1�
α−

1

X23
α+

3�
α−

3

X4 · · · (4.13)
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where

α+
1 = κ1K1 = k+

1 α−
1 = κ1K23 = κ1

K2

1 + ρ
= k−

1
1 + ρ

and α+
3 = κ3K23 = κ1

ρK3

1 + ρ
= ρk+

3
1 + ρ

= k+
3

1 + (1/ρ)
α−

3 = κ3K4 = k−
3 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.14)

Noting that ‘K2’ in Smith & Crampin [26, §3.1] corresponds to ‘ρ’ in this paper, equations (4.14)
correspond to eqn (18) of Smith & Crampin [26].

In general, a chain of N C components and N − 1 Re components where all of the reactions are
fast may be approximately replaced by a single C component with

K = 1
1/K1 + 1/K2 . . . 1/KN

= 1∑N
i=1(1/Ki)

. (4.15)

This procedure is extended to bimolecular reactions in the electronic supplementary
material, §B.

5. Biochemical cycles
Many biochemical processes central to cellular physiology represent biochemical cycles:
including enzyme catalysed reactions, transport processes and signalling cascades. A very simple,
but practically important, biochemical cycle is the enzyme-catalysed reaction of figure 1f. This
reaction is closely related to that of figure 1d with the important difference that the enzyme E
appears on both sides of the reaction creating the ‘loop’ in the bond graph corresponding to a
biochemical cycle. Moreover, in figure 1f, the net flow into E is zero and thus ẋe = 0 and xe = e0,
where e0 is a constant. It follows that

v = κ(KexeKsxs − KexeKpxp) = κe(Ksxs − Kpxp), (5.1)

where
κe = κKee0. (5.2)

(a) Example: enzyme-catalysed reaction cycles
As noted above, the enzyme-catalysed reaction of figure 1f simplifies to a simple reaction with
a modified reaction constant κe = κKee0. However, it is known from experiments that this simple
model of an enzyme-catalysed reaction fails for high reaction flows. For this reason, as discussed
in [2,3,15], an intermediate complex C is introduced so that the reaction

S + E � P + E (5.3)

is replaced by

S + E
1−⇀↽− C

2−⇀↽− P + E. (5.4)

This reaction may then be replaced by various versions of the Michaelis–Menten approximation.
As discussed by Gunawardena [6], this approximation has been much misused. In particular, it is
used in circumstances which violate the fundamental law of thermodynamics.

Using the bond graph approach, this section derives a Michaelis–Menten approximation which
is thermodynamically compliant. In particular, the aim of the approximation is, as for the simple
case of figure 1f, to replace the enzyme-catalysed reaction by a single Re component with an
equivalent gain κe. But, unlike the simple case, κe is not a constant but rather an nonlinear function
of the forward and backward affinities.

Figure 5a shows the enzyme-catalysed reaction (with complex C). The substrate S and product
P are omitted from the bond graph as they do not form part of the approximation. This is a more
general approach than usual as the result to be derived holds for any biochemical network giving
rise to Af and Ar. As already stated, the aim of the approximation is to replace the bond graph
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C : C

Figure 5. (a,b) The Michaelis–Menten approximation: (a) full, (b) approximate. (Online version in colour.)

of figure 5a by a single Re component of figure 5b. As, by definition, the Re component has the
same flow on each port, it is natural to approximate the bond graph of figure 5a by enforcing this
constraint at the outset. To do this, the flow component Sf : v is used to impose a flow v on each
port thus generating the corresponding forward Af and backward Ar affinities.

With reference to figure 5a, and using equation (2.6), the equation describing the left-hand Re
component may be rewritten as

eA1/RT = eμc/RT + v

κ1
= Kcxc + v

κ1
(5.5)

hence

A1 = RT ln
(

Kcxc + v

κ1

)
and A2 = RT ln

(
Kcxc − v

κ1

)
. (5.6)

It follows that Af is given by

Af = A1 − μe = A1 − RT ln Kexe = RT ln
Kcxc + v/κ1

Kexe
(5.7)

and, similarly

Ar = RT ln
Kcxc − v/κ1

Kexe
. (5.8)

It is convenient to transform Af and Ar into v+
0 and v−

0 , where:

v+
0 = eAf/RT and v−

0 = eAr/RT (5.9)

giving

v+
0 = Kcxc + v/κ1

Kexe
and v−

0 = Kcxc − v/κ2

Kexe
. (5.10)

Subtracting these equations gives

v+
0 − v−

0 = 1/κ1 + 1/κ2

Kexe
v (5.11)
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hence
v = κ̄Kexeδv , where κ̄ = κ1κ2

κ1 + κ2
and δv = v+

0 − v−
0 . (5.12)

Multiplying equations (5.10) by κ1 and κ2, respectively, and adding gives

κ1v
+
0 + κ2v

−
0 = (κ1 + κ2)

