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Abstract

DNA copy number variation (CNV), an important structural variation, is known to be pervasive in

the human genome and the determination of CNVs is essential to understanding their potential

effects on the susceptibility to diseases. However, CNV detection using SNP array data is

challenging due to the low signal-to-noise ratio. In this study, we propose a principal component

analysis (PCA) based approach for data correction, and present a novel processing pipeline for

reliable CNV detection. Tested data include both simulated and real SNP array datasets.

Simulations demonstrate a substantial reduction in the false positive rate of CNV detection after

PCA-correction. And we also observe a significant improvement in data quality in real SNP array

data after correction.

I. INTRODUCTION

Copy number variation (CNV) is a type of genetic variation caused by large segmental

insertions or deletions in a DNA sequence. Considering the affected nucleotides, CNVs may

account for more overall inter-individual genetic variations than single nucleotide variants

combined [1]. While the majority may be mildly deleterious, specific CNVs have been

identified to be associated with cancer [2], HIV infection [3], autism [4, 5], and

schizophrenia [6, 7].

One commonly used technology to assess genomic CNVs is through genomic single

nucleotide polymorphism (SNP) arrays [8-11]. Typically, the Log R Ratio (LRR) and B

allele frequency (BAF) are measured for each SNP marker. LRR represents the normalized

overall fluorescent intensity from both alleles in a log 2 format, while the BAF measures the

fluorescent intensity ratio between two alleles. With the developing high throughput

genotyping technique, genomic SNP arrays can provide high density profiles. For instance,

the Illumina 1M array has a median spacing of 2.5Kbp between adjacent markers [11].

However, the reduced length of probes may result in a low signal-to-noise ratio (SNR) of

hybridization [12], which makes the reliable detection of CNVs challenging. As noted by

Scherer et al. [13], the consistency of CNV detection results in the literature is quite low.
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Therefore, quality improvement emerges as a crucial need for the outputs of the high-

resolution arrays. In LRR data, one major source of noise has been identified to be GC-

percentage (i.e. the percentage of nitrogenous bases on a DNA molecule that are either

guanine or cytosine), whose effect can be eliminated using a regression-based method [14,

15].

In this paper, we propose a data correction approach using principal component analysis

(PCA) and present a processing pipeline with PCA-correction incorporated, aiming at

improving the reliability of CNV detection through imposing stringent controls on false

positives. The performance of the PCA-correction was evaluated through simulations from

multiple perspectives, including variance of the raw data, false positive rate (FPR) and false

negative rate (FNR) of CNV detection. Furthermore, we applied PCA-correction to a real

SNP array dataset, and conducted CNV detection via the proposed pipeline process.

II. METHODOLOGY

The suggested pipeline is illustrated in Figure 1. For LRR data, we first perform outlier

smoothing, and then apply PCA-correction to eliminate variations induced by potential

confounding factors. Samples are excluded if they fail the quality control after PCA-

correction. The corrected data are then segmented using a circular binary segmentation

(CBS) algorithm and a hidden Markov model (HMM) algorithm independently. Those

segments reported by both algorithms are flagged as potential CNVs, whose qualities are

further investigated through SNR. A CNV segment is called only when its SNR passes the

preselected threshold. Finally we exclude outlier samples with excessive number of CNVs.

A. PCA-correction

A PCA-correction scheme is proposed to remove the variations in the LRR data induced by

potential confounding factors. Using PCA, LRR data are decomposed into a linear

combination of underlying principal components (PCs), with each PC accounting for a

certain amount of variance. If the PC reflects some confounding factor such as scanner

artifacts or GC-percentage, then the data quality can be theoretically improved by removing

the effect of this PC.

PC extraction is based on singular value decomposition, as shown in (1). X is the LRR

dataset composed of m markers and n samples. Each column of V is the projection of a PC,

or loadings. S is a diagonal matrix with each diagonal element being a singular value, which

is proportional to the square root of the variance represented by the corresponding

component. Here, r denotes the number of components. U is the counterpart of V, or the

representation of X in the principal component space.

