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Abstract

Ultrahigh dimensional data with both categorical responses and categorical covariates are

frequently encountered in the analysis of big data, for which feature screening has become an

indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure

for categorical response with ultrahigh dimensional categorical covariates. The proposed

procedure can be directly applied for detection of important interaction effects. We further show

that the proposed procedure possesses screening consistency property in the terminology of Fan

and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte

Carlo simulation studies, and illustrate the proposed method by two empirical datasets.
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1. INTRODUCTION

Since the seminal work of Fan and Lv (2008), feature screening for ultrahigh dimensional

data has received considerable attention in the recent literature. Wang (2009) proposed

forward regression method for feature screening in ultrahigh dimensional linear models.

Fan, Samworth and Wu (2009) and Fan and Song (2010) developed sure independence

screening (SIS) procedures for generalized linear models and robust linear models. Fan,

Feng, and Song (2001) developed nonparametric SIS procedure for additive models. Li,

Peng, Zhang and Zhu (2012) developed rank correlation based SIS procedure for linear

models. Liu, Li and Wu (2013) developed a SIS procedure for varying coefficient model

based on conditional Pearson’s correlation. Procedures aforementioned are all model-based

methods. In the analysis of ultrahigh dimensional data, it would be very challenging in

specifying a correct model in the initial stage. Thus, Zhu et al. (2011) advocated model-free

procedures and proposed a sure independence and ranking screening procedure based on
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multi-index models. Li, Zhong and Zhu (2012) proposed a model-free SIS procedure based

on distance correlation (Szekely, Rizzo and Bakirov, 2007). He, Wang and Hong (2013)

proposed a quantile-adaptive model-free SIS for ultrahigh dimensional heterogeneous data.

Mai and Zou (2013) proposed a SIS procedure for binary classification with ultrahigh

dimensional covariates based on Kolmogorov’s statistic. The aforementioned methods

implicitly assume that predictor variables are continuous. Ultrahigh dimensional data with

categorical predictors and categorical responses are frequently encountered in practice. This

work aims to develop a new SIS-type procedure for this particular situation.

This work was partially motivated by an empirical analysis of data related to search engine

marketing (SEM), which is also referred to as paid search advertising (PSA). It has been

standard practice to make textual advertisements on search engines such as Google in USA

and Baidu in China. Keyword management plays a critical role in textual advertisements,

and therefore is of particular importance in SEM practice. Specifically, in order to maximize

the amount of potential customers, the SEM practitioner typically maintains a large number

of relevant keywords. Depending on the business scale, the total number of keywords ranges

from thousands to millions. Practically managing so many keywords is a challenging task.

For an easy management, the keywords need to be classified into fine groups. This is a

requirement enforced by all major search engines (e.g., Google and Baidu). Ideally, the

keywords belong to the same group should bear similar textual formulation and semantic

meaning. This is a nontrivial task demanding tremendous efforts and expertise. The current

industry practice largely relies on human forces, which is expensive and inaccurate. This is

particular true in China, which has the largest emerging SEM market in the world. Then,

how to automatically classify Chinese keywords into pre-specified groups becomes a

problem of great importance. Such a problem indeed is how to handle high dimensional

categorical feature construction and how to identify important features.

From statistical point of view, we can formulate the problem as follows. We treat each

keyword as a sample and index it by i with 1 ≤ i ≤ n. Next, let Yi ∈ {1, 2, … , K} be the class

label. We next convert the textual message contained in each keyword to a high dimensional

binary indicator. Specifically, we collect a set of most frequently used Chinese characters

and index them by j with 1 ≤ j ≤ p. Define a binary indicator Xij as Xij = 1 if the jth Chinese

character appears in the ith keyword and Xij = 0 otherwise. Collect all those binary

indicators by a vector . Because the total number of Chinese

characters is huge, the dimension of Xi (i.e., p) is ultrahigh. Subsequently, the original

problem about keyword management becomes an ultrahigh dimensional classification

problem from Xi to Yi. Many existing methods, including k-Nearest Neighbors (Hastie et al.,

2001, kNN), random forest (Breiman, 2001, RF), and support vector machine (Tong and

Koller, 2001; Kim et al., 2005, SVM) can be used for high dimensional binary classification.

However these methods become instable if the problem is ultrahigh dimensional. As a result,

feature screening becomes indispensable.