Kcxc

Kexe
(5.13)

hence

xc = Ke

Kc
σvxe, where σv = κ1v

+
0 + κ2v

−
0

κ1 + κ2
= κ1 eAf/RT + κ2 eAr/RT

κ1 + κ2
. (5.14)

Using the feedback loop implied by xe = e0 − xc and equation (5.14)

xe = e0

1 + (Ke/Kc)σv
. (5.15)

Substituting equation (5.15) into equation (5.12) gives

v = κ̄
Kee0

1 + (Ke/Kc)σv
δv = κ̄

Kce0

Kc/Ke + σv
δv . (5.16)

There are two special cases of interest κ1 = κ2 and κ1 � κ2. In these two cases, σv is given by

σv =

⎧⎪⎨
⎪⎩

v+
0 + v−

0
2

= eAf/RT + eAr/RT

2
κ1 = κ2

v+
0 = eAf/RT κ1 � κ2.

(5.17)

Hence the enzyme-catalysed reaction can be approximated by the Re component with equivalent
gain κe given by

κe = e0
κ̄Kc

km + σv
, where km = Kc

Ke
. (5.18)

In contrast to the expression for the simple case (5.2) κe is, via σv (5.17), a function of the affinities
Af and Ar. The fact that σv > 0 ensures that the Re component corresponding to equation (5.18) is
thermodynamically compliant.

In both equations (5.2) and (5.18), the expression for κe has a factor e0, the (constant) sum of xe

and xc. In many biochemical situations, the enzyme E is the product of another reaction. Although
equation (5.18) is derived for a constant e0, a further approximation would be to allow e0 to be
time varying e0 = xE where xE is the enzyme concentration from an external reaction. This leads
to the concept of the modulated Re, or mRe component of figure 5c. The additional modulating bond
carries two signals: the effort μE, where

μE = exe/RT (5.19)

and a zero flow. The zero flow means that the modulating bond does not transmit power. The mRe
component is used to approximate the system of §5b.

(b) Example: a biochemical switch
Beard & Qian [2, §5.1.1] discuss a biochemical switch described by

S + ATP + K
1−⇀↽−KS KS

2−⇀↽− S� + ADP + K

and S� + P
3−⇀↽−S�P S�P

4−⇀↽− S + Pi + P.

⎫⎪⎪⎬
⎪⎪⎭ (5.20)

These reactions represent a phosphorylation/dephosphorylation cycle. Protein S is phosphory-
lated by kinase K and is dephosphorylated by phosphatase P, where S� represents the
phosphorylated (active, perhaps) state of the protein. The corresponding bond graph appears in
figure 6a where the external flow va necessary to top up the ATP reservoir is included. This system
contains nine states and four reactions with mass-action kinetics. Using the approximation of §5a,
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figure 5, this system can be approximated by the bond graph of 6b. The approximate system
has five states and two reactions with the reversible Michaelis–Menten kinetics of §5a. It has the
further advantage that the dynamics are explicitly modulated by the concentrations xk and xp of
K and P, respectively.

The bond graph of 6b clearly shows a biochemical cycle. Its behaviour can be understood as
follows. When xk is large, ATP drives S though the reaction component Re : r12 to create S�; and
this flow is greater than that though Re : r34 and so the amount of S� increases at the expense of
S. However, when xk is small the flow though Re : r12 becomes less than that though Re : r34 and
amount of S� decreases.

For the purposes of illustration, the following parameter values were used. With reference to
equation (5.18), km = 0 and κ̄Kc = 100 for both reactions. With reference to equations (2.3), KATP =
10 and KS = KS∗ = KADP = KPI = 1. The initial states were xATP = 10, xS = xADP = 1 and xS∗ =
xPI = 0.

Figure 7 shows a simulation of the biochemical switch when ATP is replenished by setting

va = ga(wATP − xATP), where ga = 2 and wATP = 10. (5.21)

Equation (5.21) represents simple proportional feedback; in vivo, this would correspond to a
cellular control system. Figure 7a shows the response of the amount of S� to a sinusoidal variation
in the amount of K. The biochemical switch both amplifies and distorts the signal. This effect
is further shown in figure 7b where the amount of S� is plotted against the amount of K. This is
basically a high-gain saturating function. The hysteresis is due to the time constant of the feedback
loop implied by equation (5.21); the hysteresis reduces if either ga is increases or the frequency
of the input sinusoid decreased. All biochemical cycles require free-energy transduction [1].
Figure 7c shows the molar flow of ATP into the system (and, as indicated in figure 6b, the outflow
of ADP and Pi) as a function of time; the ON state of the switch induces a flow of ATP using
equation (5.21) to replenish the ATP consumed by the cycle. Figure 7d shows the corresponding
amounts of ATP, ADP and Pi. The controller does not exactly hold ATP at the desired level of
wATP = 10; a higher gain controller would reduce the control error. As discussed by Beard &
Qian [2, §5.1.1]: ‘. . . a biochemical switch cannot function without a free energy input. No energy,
no switch’. This can be simulated by setting ga = 0 in equation (5.21) and forms the electronic
supplementary material, figure S1 of §A.
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Approximate models of signalling network components have been advocated by Kraeutler
et al. [68] and Ryall et al. [69] as an approach to understanding the behaviour of complex signalling
networks. The models developed in this section could also be used for such a purpose, but with
the advantage that the resulting model is thermodynamically compliant.

