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Abstract

Scope—We re-evaluated previously reported associations between variants in pathways of one-

carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine

and pyrimidine metabolism, and assessed interactions with folate intake.

Methods and Results—Odds ratios (OR) for 446 genetic variants were estimated among

13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate

information. Following multiple testing correction, the most significant main effect associations

were for DPYD variants rs11587873 (OR=0.92, P=6x10−5) and rs828054 (OR=1.06, P=1x10−4).

Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also

interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10−6) but

collectively explained only 0.2% of OC risk. Although no other associations were significant after

multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with

OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006).

Conclusions—Variation in pyrimidine metabolism genes, particularly DPYD, which was

previously reported to be associated with OC, may influence risk; however, stratification by folate

intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate

interactions are plausible but require further validation. Polymorphisms in selected genes in purine

metabolism were not associated with OC.
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Introduction

Global statistics estimated that ovarian carcinoma (OC) afflicted 225,000 women and

resulted in 140,000 deaths in 2008 [1]. There are no specific screening methods or unique

symptoms to detect OC in early stages [2]. Risk stratification strategies may have

appreciable impact in reducing the incidence and suffering from OC by identifying those

women at greatest risk of developing the disease who would benefit from preventive

measures [3]. Germline mutations in high-risk genes (e.g., BRCA1 and BRCA2) remain the

* Correspondence: LKelemen@post.harvard.edu.

Conflict of Interest Statement
The authors declare that there are no financial or commercial conflicts of interest.

NIH Public Access
Author Manuscript
Mol Nutr Food Res. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
Mol Nutr Food Res. 2014 October ; 58(10): 2023–2035. doi:10.1002/mnfr.201400068.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



best-defined genetic risk factors [4], but explain just 10-15% of all OC [5-7]. About 4% of

the polygenic risk is explained by common, but poorly understood, low-risk polymorphisms

[8-11] and most non-genetic risk factors (oral contraceptive use [12-14], parity [15, 16],

breast-feeding [15, 17], tubal ligation [18], endometriosis [19] and smoking [20]) are not

conducive to public health recommendations for risk modification.

Stratification of genetic risk by dietary factors may prevent some cancers. For example,

folates participate in one-carbon (1-C) transfer reactions that are essential for the

biosynthesis of purines (adenine and guanine) and pyrimidines (cytosine, thymine and

uracil), which are incorporated into DNA and RNA, as well as for the biosynthesis of methyl

groups for DNA methylation [21] (Figure 1). Perturbation of the coenzymatic role of folate,

or of key enzymes in 1-C transfer or purine or pyrimidine metabolism, can have broad

consequences that lead to tumor initiation [22] and progression [23] and thus could alter risk

among a substantial proportion of individuals. Numerous genetic disorders of purine and

pyrimidine metabolism have been characterized in humans [24]. Although these are rare and

inherited in Mendelian fashion, genes encoding enzymes in these pathways have been

associated with various cancers [25-30]. We previously examined associations between 180

tagging common single nucleotide polymorphisms (tagSNPs) in 21 genes involved in 1-C

transfer and risk of OC in 1,770 participants [31] and also reported risk modification by

multivitamin intake, a proxy for folate intake [31, 32]. Ten SNPs in eight genes (AHCYL1,

DNMT3A, DPYD, MTHFD1, MTHFS, SHMT1, SLC19A1 and TYMS) were associated

with OC at P≤0.05 in either ordinal or co-dominant genetic risk models [31] and eight SNPs

in five genes (DNMT3A, DNMT1, MTHFR, MTHFD1 and ATIC) were associated with OC

at P≤0.05 in interaction analyses with multivitamin use [31, 32]. In those studies, the

strongest evidence for association was for a haplotype and a single SNP (rs9909104) in

SHMT1 for which we calculated a false positive report probability of 9% to 16%,

respectively [31], and for two SNPs in ATIC interacting with multivitamin use at a false

discovery rate <0.25 and P<0.05 [32]. SNPs in DNMT3A, DPYD, MTHFD1 and MTHFS did

not replicate in a subsequent genotyping effort among 16,000 participants [33].