(1)

Pearson correlation or analysis of variance (ANOVA) is used to assess the association of

PCs with all the potential continuous or categorical confounding factors. The association test

is either evaluated on U, when the factor is a genomic feature along marker space such as

GC-percentage, or on V when the factor is a sample feature along sample space such as
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batch effect. A PC with a significant association after Bonferroni correction is identified to

represent a confounding factor and removed as presented in (2). X can be written as a linear

combination of r components. If, for example, the kth component has been identified

representing a confounding factor, we simply subtract Xk from the original X to eliminate the

variations induced by that factor, and obtain the corrected dataset Xc,

(2)

B. Processing pipeline

Outlier smoothing—Outliers manifest as large negative or positive values appearing at

only one marker location. An isolated outlier can affect the regional LRR mean, resulting in

incorrectly assigned segments. Here we adopt the method introduced by Olshen et al. [16]

for outlier smoothing. Briefly speaking, it is to replace any local maximum or minimum,

which is 4-standard deviation (SD) away from its nearest neighbor in the local 5-marker

window, using the value of 2-SD plus the median.

Sample quality control—After the outlier smoothing and PCA-correction, the data

quality can still vary dramatically from sample to sample. Therefore, samples with standard

deviation of LRR data (LRR_SD) greater than 0.28, as recommended in [17, 18], are

considered as bad samples, and excluded from subsequent analysis.

Segmentation—Segmentation is performed with two independent algorithms: CBS [16]

implemented in MATLAB; and HMM segmentation implemented in PennCNV [14]. The

default settings are chosen for both algorithms. A segment is flagged as a potential CNV

only when it is detected by both algorithms.

Segment quality check—We further evaluate the qualities of potential CNVs based on

SNR. For each potential CNV, we extract a number of neighboring markers to cover a

comparable length of base pairs, serving as a reference. Then the SNR is evaluated as the

ratio of LRR mean difference between the potential CNV and the reference over the

LRR_SD of the reference. A potential CNV is finally validated if its SNR is greater than 1.4

in case of insertions, or greater than 2 in case of deletions, where the thresholds are

estimated empirically based on the LRR means of single insertions and deletions,

respectively.

Outlier Sample Elimination—Finally based on the detected CNVS, we eliminate those

outlier samples for which an excessive number of CNVs are detected (> 3SD).

III. SIMULATION DESIGN

Synthetic SNP array data were prepared to evaluate the effectiveness of the PCA-correction.

To closely represent the real data characteristics, we inherited the chromosome 1 markers’

names and positions in the Illumina Human-1M Duo SNP array (97964 markers), and

simulated three types of noise effect: GC-percentage [15], batch effect (scanner and

processing date) and random noise. A total of 200 samples were generated.
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GC-percentage effect

The baseline LRR data were first constructed to incorporate GC-percentage induced noise.

For each marker, we computed the GC-percentage Gj, based on UCSC gc5base table (http://

genome.ucsc.edu), and applied a linear regression model to create the baseline of LRR data.

As noted in (3), Lij represents the baseline LRR at the jth marker of the ith sample; βi0 and βi1

are the intercept and the slope, varying across samples and following normal distributions;

εij is the normally distributed residual imposed to randomize the GC-percentage effect in

each sample.

(3)

Batch effect

A common LRR genomic profile was superimposed onto each sample with different

weights, to emulate the batch effect. The 2nd PC extracted from real data was used as the

common LRR profile. As shown in (4), the baseline LRR (Lij) was adjusted by adding the

genomic profile with a different weight (αi) for each sample. We simulated four experiment

batches with different weights.

(4)

Gaussian noise

Zero-mean Gaussian noise with various SDs was imposed on each sample to reflect

variations induced by unknown factors. We simulated two groups with low-SD and high-SD

Gaussian noise, respectively.

True CNVs, including both segment insertions and deletions, were superimposed onto each

sample’s adjusted LRR profile. The number of imposed CNVs ranged from 1 to 14 across

samples, with a median of 6.

The final simulated LRR data consisted of imposed CNVs and three types of noise. The GC-

percentage effect varied across samples (|rLRR-GC| ranging from 0.01 to 0.74 with a median

of 0.28). The overall LRR_SD of each sample ranged from 0.20 to 0.39 with a median of

0.27.