Model reduction of an enzymatic cycle model of the SERCA pump [70] is discussed in the
electronic supplementary material, §c.

6. Hierarchical modelling of large systems
One of the objectives of systems biology is to represent the network of biochemical reactions
taking place in cells by computational models. Large-scale models of cellular metabolic and
signalling networks have been constructed; for example, cardiac cell models which integrate
electrophysiology, metabolism, signalling and cellular mechanics have been developed in order
to study cell physiology in normal and disease conditions [71].

In order to facilitate the development and reuse of such models, XML-based markup languages
such as CellML [72] and SBML [73] have been created. These languages enable mathematical
descriptions of biological processes to be stored in machine-readable formats, but put relatively
little restriction on the formulation of the models themselves.

For example, CellML, which was originally developed in order to share models of cardiac
cell dynamics, represents models as a number of component elements, each of which contains
a number of variables (for example, representing cell membrane potential, or an ionic
concentration), the mathematical relationship between these variables (for example, the Nernst
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potential given as a function of the concentrations) expressed in MathML, and associated
parameters. Such components can be connected to one another to form a model.

This construction allows a modular approach to modelling in which cellular processes and
reactions can be broken down into components, which are then connected to form a model of
the system under study [74]. However, there is no requirement that components adhere to the
principles of conservation of mass, conservation of charge or thermodynamic consistency. Nor
is there currently any framework which would ensure thermodynamic consistency, or mass or
charge conservation, for a model created by connecting components in this modular fashion, even
if the components themselves were constructed as thermodynamic cycles.

The bond graph approach which we have outlined here provides such a framework for
modular representation of components of biological systems, which can be assembled so as
to preserve thermodynamic properties, charge and mass conservation, both in the individual
components and in the overall system. Furthermore, the development of the bond graph markup
language (BGML) by Borutzky [35] for the exchange and reuse of bond graph models, and
associated software, provides the tools through which integration with representations such as
CellML may be achieved.

The stoichiometric analysis of §3, and its relationship to causality, is illustrated by simple
systems. However, the notion of bond graph causality, and the corresponding propagation of
causality using the sequential causality assignment procedure [10, ch. 5], is applicable to arbitarily
large systems.

7. Conclusion
Based on the seminal work of Oster et al. [16], the fundamental concepts of network
thermodynamics have been combined with more recent developments in the bond graph
approach to system modelling to give a new approach to building dynamical models of
biochemical networks within which compliance with thermodynamic principles is automatically
satisfied. As noted in the Introduction, the bond graph is more than a sketch of a biochemical
network; it can be directly interpreted by a computer and, moreover, has a number of features that
enable key physical properties to be derived from the bond graph itself. It has been shown that
stoichiometric properties, including the stoichiometric matrix N and the left and right null-space
matrices G and K, can be directly derived from the bond graph using the concept of causality
associated with bond graphs. The corresponding causal paths, when superimposed on the bond
graph, directly indicate both pools (conserved moieties) and steady-state flux paths. The bond
graph methodology includes a framework for approximating complex systems while retaining
compliance with thermodynamic principles and this has been illustrated in two contexts: chains
of reactions and the Michaelis–Menten approximation of enzyme-catalysed reactions.

As emphasized by Beard & Qian [2], living organisms are associated with non-equilibrium
steady states. For this reason, this paper has emphasized the role of external inputs to biochemical
networks modelled by bond graphs. In particular, the example of §5b, models a biochemical
switch where the role of ATP as a power source is explicitly integrated into the bond graph model.

The bond graph approach is naturally modular in that networks of biochemical reactions can
be connected by bonds while retaining compliance with thermodynamic principles. Modularity
has been illustrated by simple examples and future work will develop appropriate software tools
to build on this natural modularity.

Biochemical networks have nonlinear dynamics which generate phenomena which cannot
be generated by linear systems. Nevertheless, useful information can be obtained from linear
models obtained by linearization of nonlinear systems. In the context of engineering systems
theory, linearization has been considered within the framework of sensitivity theory [75,76].
In the context of biochemical networks, metabolic control analysis (MCA) [77] is based on the
sensitivity analysis of stoichiometric networks. The relationship of MCA to engineering concepts
of sensitivity has been examined by Ingalls & Sauro [64], Ingalls [65] and Sauro [66]. Ingalls [65]
has shown that standard engineering sensitivity theory can be applied to biochemical networks to



22

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140459

...................................................

derive frequency responses with respect to small perturbations in system parameters. Sensitivity
and linearization of systems described by bond graphs has been considered in earlier studies
[78–80]. The bond graph approach has the advantage of retaining the system structure. Future
work will look at bond graph-based linearization in the context of biochemical networks.