Our objectives in the current investigation were to re-evaluate previously reported genetic

associations in a larger sample size, evaluate additional variants in the related pathways of

purine and pyrimidine metabolism and to assess effect modification by dietary folate intake.

We performed these analyses in over 36,000 women contributing DNA in the Ovarian

Cancer Association Consortium (OCAC).

Materials and Methods

Gene and SNP selection

Genes were selected according to two categories. The first category consisted of six genes

(ATIC, DNMT3B, DPYD, MTR, SHMT1 and TYMS) with previously observed SNP

associations with OC [31, 32] and were included for replication. These SNPs were selected

with high gene coverage using minor allele frequency (MAF) ≥0.01 and pair-wise linkage

disequilibrium (LD) threshold of r2<0.8 (ATIC, DNMT3B, DPYD and MTR) or <0.9

(SHMT1 and TYMS). The second category consisted of nine genes related to purine

metabolism (ADSL, ADSS, DCK, GART, GMPS, IMPDH1, IMPDH2, PAICS and PFAS) and
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11 genes involved in pyrimidine metabolism (AK3, CAD, CMPK1, CTPS, DHODH, DPYS,

NME6, PPAT, PRPS2, RRM2B and UMPS) (Supplementary Figure 1). These SNPs were

selected with MAF≥0.05 and LD threshold of r2<0.8. All SNPs within 5kb up- and

downstream of the largest cDNA isoform (Human Genome build 36) of each gene was

selected using information from 60 unrelated individuals of European ancestry sequenced in

the pilot phase of the 1000 Genomes Project [34] and binned using the Haploview program

[35]. We prioritized tagSNPs for genotyping that were coding SNPs, had the highest MAF

in each bin and, if available, met criteria for predicted likelihood of successful genotyping

based on Illumina quality score metrics. In January 2010, 803 tagSNPs were submitted for

genotyping: 31% of these SNPs were unique to the 1,000 Genomes Project and not found in

dbSNP.

Study Subjects

Subjects (n=47,630) from 43 individual studies participating in OCAC were grouped into 34

geographically similar study strata [11]. Of 44,308 subjects whose DNA passed genotyping

quality control criteria (see below), we further excluded subjects with borderline tumors,

subjects of non-European ancestry and those with prior history of cancer other than non-

melanoma skin cancer, leaving 36,045 eligible subjects (13,410 cases and 22,635 controls)

for analysis. Informed consent was obtained in each of the individual studies and local

human research investigations committees approved each study.

Genotyping and Quality Control (QC)

Details of the genotyping have been described elsewhere [11]. In brief, we used an Illumina

Infinium custom iSelect BeadChip developed for the international Collaborative Oncology

Gene-environment Study (iCOGS). Centralized genotyping calls and QC were performed at

the University of Cambridge. Quality control for samples has been detailed previously [11].

We excluded SNPs that failed genotyping, had call rates <95% and MAF >0.05 or call rates

<99% and MAF <0.05, departed from Hardy-Weinberg equilibrium (P value <10−7), had

discordant genotypes >2% between duplicates and monomorphic SNPs. Of 803 tagSNPs

submitted for genotyping, 203 SNPs failed genotyping, 127 were monomorphic and 27 had

MAF <0.01 leaving 446 SNPs that passed QC. Genotyping failures and monomorphic SNPs

reflected the large number of polymorphisms that were subsequently found to be falsely

positive in the pilot phase sequencing data of the 1000 Genomes Project.