This paper aims to develop a feature screening procedure for multiclass classification with

ultrahigh dimensional categorical predictors. To this end, we propose using Pearson’s chi-

square (PC) test statistic to measure the dependence between categorical response and

categorical predictors. We develop a screening procedure based on the Pearson chi-square
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test statistic. Since the Pearson chi-square test statistic can be directly calculated using most

statistical software packages. Thus, the proposed procedure can be easily implemented in

practice. We further study the theoretical property of the proposed procedure. We rigorously

prove that, with overwhelming probability, the proposed procedure can retain all important

features, which implies the sure independence screening (SIS) property in the terminology

of Fan and Lv (2008). In fact, under certain conditions, the proposed method can correctly

identify the true model consistently. For convenience, the proposed procedure is referred to

as PC-SIS, which possesses the following virtues.

The PC-SIS is a model-free screening procedure because the implementation of PC-SIS

does not require one to specify a model for the response and predictors. This is an appealing

property since it is challenging to specify a model in the initial stage of analyzing ultrahigh

dimensional data. The PC-SIS can be directly applied for multi-categorical response and

multi-categorical predictors. The PC-SIS has excellent capability in detecting important

interaction effects by creating new categorical predictors for interactions between predictors.

Furthermore, the PC-SIS is also applicable for multiple response and grouped or

multivariate predictors by defining a new univariate categorical variable for the multiple

response or the grouped predictors. Lastly, by appropriate categorization, PC-SIS can handle

the situation with both categorical and continuous predictors. In summary, the PC-SIS

provides a unified approach for feature screening in ultrahigh dimensional categorical data

analysis. We conduct Monte Carlo simulation to empirically verify our theoretical findings,

and illustrate the proposed methodology by two empirical datasets.

The rest of this article is organized as follows. Section 2 describes the detailed procedure of

PC-SIS and establishes its theoretical property. Section 3 presents some numerical studies.

Section 4 presents two real world applications. The conclusion remark is given in Section 5.

Technical proofs are given in the Appendix.

2. The Pearson Chi-Square Test based Screening Procedure

2.1. Sure Independence Screening

Let Yi ∈ {1, … , K} be the corresponding class label, and  be the

associated categorical predictor. Since the predictors involved in our intended SEM

application are binary, we assume thereafter that Xij is binary. This allows us to slightly

simplify our notation and technical proofs. However, the developed method and theory can

be readily applied to general categorical predictors. Define a generic notation

 to be a model with Xij1, … , Xijd included as relevant features. Let 

be the model size. Let  be the subvector of Xi according to .

Define  to be the conditional distribution of Yi given . Then a candidate

model  is called sufficient, if

(2.1)
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Obviously, the full model  is sufficient. Thus, we are only interested in

the smallest sufficient model. Theoretically, we can consider the intersection of all sufficient

models. If the intersection is still sufficient, it must be the smallest. We call it the true model

and denote it by . Throughout the rest of this article, we assume  exists with .

The objective of feature screening is to find a model estimate  such that: (1) ; and

(2) the size of  is as small as possible. To this end, we follow b the marginal screening

idea of Fan and Lv (2008) and propose the Pearson chi-square type statistic as follows.

Define P(Yi = k) = πyk, P(Xij = k) = πjk, and P(Yi = k1, Xij = k2) = πyj,k1k2. Those quantities

can be estimated by , and

. Subsequently, a chi-square type statistic can be

defined as

(2.2)

which is a natural estimator of

(2.3)

Obviously, those predictors with larger  values are more likely to be relevant. As a result,

we can estimate the true model by , where c > 0 is some pre-specified

constant. For convenience, we refer to  as a PC-SIS estimator.

Remark 1—As one can see,  can be equivalently defined in terms of p-value.

Specifically, define , where  stands for a chi-squared distribution with

K degrees of freedom. Because  is monotonically decreasing function in  can be

equivalently expressed as  for some constant 0 < pc < 1. In the situation,

where the number of categories involved by each predictor is different, the predictor

involved more categories is likely to be associated with larger Δj values, regardless of

whether the predictor is important or not. In that case, directly using Δj for variable

screening is less accurate. Instead, using p-value  is more appropriate.

2.2. Theoretical Properties

We next investigate the theoretical properties of . Define

. We then assume the following conditions.