This paper has focused on deriving thermodynamically compliant biochemical reaction
networks, and their thermodynamically compliant approximations, from elementary biochemical
equations. It would be interesting to look at the inverse problem: Is a given ODE model of a system
of biochemical reactions with non-mass-action kinetics thermodynamically compliant and does it
have a bond graph representation?

In addition to stoichiometric analysis, the bond graph approach can be used to directly
investigate structural properties of dynamical systems such as controllability [62,81] and
invertibility [59,61,82,83]. Future work will look at bond graph-based structural analysis in the
context of biochemical networks.

The bond graph approach is based on the notion of power flow. For this reason, it has been
much used for modelling multi-domain engineering systems with appropriate transducer models
to interface domains. Thus, for example: an electric motor or a piezo-electric actuator couples
electrical and mechanical domains and a turbine or pump couples hydraulic and mechanical
domains. We will build on the work of LeFèvre et al. [43] on chemo-mechanical transduction
and the work of Karnopp [39] on chemo-electrical transduction to interface biochemical networks
with systems involving muscle and excitable membranes.

We believe that, when combined with modern software tools, the bond graph approach
provides a significant alternative hierarchical and modular modelling framework for complex
biochemical systems in which compliance with thermodynamic principles is automatically
satisfied.

Acknowledgements. P.J.G. thanks Mary Rudner for her encouragement to embark on a new research direction.
The authors thank the anonymous reviewers for helpful comments on the manuscript.
Funding statement. This research was in part conducted and funded by the Australian Research Council
Centre of Excellence in Convergent Bio-Nano Science and Technology (project no. CE140100036), and by
the Virtual Physiological Rat Centre for the Study of Physiology and Genomics, funded through NIH
grant P50-GM094503. P.J.G. thanks the Melbourne School of Engineering for its support via a Professorial
Fellowship.

References
1. Hill TL. 1989 Free energy transduction and biochemical cycle kinetics. New York, NY: Springer.
2. Beard DA, Qian H. 2010 Chemical biophysics: quantitative analysis of cellular systems. Cambridge,

UK: Cambridge University Press.
3. Keener JP, Sneyd J. 2009 Mathematical physiology: I: cellular physiology, vol. 1, 2nd edn. Berlin,

Germany: Springer.
4. Katchalsky A, Curran PF. 1965 Nonequilibrium thermodynamics in biophysics. Cambridge, MA:

Harvard University Press.
5. Cellier FE. 1991 Continuous system modelling. Berlin, Germany: Springer.
6. Gunawardena J. 2014 Time-scale separation—Michaelis and Menten’s old idea, still bearing

fruit. FEBS J. 281, 473–488. (doi:10.1111/febs.12532)
7. Paynter HM. 1992 An epistemic prehistory of bond graphs. In Bond graphs for engineers (eds

PC Breedveld, G Dauphin-Tanguy), pp. 3–17. Amsterdam, The Netherlands: North-Holland.
8. Gawthrop PJ, Smith LPS. 1996 Metamodelling: bond graphs and dynamic systems. Hemel

Hempstead, UK: Prentice Hall.
9. Borutzky W. 2011 Bond graph modelling of engineering systems: theory, applications and software

support. Berlin, Germany: Springer.
10. Karnopp DC, Margolis DL, Rosenberg RC. 2012 System dynamics: modeling, simulation, and

control of mechatronic systems, 5th edn. New York, NY: John Wiley & Sons.
11. Gawthrop PJ, Bevan GP. 2007 Bond-graph modeling: a tutorial introduction for control

engineers. IEEE Control Syst. Mag. 27, 24–45. (doi:10.1109/MCS.2007.338279)

http://dx.doi.org/doi:10.1111/febs.12532
http://dx.doi.org/doi:10.1109/MCS.2007.338279


23

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140459

...................................................

12. Palsson B. 2006 Systems biology: properties of reconstructed networks. Cambridge, UK: Cambridge
University Press.

13. Palsson B. 2011 Systems biology: simulation of dynamic network states. Cambridge, UK:
Cambridge University Press.

14. Alon U. 2007 Introduction to systems biology: design principles of biological networks. Boca Raton,
FL: CRC Press.

15. Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R. 2011 Systems biology.
New York, NY: Wiley-Blackwell.