Covariate and Dietary Data

Key clinical, demographic and questionnaire data were harmonized across study centers and

merged into a common dataset. Dietary intakes of folate and total energy were estimated

with validated food frequency questionnaires (FFQs) in six studies (AUS [36], DOV [37],

HAW and STA [38], NEC [39] and NJO [40]) pertaining to the year preceding recruitment

or for the time period approximately four years before the reference date (DOV). Data on

the use of multivitamins and single vitamin and mineral supplements were also available and

total folate intake was estimated by summing intakes from both food sources and from

supplements. Nutrient and genotype data were available for 2,281 cases and 3,444 controls

of European ancestry.
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Statistical Analysis

Genotypes were used to estimate allele frequencies and pair-wise LD between SNPs was

estimated with r2 values using Haploview [35]. Data from the 34 study strata were combined

into a single dataset following confirmation of no statistical heterogeneity in SNP

associations across study sites. We estimated odds ratios (OR) and 95% confidence intervals

(CI) for each SNP using unconditional logistic regression treating the number of variant

alleles carried as an ordinal (log-additive) variable. Secondary analyses also considered co-

dominant (non-additive) risk models. Interactions between each SNP and total folate intake

were evaluated with the Wald test in models that also included a one degree-of-freedom

product term for the ordinal coding for genotype and total folate intake group (below/above

the energy-adjusted median intake: ≤484 μg/d vs >484 μg/d ≈ approximately the dietary

reference intake of 400 μg/d for folate, which is also the folic acid content of a typical

multivitamin supplement). Risk models were adjusted for age (continuous), study stratum

and the first five eigenvalues from principal components analysis to account for sub-strata of

European ancestry across the 34 international studies (see ref [11]). Additional adjustment

for non-genetic risk factors did not change estimates and these variables were excluded from

the models (data not shown).

Multi-variant analysis—Because some of the genes selected for replication belonged to

either the purine (ATIC) or pyrimidine (DPYD and TYMS) metabolism pathways, while

DNMT3B, MTR and SHMT1 belonged to 1-C transfer, we evaluated associations according

to these three pathways. However, we considered evidence for replication if SNPs in these

six genes reached statistical significance according to the criteria described below.

To assess the likelihood of false-positive findings, we performed a multi-variant analysis

that accounted for the potential correlations between SNPs within genes in a pathway. Since

our primary interest was to evaluate SNP-by-folate interactions, we prioritized these

associations for evaluation of multiple testing as follows. A likelihood ratio test (LRT)

statistic was calculated by comparing a regression model with and without significant SNP-

by-folate interaction terms. Permutation-based tests were then used to compute P-values

from a null distribution of the LRT statistic generated by permuting case status 10,000

times. The generation of a null distribution was performed five times, each time with a

different seed. For evaluation of individual genes that showed SNP associations at P<0.05,

we applied a conservative Bonferroni correction of the Type I error using the number of

SNPs tested in that gene’s pathway (44 SNPs in 1-C transfer, 100 SNPs in purine

metabolism and 302 SNPs in pyrimidine metabolism). The corresponding thresholds were

P=0.001 for 1-C transfer, P=5x10-4 for purine metabolism and P=1.6x10−4 for pyrimidine

metabolism.

We also estimated haplotype frequencies of >1% for selected genes with and without

stratification by total folate intake using an expectation-maximization algorithm [41] as

described in detail elsewhere [32]. The generation of haplotypes using 129 DPYD tagSNPs

resulted in an infinite recursion so we selected 29 tagSNPs, one for each haplotype block

constructed according to the Gabriel criteria [42] in Haploview [35] and two located outside

of a haplotype block. These tagSNPs were selected based on significant P values in main
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effect or interaction analyses, highest MAF or highest D' values with other tagSNPs in the

haplotype block. Individual haplotype associations were interpreted carefully in the absence

of global haplotype significance.

To assess the population importance of the SNP-by-folate interactions, we used the

Genome-wide Complex Trait Analysis (GCTA) program to estimate the percent variance in

risk of OC explained by the SNP-by-folate interaction terms [43]. In principle, the GCTA

program can be used to evaluate a subset of SNPs or SNP-by-environment interactions and

has been used by the developers in this context (J Yang, personal communication, December

2013). Briefly, we first estimated the pairwise genetic relationship matrix (GRM) of the

subjects using the SNPs of interest and then fitted the GRM in a regression model that also

included age, study stratum, five eigenvalues, total folate intake group and SNP-by-folate

interaction terms. Restricted maximum likelihood was applied to deconstruct the phenotypic

variance into the percentages explained by the SNPs, the SNP-by-folate interaction terms

and residual environmental component.