For the purpose of evaluating the effectiveness of PCA-correction, we chose to only apply

PennCNV algorithm, instead of the whole pipeline, which requires less computation yet

proves the concept. FPR and FNR were calculated by comparing the PennCNV results with

the true imposed CNVs. The detection accuracy was evaluated based on the full simulated

dataset without excluding bad samples.
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IV. EXPERIMENTS

A. Participants

The study was conducted according to the principles expressed in the declaration of

Helsinki, approved by the institutional review board of University of New Mexico. A total

of 326 healthy participants between the ages of 21 and 55 were recruited, including 100

females age 32.62 ± 10.47 and 226 males age 31.58 ± 9.38. Participants had a minimum

alcohol consumption of two binge drinking days per week. Demographic information and

behavioral assessment scores were obtained through self-reporting questionnaires

administered during interviews with participants. All participants provided written informed

consent for data collection and subsequent analysis.

B. DNA genotyping

Participants were instructed to deliver 5 ml of saliva into a sterile 50 ml conical centrifuge

tube. DNA was then extracted from saliva, purified, bisulfite converted and hybridized. The

Illumina Human-1M Duo BeadChip was used to detect 1,199,187 genome-wide SNP and

CNV markers. A focus on autosomes (chromosome 1 – 22), reduced the number of loci to

1,147,842. 13,567 additional loci with missing measurements were also removed. The final

dataset included 326 samples and 1,134,275 markers.

V. RESULTS

A. Simulations

Ten independent datasets were tested and results indicated consistent performance. Using

PCA-correction, the first two components were identified as representing GC-percentage

and batch effect, summarized in Table 2a. After correcting for these two types of noise

effects, the number of bad samples decreased from 76 to 40 in the high noise group and 10

to 4 in the low noise group, resulting in improved detection accuracy, as shown in Table 2b

and 2c, where we can see a significant improvement of FPR in CNV detection, as well as a

slight improvement of FNR. Finally, a performance comparison was made between PCA-

correction and regression-based correction [15], as shown in Table 2d. The results indicated

comparable detection accuracies, with PCA-correction showing a slight improvement.

To separately investigate the influences of different types of noise on CNV detection, further

analysis is limited to the GC-percentage corrected data.

We observed a significant group difference between high and low Gaussian noise, in terms

of false negatives, as illustrated in Table 3. A further comparison was made among three

independent datasets, different only in the level of GC-percentage effect, measured by the

absolute correlation between GC-percentage and the simulated LRR data (|rGC-LRR|). The

ANOVA test showed a significant group difference among these three datasets in terms of

false positives, as shown in Table 4. However, after correcting for GC-percentage using

PCA, the FPRs all went down to a low level around 0.04 and no group difference was

observed.
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B. Experiments

In the real SNP array data, four components representing GC-percentage and gender were

corrected using PCA. Table 5 lists the PCA results and the data quality evaluation, where 54

samples are saved by PCA-correction. Due to the unavailability of the ground truth, no

evaluation was made on FPR and FNR for real SNP array data. After 14 samples were

excluded by the quality control, the 312-sample dataset were sent for segmentation and

CNV calls. Based on CNVs confirmed through the pipeline, an additional 7 samples were

determined to be outliers due to the larger numbers of detected CNVs, and thus excluded.

Table 6 demonstrates the final CNV calls from 305 samples. The median number and size of

CNVs were comparable to previous reports (~22 CNVs per sample with a median size of

13Kbp) [14].

VI. DISCUSSIONS AND CONCLUSIONS

PCA-correction

PCA-correction provides a complete data decomposition, which allows a non-parametric

data correction helping CNV detection by significantly reducing FPR and slightly reducing

FNR. Compared to the previously proposed regression-based method [15, 19], PCA-

correction shows a slight improvement in detection accuracy for corrected data. More

important is the flexibility of PCA-correction which can be extended to correct other

categorical confounding factors along sample space, such as the batch effect or input DNA

quantity values [20], whose influences on the data may be difficult to isolate otherwise.

FPR vs. FNR

These two measures are employed to evaluate the accuracy of CNV detection. While FPR is

greatly reduced after eliminating the variations induced by GC-percentage (Table 2c), a

slight improvement is observed in FNR for corrected dataset. The results imply a stronger

influence from GC-percentage effect on FPR than on FNR. The ANOVA test in Table 3

shows a significant group difference in the false negatives, but not in the false positives,

between the two groups with different levels of Gaussian noise, indicating that it is more

likely to miss a true CNV when Gaussian noise level is higher. Further tests on three

different levels of GC-percentage effect datasets confirm with previous conclusions. As

shown in Table 4, false positives significantly differ among the three uncorrected datasets.

After correction, no group difference is observed in either false positives or false negatives.

This provides more evidence that GC-percentage induced variations strongly affect false

positives.