16. Oster G, Perelson A, Katchalsky A. 1971 Network thermodynamics. Nature 234, 393–399.
(doi:10.1038/234393a0)

17. Oster GF, Perelson AS, Katchalsky A. 1973 Network thermodynamics: dynamic modelling of
biophysical systems. Q. Rev. Biophys. 6, 1–134. (doi:10.1017/S0033583500000081)

18. Oster G, Perelson A. 1974 Chemical reaction networks. Circuits Syst. IEEE Trans. 21, 709–721.
(doi:10.1109/TCS.1974.1083946)

19. Oster GF, Auslander DM. 1971 Topological representations of thermodynamic systems—I.
Basic concepts. J. Franklin Inst. 292, 1–17. (doi:10.1016/0016-0032(71)90037-8)

20. Oster GF, Auslander DM. 1971 Topological representations of thermodynamic systems—
II. Some elemental subunits for irreversible thermodynamics. J. Franklin Inst. 292, 77–92.
(doi:10.1016/0016-0032(71)90196-7)

21. Kohl P, Crampin EJ, Quinn TA, Noble D. 2010 Systems biology: an approach. Clin. Pharmacol.
Ther. 88, 25–33. (doi:10.1038/clpt.2010.92)

22. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. 2006 Physicochemical modelling of
cell signalling pathways. Nat. Cell. Biol. 8, 1195–1203. (doi:10.1038/ncb1497)

23. Smith NP, Crampin EJ, Niederer SA, Bassingthwaighte JB, Beard DA. 2007 Computational
biology of cardiac myocytes: proposed standards for the physiome. J. Exp. Biol. 210, 1576–1583.
(doi:10.1242/jeb.000133)

24. Hunter PJ, Crampin EJ, Nielsen PMF. 2008 Bioinformatics, multiscale modeling and the IUPS
Physiome Project. Brief. Bioinform. 9, 333–343. (doi:10.1093/bib/bbn024)

25. Hunter P et al. 2012 The VPH-Physiome Project: standards, tools and databases for multi-
scale physiological modelling. In Modeling of physiological flows (eds D Ambrosi, A Quarteroni,
G Rozza), pp. 1–23. Italia: Springer.

26. Smith NP, Crampin EJ. 2004 Development of models of active ion transport for whole-cell
modelling: cardiac sodium–potassium pump as a case study. Progr. Biophys. Mol. Biol. 85,
387–405. (doi:10.1016/j.pbiomolbio.2004.01.010)

27. Tran K, Smith NP, Loiselle DS, Crampin EJ. 2009 A thermodynamic model of the
cardiac sarcoplasmic/endoplasmic Ca2+ (SERCA) pump. Biophys. J. 96, 2029–2042.
(doi:10.1016/j.bpj.2008.11.045)

28. Beard DA. 2005 A biophysical model of the mitochondrial respiratory system and oxidative
phosphorylation. PLoS Comput. Biol. 1, e36. (doi:10.1371/journal.pcbi.0010036)

29. Beard DA, Babson E, Curtis E, Qian H. 2004 Thermodynamic constraints for biochemical
networks. J. Theor. Biol. 228, 327–333. (doi:10.1016/j.jtbi.2004.01.008)

30. Beard DA, Liang S, Qian H. 2002 Energy balance for analysis of complex metabolic networks.
Biophys. J. 83, 79–86. (doi:10.1016/S0006-3495(02)75150-3)

31. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ,
Hatzimanikatis V, Palsson BO. 2007 A genome-scale metabolic reconstruction for Escherichia
coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst.
Biol. 3, 121. (doi:10.1038/msb4100155)

32. Soh KC, Hatzimanikatis V. 2010 Network thermodynamics in the post-genomic era. Curr.
Opin. Microbiol. 13, 350–357. (doi:10.1016/j.mib.2010.03.001)

33. Ballance DJ, Bevan GP, Gawthrop PJ, Diston DJ. 2005 Model transformation tools (MTT):
the open source bond graph project. In Proc. 2005 Int. Conf. On Bond Graph Modeling
and Simulation (ICBGM’05), Simulation Series, pp. 123–128, New Orleans, LA: Society for
Computer Simulation.

34. Cellier FE, Nebot A. 2005 The modelica bond graph library. In Proc. 4th Int. Modelica Conf.,
Hamburg, Germany, vol. 1, pp. 57–65. Modelica Association.

35. Borutzky W. 2006 BGML—a novel XML format for the exchange and the reuse of
bond graph models of engineering systems. Simul. Model. Practice Theory 14, 787–808.
(doi:10.1016/j.simpat.2006.01.002)

http://dx.doi.org/doi:10.1038/234393a0
http://dx.doi.org/doi:10.1017/S0033583500000081
http://dx.doi.org/doi:10.1109/TCS.1974.1083946
http://dx.doi.org/doi:10.1016/0016-0032(71)90037-8
http://dx.doi.org/doi:10.1016/0016-0032(71)90196-7
http://dx.doi.org/doi:10.1038/clpt.2010.92
http://dx.doi.org/doi:10.1038/ncb1497
http://dx.doi.org/doi:10.1242/jeb.000133
http://dx.doi.org/doi:10.1093/bib/bbn024
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2004.01.010
http://dx.doi.org/doi:10.1016/j.bpj.2008.11.045
http://dx.doi.org/doi:10.1371/journal.pcbi.0010036
http://dx.doi.org/doi:10.1016/j.jtbi.2004.01.008
http://dx.doi.org/doi:10.1016/S0006-3495(02)75150-3
http://dx.doi.org/doi:10.1038/msb4100155
http://dx.doi.org/doi:10.1016/j.mib.2010.03.001
http://dx.doi.org/doi:10.1016/j.simpat.2006.01.002


24

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140459

...................................................