Statistical tests were two-sided and, unless stated otherwise, were implemented with SAS

version 9 (SAS Institute, NC), R [44] and Plink v1.07 [45] software.

Results

The distribution of cases and controls stratified by study is shown in Supplementary Table
1. Descriptive information on the 446 SNPs is provided in Supplementary Table 2.

Twenty-three SNPs were associated with risk of OC at P<0.05, including two SNPs in

SHMT1 (1-C transfer) and 12 SNPs in DPYD (pyrimidine metabolism) (Table 1). We

reported associations with SNPs in both of these genes previously, although with different

variants [31]. In the current study, the two SNPs with the smallest P value were in DPYD in

pyrimidine metabolism: rs11587873 (OR, 0.92; 95% CI, 0.89-0.96; P=6x10−5) and

rs828054 (OR, 1.06; 95% CI, 1.03-1.10; P=1x10−4). These two SNPs remained statistically

significant at the corrected P=1.6x10−4. The other 10 DPYD SNPs were correlated with

either rs11587873 or rs828054. There was no statistical heterogeneity in ORs across study

strata. Associations were similar when restricted to high-grade serous OC histology (Table
1). Associations for the remaining SNPs are shown in Supplementary Table 3.

When SNPs were examined by interactions with total folate intake (Table 2), 22 SNPs

showed interactions at P<0.05, including two SNPs that were associated with OC risk

overall (SHMT1 rs4925179 and DPYD rs7522938). Three of four SHMT1 SNPs in 1-C

transfer (rs56001517, rs7216214 and rs2273026) were associated with a 23% to 30%

decreased risk of OC at higher total folate intake (smallest P=0.006) and these three SNPs

were correlated with each other (r2 = 0.61 to 0.92) but did not pass the multiple testing

significance threshold of P=0.001. Fifteen of the 22 SNPs (60%) were in pyrimidine

metabolism genes and a large proportion of these were in four genes (DPYS, DPYD, PPAT

and TYMS) that encode enzymes in the sub-pathway of fluoropyrimidine metabolism, which

is an important pharmacogenomics pathway targeted by anti-folate chemotherapy. We,

therefore, evaluated the 13 SNP-by-folate interactions in these four genes collectively in a

Kelemen et al. Page 5

Mol Nutr Food Res. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



multi-variant analysis. Despite generating five null distributions, none achieved a LRT

statistic that included the observed LRT statistic: permuted maximum χ2 = 37.95 to 45.74

with 13 degrees-of-freedom (df; smallest P=1.6x10−5) compared to observed χ2 = 46.92

with 13 df (P=9.9x10−6). This suggested the observed value was more extreme than would

be expected. Associations for the remaining SNP-by-folate interactions are shown in

Supplementary Table 4. We estimated the percentage of variance in risk of OC explained

by the 13 SNP-by-folate interaction terms in pyrimidine metabolism to be 0.1994 % (95%

CI, 0.1991 to 0.1997) compared to 1x10-4 % (95% CI, 9.9x10−5 to 1x10−4) explained by the

13 SNPs alone.

There were no significant associations of haplotypes at the global (gene) level with risk of

OC for DPYD, DPYS or SHMT1 (Supplementary Table 5). Interestingly, SHMT1

haplotype #6 comprised minor alleles of the three correlated SHMT1 SNPs (rs56001517,

rs7216214 and rs2273026) mentioned above and showed a decreased risk with OC at higher

total folate intake (haplotype OR=0.68, 95% CI=0.53-0.87, P=0.002) that mirrored those of

the individual SNP findings in Table 2. The selection of 29 haplotype block tagSNPs

produced a single haplotype that was not significant, while several individual haplotypes of

low frequency in DPYS were observed at P<0.05. Folate intake was not independently

associated with risk of OC in multivariable-adjusted models (OR for >484 μg/d vs ≤484

μg/d = 1.04, 95% CI=0.91-1.18), nor when using different total folate intake cutpoints (OR

for >400 μg/d vs ≤400 μg/d = 1.00, 95% CI=0.88-1.13 and OR for >683 μg/d [>75%

percentile] vs ≤683 μg/d = 0.98, 95% CI=0.84-1.14).