GC-percentage vs. Gaussian noise

These two factors influence two types of errors in different ways. GC-percentage induces

oscillations in the LRR data. Since the CNV detection tries to locate regions with significant

alternations in LRR, it is sensitive to oscillatory noise, which explains the higher FPR when

GC-percentage effect is stronger. On the other hand, with increased variations induced by

Gaussian noise, the difference in LRR between aberrant and normal regions becomes less

significant, which leads to false negatives.
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CNV call

Final CNV calls incorporate reports from both CBS and HMM methods. The use of two

detecting algorithms is a conservative approach. Together with the subsequent segment SNR

evaluation, it imposes a highly stringent control on false positives, which is expected to

improve the reliability of the confirmed CNV regions and avoid the inflation of CNV calls.

In summary, we propose a PCA-based correction for LRR data, and incorporate outlier

smoothing, quality control, two segmentation algorithms and a final SNR evaluation into the

processing pipeline for CNV detection. Both simulation and experiment results show that

PCA-correction significantly decreases the fluctuations in LRR data, and simulations further

confirm that PCA-correction leads to a significant improvement in FPR, along with a slight

improvement in FNR. More undesired factors can be corrected through PCA-correction if

necessary. Overall, the PCA-correction incorporated pipeline is designed to work with

existing CNV detecting algorithms to reduce the false positives in detection and enhance the

validity of resulting CNV calls.
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Figure 1.
Flowchart of the proposed processing pipeline
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Table 1

PCA and data quality evaluation (simulation)

Table 2a. PCA-correction

Designed feature GC-percentage Date and scanner

Identified Component 1st 2nd

P-value <1E-23 <1E-23

Table 2b. Evaluation of data quality

Data Quality
High noise Low noise

σLRR Nsub_ex σLRR Nsub_ex

Uncorrected 0.30±0.03 76 0.25±0.03 10

Corrected (Comp. 1) 0.28±0.02 46 0.23±0.02 4

Corrected (Comp. 1,2) 0.28±0.02 40 0.22±0.02 4

Table 2c. Detection Accuracy: PCA-correction

Total generated markers with CNVs: 75867

PennCNV results Overall FPR Overall FNR

Uncorrected 0.6220 0.1374

Corrected (comp. 1) 0.0389 0.0940

Corrected (comp. 1,2) 0.0351 0.0886

Table 2d. Detection Accuracy: regression-based correction

PennCNV results Overall FPR Overall FNR

GC-percentage corrected 0.0389 0.0944

Note: high/low noise: group with high-SD/low-SD Gaussian noise, each containing 100 samples; σLRR: overall standard deviation of the simulated

LRR data for each sample; Nsub_ex: number of bad samples failed by quality control; FPR and FNR are calculated with regard to the total number

of markers with CNVs.
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Table 2

Evaluation of false negatives vs. Gaussian noise

Corrected High noise Low noise

σ Gaussian 0.28±0.02 0.22±0.01

FNs 21±32 6±11

ANOVA P-value = 4.92E-06

Note: σGaussian denotes the standard deviation of the imposed Gaussian noise.
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Table 3

Evaluation of false positives vs. GC-percentage

Uncorrected GC1 GC2 GC3

|rLRR-GC| 0.35±0.21 0.30±0.18 0.25±0.17

FPs 444±678 236±407 155±334

ANOVA P-value = 2.34E-08

Overall FPR GC1 GC2 GC3

Uncorrected 1.1710 0.6220 0.4090

Corrected 0.0413 0.0389 0.0317

Note: GC1, GC2 and GC3 represent the three datasets with different levels of GC-percentage effect, each dataset containing 200 samples. |
rLRR-GC|: absolute correlation between LRR data and GC-percentage.
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Table 4

PCA and data quality evaluation (experiment)

Factor Component P-value

GC-percentage 1st 4th 6th 7th < 1E-23

Gender 7th 6.42E-5

Data Quality Uncorrected Corrected

σLRR 0.25± 0.08 0.18 ± 0.05

Nsub_ex 68 14
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Table 5

Statistics of detected CNVs

5228 CNVs: 2220 insertions vs. 3008 deletions

CNV Statistics Min Median Max

NcNv (per sample) 2 17 43

LCNV (Kbp) 0.5 10.5 2916

Note: 305 samples. NCNV: number of CNVs; LCNV CNV length.
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