36. Cellier FE, Greifeneder J. 2008 Thermobondlib—a new modelica library for modeling
convective flows. In Proc. 6th Int. Modelica Conf., Bielefeld, Deutschland, pp. 163–172. Modelica
Association.

37. Cellier FE, Greifeneder J. 2009 Modeling chemical reactions in modelica by use of chemo-
bonds. In Proc. 7th Modelica Conf., Como, Italy. Modelica Association.

38. de la Calle A, Cellier FE, Yebra LJ, Dormido S. 2013 Improvements in bondlib the modelica
bond graph library. In Proc. 8th EUROSIM Congress, Cardiff, Cardiff, Wales. Federation of
European Simulation Societies.

39. Karnopp D. 1990 Bond graph models for electrochemical energy storage: electrical, chemical
and thermal effects. J. Franklin Inst. 327, 983–992. (doi:10.1016/0016-0032(90)90073-R)

40. Thoma JU, Atlan H. 1977 Network thermodynamics with entropy stripping. J. Franklin Inst.
303, 319–328. (doi:10.1016/0016-0032(77)90114-4)

41. Greifeneder J, Cellier FE. 2012 Modeling chemical reactions using bond graphs. In Proc.
ICBGM12, 10th SCS Intl. Conf. on Bond Graph Modeling and Simulation, Genoa, Italy, pp. 110–121.
Society for Modeling and Simulation International.

42. Thoma J, Atlan H. 1985 Osmosis and hydraulics by network thermodynamics and bond
graphs. J. Franklin Inst. 319, 217–226. (doi:10.1016/0016-0032(85)90075-4)

43. LeFèvre J, LeFèvre L, Couteiro B. 1999 A bond graph model of chemo-mechanical
transduction in the mammalian left ventricle. Simul. Practice Theory 7, 531–552. (doi:10.1016/
S0928-4869(99)00023-3)

44. Fuchs HU. 1996 The dynamics of heat. New York, NY: Springer.
45. Job G, Herrmann F. 2006 Chemical potential—a quantity in search of recognition. Eur. J. Phys.

27, 353–371. (doi:10.1088/0143-0807/27/2/018)
46. Cellier FE. 1992 Hierarchical non-linear bond graphs: a unified methodology for modeling

complex physical systems. SIMULATION 58, 230–248. (doi:10.1177/003754979205800404)
47. Gawthrop PJ, Smith L. 1992 Causal augmentation of bond graphs with algebraic loops.

J. Franklin Inst. 329, 291–303. (doi:10.1016/0016-0032(92)90035-F)
48. Sueur C, Dauphin-Tanguy G. 1991 Bond graph approach to multi-time scale systems analysis.

J. Franklin Inst. 328, 1005–1026. (doi:10.1016/0016-0032(91)90066-C)
49. Qian H, Beard DA. 2005 Thermodynamics of stoichiometric biochemical networks in living

systems far from equilibrium. Biophys. Chem. 114, 213–220. (doi:10.1016/j.bpc.2004.12.001)
50. Qian H, Beard DA, Liang S-D. 2003 Stoichiometric network theory for nonequilibrium

biochemical systems. Eur. J. Biochem. 270, 415–421. (doi:10.1046/j.1432-1033.2003.03357.x)
51. Van Rysselberghe P. 1958 Reaction rates and affinities. J. Chem. Phys. 29, 640–642. (doi:10.1063/

1.1744552)
52. Boudart M. 1983 Thermodynamic and kinetic coupling of chain and catalytic reactions. J. Phys.

Chem. 87, 2786–2789. (doi:10.1021/j100238a018)
53. Laidler KJ. 1985 René Marcelin (1885–1914), a short-lived genius of chemical kinetics. J. Chem.