Discussion

The results of the current study suggested a potential role for inherited variation in DPYD in

pyrimidine metabolism with risk of OC. Folate intake may modify genetic risk of OC in the

pyrimidine metabolism pathway, but the population effect is likely to be small. A possible

role for SHMT1 SNP-by-folate interactions in the one-carbon transfer pathway may exist,

but requires further validation. Selected genes in purine metabolism were not associated

with risk of OC.

In the current study, 12 SNPs with additive effects in DPYD were found to be associated

with OC and the strongest association (rs11587873) suggested a modest 8% decreased risk.

We previously reported that the main effect of another DPYD SNP, rs1801265 (Arg29Cys),

was associated with increased risk of OC among homozygous rare allele carriers [31],

although that association was not replicated elsewhere [33] or in the current study. DPYD

was represented by five SNPs in our earlier study of 1,770 participants [31] and these

participants were also included in the current investigation of 129 SNPs. A haplotype

analysis did not support an association of a single DPYD haplotype with risk of OC;

however, this may be due, in part, from selecting 29 haplotype block tagSNPs to overcome

the infinite recursion when using all 129 tagSNPs. We, therefore, cannot rule out a role for

DPYD in risk of OC.

During pyrimidine metabolism, uracil and thymine concentrations are determined, in part,

by the availability of 1-C units from folates and are catabolized to β-alanine and to valine/
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leucine/isoleucine, respectively (Supplementary Figure 1). DPYD encodes

dihydropyrimidine dehydrogenase, the initial and rate-limiting step, whereas DPYS encodes

dihydropyrimidinase, which catalyzes the secondary step. DPYD and DPYS enzyme

deficiency or inhibition can cause decreased production of β-alanine or accumulation of the

pyrimidines, uracil/dihydrouracil and thymine/dihydrothymine, and has shown considerable

phenotypic variation ranging from severe neurological and developmental disorders

associated with inborn errors to milder symptoms of lethargy, dizziness [46-48] and

gastrointestinal abnormalities (gastroesophageal reflux, malabsorption) [49]. The pyrimidine

metabolism pathway is identical for the degradation of fluoropyrimidines including 5-

fluorouracil (5-FU), one of the most commonly prescribed chemotherapeutic agents in

cancers [50, 51]. DPYD or DPYS enzyme deficiency results in toxicity among cancer

patients from the inability to metabolize 5-FU [52, 53]. Screening programs for inborn errors

of pyrimidine degradation have also identified individuals without symptoms, indicating an

incomplete knowledge of the full spectrum of genetic, gene-environment, biochemical and

clinical manifestations of DPYD and DPYS impairment [46, 49]. It will, therefore, be

important to also investigate these associations with survival outcomes.

We had also previously reported increased risk with the main effect of SHMT1 variant

rs9909104 [31], but could not replicate the main effect association here. The expanded

analysis of SHMT1 SNPs and haplotypes in the present study suggested that risk may be

modified by higher folate intake, although these associations did not meet the criteria of

significance following multiple testing correction. SHMT1 encodes the serine

hydroxymethyltransferase 1 (soluble) enzyme that catalyzes the reversible conversion of

glycine and tetrahydrofolate to serine and 5,10 methylenetetrahydrofolate in the cytoplasm

for the synthesis of methionine, pyrimidines (e.g., thymidylate) and purines [54]. Serine

synthesis, nucleotide synthesis and the pentose phosphate pathway, which generates

ribose-5-P (see Supplementary Figure 1), are implicated as important mechanisms of

metabolic reprogramming in cancer cells [55]. Polymorphisms in SHMT1 have also been

associated with carcinomas of the lung [56] and head and neck [57] and have been shown to

interact with dietary folate to alter risk of non-Hodgkin lymphoma [58].