(C1) (Response Probability) Assume that there exist two positive constants 0 < πmin < πmax

< 1 such that πmin < πyk < πmax for every 1 ≤ k ≤ K and πmin < πjk < πmax for every 1 ≤ j ≤ p

and 1 ≤ k ≤ K.
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(C2) (Marginal Covariance) Assume  for any . We further assume that there

exists positive constant ωmin, such that .

(C3) (Divergence Rate) Assume log p ≤ νnξ for some constants ν > 0 and 0 < ξ < 1.

Condition (C1) excludes those features with one particular category’s response probability

extremely small (i.e., πyk ≈ 0) or extremely large (i.e., πyk ≈ 1). Condition (C2) requires

that, for every relevant categorical feature , there exists at least one response

category (i.e., k1) and one feature category (i.e., k2), which are marginally correlated (i.e.,

). Under a linear regression setup, similar condition was also used by Fan and

Lv (2008) but in terms of the marginal covariance. Condition (C2) also assumes that Δj = 0

for every . With the help of this condition, we can rigorously show that  is

selection consistent for , that is  as n → ∞ in Theorem 1. If this

condition b is removed, the conclusion becomes screening consistent (Fan and Lv, 2008),

that is  as n → ∞. Lastly, condition (C3) allows the feature dimension p

to diverge at b an exponentially fast speed in terms of the sample size n. Accordingly, the

feature dimension could be much larger than sample size n. Then, we have the following

theorem.

Theorem 1. (Strong Screening Consistency) Under Conditions (C1)−(C3), there exists a

positive constant c such that .

2.3. Interaction Screening

Interaction detection is important for the intended SEM application. Consider two arbitrary

feature Xij1 and Xij2. We say they are free of interaction effect if conditioning on Yi, they are

independent with each other. Otherwise, we say they have nontrivial interaction effect.

Theoretically, such an interaction effect can be conveniently measured by

where πk,j1j2,k1k2 = P(Xij1 = k1, Xij2 = k2∣Yi = k) and πk,j,k* = P(Xij = k*∣Yi = k). They can be

estimated, respectively, by ,

and . Subsequently, Ωj1j2 can be estimated

by
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Accordingly, those interaction terms with large  values should be considered as

promising ones. As a result, it is natural to select important interaction effects by

 for some critical value c > 0. It is remarkable that the critical value c

used here is typically different from that of . As one can imagine, searching for important

interaction effects over every possible feature pair is computationally expensive. To save

computational cost, we suggest to focus on those features in . This leads to the following

practical solution

(2.4)

Under appropriate conditions, we can also show that  as n → ∞, where

.

2.4. Tuning Parameter Selection

We first consider tuning parameter selection for . To this end, various non-negative values

can be considered for c. This leads to a set of candidate models, which are collected by a

solution path , where . Here {k1, … , kp} is a

permutation of {1, … , p} such that . As a result, the original

problem about tuning parameter selection for c is converted into a problem about model

selection for . To solve the problem, we propose the following maximum ratio criterion.

To illustrate the idea, we temporarily assume that . Recall that the true model size is

. We then should have  for some positive constant cjj+1 > 0, as

long as j + 1 ≤ d0. One the other side, if j > d0, we should have both  and  converge

in probability towards 0. If their convergence rates are comparable, we should have

. However, if j = d0, we should have  for some positive constant

cj > 0 but . This makes the ratio . This suggests that d0 can be

estimated by

where  is defined to be  for the sake of completeness. Accordingly, the final model

estimate is given by . Similar idea also can be used to estimate the

interaction model  and get the interaction model size . Our numerical experiments

suggest that it works fairly well.

3. SIMULATION STUDIES

3.1. Example 1: a Model without Interaction

We first consider a simple example without any interaction effect. We generate Yi ∈ {1, 2,

… , K} with K = 4 and P(Yi = k) = 1/K for every 1 ≤ k ≤ K. Define the true model to be
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 with . Next, conditional on Yi, we generate relevant features as

P(Xij = 1∣Yi = k) = θkj for every 1 ≤ k ≤ K and . Their detailed values are given in

Table 1. Then, for any 1 ≤ k ≤ K and , we define θkj = 0.5. For a comprehensive

evaluation, various feature dimensions (p = 1000, 5000) and sample sizes (n = 200, 500,

1000) are considered.