Edu. 62, 1012. (doi:10.1021/ed062p1012)
54. Jamshidi N, Palsson B. 2011 Metabolic network dynamics: properties and principles. In

Understanding the dynamics of biological systems (eds J Southgate, W Dubitzky, H Fuß),
pp. 19–37. Berlin, Germany: Springer. (doi:10.1007/978-1-4419-7964-3_2)

55. Schilling CH, Letscher D, Palsson B. 2000 Theory for the systemic definition of metabolic
pathways and their use in interpreting metabolic function from a pathway-oriented
perspective. J. Theor. Biol. 203, 229–248. (doi:10.1006/jtbi.2000.1073)

56. Schuster S, Hilgetag C, Woods JH, Fell DA. 2002 Reaction routes in biochemical reaction
systems: algebraic properties, validated calculation procedure and example from nucleotide
metabolism. J. Math. Biol. 45, 153–181. (doi:10.1007/s002850200143)

57. Famili I, Palsson BO. 2003 Systemic metabolic reactions are obtained by singular
value decomposition of genome-scale stoichiometric matrices. J. Theor. Biol. 224, 87–96.
(doi:10.1016/S0022-5193(03)00146-2)

58. Famili I, Palsson BO. 2003 The convex basis of the left null space of the stoichiometric
matrix leads to the definition of metabolically meaningful pools. Biophys. J. 85, 16–26.
(doi:10.1016/S0006-3495(03)74450-6)

59. Gawthrop PJ. 2000 Physical interpretation of inverse dynamics using bicausal bond graphs.
J. Franklin Inst. 337, 743–769. (doi:10.1016/S0016-0032(00)00051-X)

60. Ngwompo R, Scavarda S, Thomasset D. 2001 Physical model-based inversion in control
systems design using bond graph representation part 2: applications. Proc. of the I MECH E
Part I J. Syst. Control Eng. 215, 105–112. (doi:10.1243/0959651011540897)

http://dx.doi.org/doi:10.1016/0016-0032(90)90073-R
http://dx.doi.org/doi:10.1016/0016-0032(77)90114-4
http://dx.doi.org/doi:10.1016/0016-0032(85)90075-4
http://dx.doi.org/doi:10.1016/S0928-4869(99)00023-3
http://dx.doi.org/doi:10.1016/S0928-4869(99)00023-3
http://dx.doi.org/doi:10.1088/0143-0807/27/2/018
http://dx.doi.org/doi:10.1177/003754979205800404
http://dx.doi.org/doi:10.1016/0016-0032(92)90035-F
http://dx.doi.org/doi:10.1016/0016-0032(91)90066-C
http://dx.doi.org/doi:10.1016/j.bpc.2004.12.001
http://dx.doi.org/doi:10.1046/j.1432-1033.2003.03357.x
http://dx.doi.org/doi:10.1063/1.1744552
http://dx.doi.org/doi:10.1063/1.1744552
http://dx.doi.org/doi:10.1021/j100238a018
http://dx.doi.org/doi:10.1021/ed062p1012
http://dx.doi.org/doi:10.1007/978-1-4419-7964-3_2
http://dx.doi.org/doi:10.1006/jtbi.2000.1073
http://dx.doi.org/doi:10.1007/s002850200143
http://dx.doi.org/doi:10.1016/S0022-5193(03)00146-2
http://dx.doi.org/doi:10.1016/S0006-3495(03)74450-6
http://dx.doi.org/doi:10.1016/S0016-0032(00)00051-X
http://dx.doi.org/doi:10.1243/0959651011540897


25

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140459

...................................................

61. Marquis-Favre W, Jardin A. 2011 Bond graphs and inverse modeling for mechatronic system
design. In Bond graph modelling of engineering systems (ed. W Borutzky), pp. 195–226. New York,
NY: Springer.

62. Sueur C, Dauphin-Tanguy G. 1989 Structural controllability/observability of linear systems
represented by bond graphs. J. Franklin Inst. 326, 869–883. (doi:10.1016/0016-0032(89)90009-4)

63. Reder C. 1988 Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201.
(doi:10.1016/S0022-5193(88)80073-0)

64. Ingalls BP, Sauro HM. 2003 Sensitivity analysis of stoichiometric networks: an extension
of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222, 23–36.
(doi:10.1016/S0022-5193(03)00011-0)

65. Ingalls BP. 2004 A frequency domain approach to sensitivity analysis of biochemical networks.
J. Phys. Chem. B 108, 1143–1152. (doi:10.1021/jp036567u)

66. Sauro HM. 2009 Network dynamics. In Computational systems biology (eds R. Ireton, K.
Montgomery, R. Bumgarner, R. Samudrala, J. McDermott). Methods in Molecular Biology,
vol. 541, pp. 269–309. Totowa, NJ: Humana Press.