The strengths of this investigation include the gene-environment risk analysis in a targeted

pathway using a large assembly of women with OC and the rigorous centralized genotyping

and quality control standards. We improved upon our previous work [31, 32] by refining the

associations using total folate intake instead of multivitamin supplement use. The median

cutpoint for total folate intake approximated the dietary reference intake of 400 μg/d;

therefore, the SNP-by-folate interactions can be interpreted as comparing women who meet

or exceed recommendations to those who do not. There are also limitations to the current

study. Folate intake was assessed at time of diagnosis using a FFQ that asked about average

intake over the last year that may not represent habitual intake and may be affected by recall

bias. Another potential limitation of the SNP-by-folate interactions is the analysis of all

tumor types without stratification by tumor histology. This was decided a priori to

maximize statistical power, although the evaluation of SNP main effects suggested no

significant differences in risk estimates across the histological types for most SNPs. Another

limitation is the inability to distinguish potentially causal SNPs at this time. We genotyped
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tagSNPs and some genes, such as DPYD, were large and were represented by several

correlated tagSNPs that suggested either decreased or increased risk. The evaluation of a

DPYD haplotype did not satisfactorily overcome this challenge and will need further

clarification.

Conclusions

SNPs in DPYD may have modest effects on risk of OC and will require further evaluation in

order to disentangle putative causal variants. Our findings suggest that exceeding the

recommendations for folate intake does not negatively modify susceptibility in selected

genes in pyrimidine metabolism to influence risk of OC. A possible role for SHMT1 SNP-

by-folate interactions in the one-carbon transfer pathway may exist, but will require further

validation. Polymorphisms in selected genes in purine metabolism do not appear to be

associated with OC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1-C one-carbon

ADSL adenylosuccinate lyase

ADSS adenylosuccinate synthase

AK3 adenylate kinase 3

ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP

cyclohydrolase

CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and

dihydroorotase

CMPK1 cytidine monophosphate (UMP-CMP) kinase 1, cytosolic

CTPS CTP synthase 1

DCK deoxycytidine kinase

DHODH dihydroorotate dehydrogenase (quinone)

DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta

DPYD dihydropyrimidine dehydrogenase

DPYS dihydropyrimidinase

GART phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide

synthetase, phosphoribosylaminoimidazole synthetase

GCTA Genome-wide Complex Trait Analysis

GMPS guanine monphosphate synthase

iCOGS international Collaborative Oncology Gene-environment Study

IMPDH1 IMP (inosine 5'-monophosphate) dehydrogenase 1

IMPDH2 IMP (inosine 5'-monophosphate) dehydrogenase 2

LD linkage disequilibrium

LRT likelihood ratio test

MAF minor allele frequency

NME6 NME/NM23 nucleoside diphosphate kinase 6

OC Ovarian carcinoma

OCAC Ovarian Cancer Association Consortium

OR odds ratio
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PAICS phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole

succinocarboxamide synthetase

PFAS phosphoribosylformylglycinamidine synthase

PPAT phosphoribosyl pyrophosphate amidotransferase

PRPS2 phosphoribosyl pyrophosphate synthetase 2

QC quality control

RRM2B ribonucleotide reductase M2 B (TP53 inducible)

SHMT1 serine hydroxymethyltransferase 1 (soluble)

SNP single nuctleotide polymorphism

TYMS thymidylate synthase

UMPS uridine monophosphate synthetase
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Figure 1.
Overview of the role of folate and key enzymes involved in one-carbon transfer for DNA

synthesis and methylation reactions. DHFR, dihydrofolate reductase; DNMTs, DNA

methyltransferases; MTHFR, methylenetetrahydrofolate reductase; MTR, 5-

methyltetrahydrofolate-homocysteine methyltransferase; MTRR, 5-

methyltetrahydrofolatehomocysteine methyltransferase reductase; TYMS, thymidylate

synthase.
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