For each random replication, the proposed maximum ratio method is used to select both 

and . Subsequently, the number of correctly identified main effects  and

incorrectly identified main effects  with  are computed. The

interaction effects are similarly summarized. This leads to the number of correctly and

incorrectly identified interaction effects, which are denoted by CIE and IIE, respectively.

Moreover, the final model size, that is , is computed. The coverage

percentage, defined by , is recorded. Lastly,

all those summarizing measures are averaged across the 200 simulation iterations and then

reported in Table 2. They correspond to the rows with screening method flagged by .

For comparison purpose, the full main effect model  (i.e., the model with all the main

effect without interaction) and also the selected main effect model  (i.e., the model with

all the main effect in  without interaction) are also included.

The detailed results are given in Table 2. For a given simulation model, a fixed feature

dimension p, and a diverging sample size n, we find that the CME increases towards

 and IME decreases towards 0, and there is no over-fitting effect. This result

corroborates the theoretical result of Theorem 1 very well. In the meanwhile, since there is

no interaction in this particular model, CIE is 0 and IIE converges towards 0 as n goes to

infinity.

3.2. Example 2: a Model with Interaction

We next investigate an example with genuine interaction effects. Specifically, the class label

is generated in the same way as the previous example with K = 4. Conditional on Yi = k, we

generate Xij with j ∈ {1, 3, 5, 7} according to probability P(Xij = 1∣Yi = k) = θkj, whose

detailed values are given in Table 3. Conditional on Yi and Xi,2m−1, we generate Xi,2m

according to

for every 1 ≤ k ≤ K and m ∈ {1, 2, 3, 4}. Lastly, we define θkj = 0.4 for any 1 ≤ k ≤ K and j >

8. Accordingly, we should have  and .

The detailed results are given in Table 4. The basic findings are qualitatively similar to those

in Table 2. The only difference is that the CIE value no longer converges towards 0. Instead,

it converges towards  as n → ∞ and p fixed. Also, CP values for  are no longer
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near 100% since  only takes main effect into consideration. Instead, the CP value for

 converges towards 100% as n increases and p is fixed.

3.3. Example 3: a Model with both Categorical and Continuous Variables

We consider here an example with both categorical and continuous variables. Fix .

Here, Yi ∈ {1, 2} is generated according to P(Yi = 1) = P(Yi = 2) = 1/2. Given Yi = k, we

generate latent variable  with Zij independently distributed as

N(μkj, 1), where μkj = 0 for any j > d0, μkj = −0.5 if Yi = 1 and j ≤ d0, and μkj = 0.5 if Yi = 2

and j ≤ d0. Lastly, we construct observed feature Xij as follows. If j is an odd number, we

then define Xij = Zij. Otherwise, define Xij = I(Zij > 0). As a result, this example involves a

total of d0 = 20 features are relevant. Half of them are continuous and half of them are

categorical. To apply our method, we need to first discretize the continuous variables to be

categorical. Specifically, let zα stand for the αth quantile of a standard normal distribution.

We then re-define those continuous predictors as Xij = 1 if Xij < z0.25, Xij = 2 if z0.25 < Xij <

z0.50, Xij = 3 if z0.50 < Xij < z0.75, and Xij = 4 if Xij > z0.75. By doing so all the features

become categorical. We next apply our method to the converted datasets by using p-values

as described in the Remark 1. The experiment is replicated in a similar manner as before

with detailed results summarized in Table 5. The results are qualitatively similar to those in

Example 1.

4. REAL DATA ANALYSIS

4.1. A Chinese Keyword Dataset

The data contains a total of 639 keywords (i.e., samples), which are classified into K = 13

categories. The total number of Chinese characters involved is p = 341. For each class, we

randomly split the sample into two parts with equal sizes. One part is used for training and

the other for testing. The sample size of the training data is n = 320. Based on the training

data, models are selected by the proposed PC-SIS method and various classification methods

(i.e., kNN, SVM, and RF) are applied. Their forecasting accuracies are examined on the

testing data. For a reliable evaluation, such an experiment is randomly replicated 200 times.

The detailed results are given in Table 6. As seen, the PC-SIS estimated main effect model

, with size 14.6 on average, consistently outperforms the full model , regardless of the

classification method. The relative improvement margin could be as high as

87.2%-51.1%=36.1% for SVM. Such an outstanding performance can be further improved

by including about 22.3 interaction effects. The maximum improvement margin is

78.0%-67.6%=10.4% for RF.