67. Ingalls BP. 2013 Mathematical modelling in systems biology. Cambridge, MA: MIT Press.
68. Kraeutler M, Soltis A, Saucerman J. 2010 Modeling cardiac beta-adrenergic signaling with

normalized-hill differential equations: comparison with a biochemical model. BMC Syst. Biol.
4, 157. (doi:10.1186/1752-0509-4-157)

69. Ryall KA, Holland DO, Delaney KA, Kraeutler MJ, Parker AJ, Saucerman JJ. 2012 Network
reconstruction and systems analysis of cardiac myocyte hypertrophy signaling. J. Biol. Chem.
287, 42 259–42 268. (doi:10.1074/jbc.M112.382937)

70. Tran K, Smith NP, Loiselle DS, Crampin EJ. 2009 A thermodynamic model of the cardiac
sarcoplasmic/endoplasmic Ca2+ (SERCA) pump. Biophys. J. 96, 2029–2042. (doi:10.1016/
j.bpj.2008.11.045)

71. Fink M et al. 2011 Cardiac cell modelling: observations from the heart of the cardiac physiome
project. Progr. Biophys. Mol. Biol. 104, 2–21. (doi:10.1016/j.pbiomolbio.2010.03.002)

72. Lloyd CM, Halstead MDB, Nielsen PF. 2004 CellML: its future, present and past. Progr.
Biophys. Mol. Biol. 85, 433–450. (doi:10.1016/j.pbiomolbio.2004.01.004)

73. Hucka M et al. 2003 The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19, 524–531.
(doi:10.1093/bioinformatics/btg015)

74. Cooling MT, Hunter P, Crampin EJ. 2008 Modelling biological modularity with CellML. Syst.
Biol. IET 2, 73–79. (doi:10.1049/iet-syb:20070020)

75. Frank PM. 1978 Introduction to system sensitivity theory. New York, NY: Academic Press.
76. Rosenwasser E, Yusupov R. 2000 Sensitivity of automatic control systems. Boca Raton, FL: CRC

Press.
77. Heinrich R, Schuster S. 1996 The regulation of cellular systems. New York, NY: Chapman & Hall.
78. Karnopp D. 1977 Power and energy in linearized physical systems. J. Franklin Inst. 303, 85–98.

(doi:10.1016/0016-0032(77)90078-3)
79. Gawthrop PJ. 2000 Sensitivity bond graphs. J. Franklin Inst. 337, 907–922. (doi:10.1016/

S0016-0032(00)00052-1)
80. Gawthrop PJ, Ronco E. 2000 Estimation and control of mechatronic systems using sensitivity

bond graphs. Control Eng. Practice 8, 1237–1248. (doi:10.1016/S0967-0661(00)00062-9)
81. Sueur C, Dauphin-Tanguy G. 1997 Controllability indices for structured systems. Linear

Algebra Appl. 250, 275–287. (doi:10.1016/0024-3795(95)00598-6)
82. Fotsu Ngwompo R, Scavarda S, Thomasset D. 1996 Inversion of linear time-invariant

SISO systems modelled by bond graph. J. Franklin Inst. 333, 157–174. (doi:10.1016/
0016-0032(96)00025-7)

83. Ngwompo RF, Gawthrop PJ. 1999 Bond graph based simulation of nonlinear inverse systems
using physical performance specifications. J. Franklin Inst. 336, 1225–1247. (doi:10.1016/
S0016-0032(99)00032-0)

http://dx.doi.org/doi:10.1016/0016-0032(89)90009-4
http://dx.doi.org/doi:10.1016/S0022-5193(88)80073-0
http://dx.doi.org/doi:10.1016/S0022-5193(03)00011-0
http://dx.doi.org/doi:10.1021/jp036567u
http://dx.doi.org/doi:10.1186/1752-0509-4-157
http://dx.doi.org/doi:10.1074/jbc.M112.382937
http://dx.doi.org/doi:10.1016/j.bpj.2008.11.045
http://dx.doi.org/doi:10.1016/j.bpj.2008.11.045
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2010.03.002
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2004.01.004
http://dx.doi.org/doi:10.1093/bioinformatics/btg015
http://dx.doi.org/doi:10.1049/iet-syb:20070020
http://dx.doi.org/doi:10.1016/0016-0032(77)90078-3
http://dx.doi.org/doi:10.1016/S0016-0032(00)00052-1
http://dx.doi.org/doi:10.1016/S0016-0032(00)00052-1
http://dx.doi.org/doi:10.1016/S0967-0661(00)00062-9
http://dx.doi.org/doi:10.1016/0024-3795(95)00598-6
http://dx.doi.org/doi:10.1016/0016-0032(96)00025-7
http://dx.doi.org/doi:10.1016/0016-0032(96)00025-7
http://dx.doi.org/doi:10.1016/S0016-0032(99)00032-0
http://dx.doi.org/doi:10.1016/S0016-0032(99)00032-0

	Introduction
	Bond graph modelling of chemical reactions
	Energy flow, storage and dissipation in a simple reversible reaction
	Modularity: coupling reactions into networks
	Incorporating stoichiometry into reactions
	Non-equilibrium steady states: reactions with external flows
	Thermodynamic compliance

	Stoichiometric analysis of reaction networks
	The stoichiometric matrix
	Stoichiometric null spaces
	Reduced-order equations

	Model reduction and approximation of reaction mechanisms
	Biochemical cycles
	Example: enzyme-catalysed reaction cycles
	Example: a biochemical switch

	Hierarchical modelling of large systems
	Conclusion
	References