4.2. Labor Supply Dataset

We next consider a dataset about labor supply. This is an important dataset generously

donated by Mroz (1987) and was discussed by Wooldridge (2002). It contains a total of 753

married white women aged between 30 to 60 in the year of 1975. For illustration purpose,

we take a binary variable Yi ∈ {0, 1} as the response of interest, which indicates whether the

woman participated to the labor market or not. The dataset contains a total of 77 predictive

variables with interaction terms included. These variables were observed for both
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participated and non-participated women. They are recorded by Xi. Understanding the

regression relationship between Xi and Yi is useful for calculating the propensity score for a

woman’s employment decision (Rosenbaum and Rubin , 1983). However, due to its high

dimensionality, directly using all the predictors for propensity score estimation is

suboptimal. Thus, we are motivated to apply our method for variable screening.

Following similar strategy, we randomly split the dataset into two parts with equal sizes.

One part is used for training and the other for testing. We then apply PC-SIS method to the

training dataset. Because this dataset involves both continuous and categorical predictors,

the method of discretization (as given in simulation Example 3) is used. We then apply PC-

SIS to the discretized dataset, which leads to estimated model . Because the interaction

terms with good economical meanings are already included in Xi (Mroz , 1987), we did not

further pursue the interaction model . An usual logistic regression model is then estimated

based on the training dataset, and the resulting model’s forecasting accuracy is evaluated on

the testing data in terms of AUC, which is area under the ROC curve (Wang, 2007). The

definition is given as follows. Let  be the maximum likelihood estimator, which is obtained

by conducting a logistic regression model for Yi and Xi but based on the training data.

Denote the testing dataset, which can be further decomposed as  with

 and . Simply speaking,  and  collect indices of

those testing samples with response being 0 and 1, respectively. Then, AUC in Wang (2007)

is defined as

(4.1)

where n0 and n1 are the sample sizes of  and , respectively.

For comparison purpose, the full model  is also evaluated. For a reliable evaluation, the

experiment is randomly replicated 200 times. We find that a total of 10.20 features are

selected on average with AUC=98.03%, which is extremely comparable to that of the full

model (i.e., AUC=98.00%) but with substantially reduced features. Lastly, we apply our

method to the whole dataset, with 10 important main effects identified and no interaction is

included. The 10 selected main effects are, respectively, family income, after tax full

income, wife’s weeks worked last year, wife’s usual hours of work per week last year, actual

wife experience, salary, hourly wage, overtime wage, hourly wage from the previous year,

and a variable indicating whose hourly wage from the previous year is not 0.

Remark 2. One can also evaluate AUC according to (4.1) but based on the whole sample

and then optimize it with respect to an arbitrary regression coefficient β. This leads to the

Maximum Rank Correlation (MRC) estimator, which has been well studied by Han (1987),

Sherman (1993), and Baker (2003).

5. CONCLUDING REMARKS

To conclude this article, we discuss here two interesting topics for future study. First, as we

discussed before, the proposed method and theory can be readily extended to the situation
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with general categorical predictors. Second, we assume here the number of response classes

(i.e., K) is finite. How to conduct variable selection and screening with a diverging K is

theoretically challenging.

To conclude this article, we discuss here two interesting topics for future study. First, as we

discussed before, the proposed method and theory can be readily extended to the situation

with general categorical predictors. Second, we assume here the number of response classes

(i.e., K) is finite. How to conduct variable selection and screening with a diverging K is

theoretically challenging.
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APPENDIX: Proof of Theorem 1

The proof of Theorem 1 consists of five steps. First, we show that there exists a lower bound

on Δj for every . Second, we establish  as a uniformly consistent estimator of Δj

which is over 1 ≤ j ≤ p. Last, we argue that there b exists a positive constant c such that

 with probability tending to 1.

STEP 1. By definition, we have . Then for every , by

Condition (C1), πyk and πjk are both upper bounded by πmax. We then have

. Next, by Condition (C2), if

. These results together make Δj lower

bounded by . We can then define , which is a positive

constant resulting in minj∈ST Δj > Δmin.

STEP 2. The proof of uniform consistency for  and  are similar. As a result, we omit

the details of . Also, based on the uniform consistency of  and , the

uniform consistency of  needs only some standard argument using Taylor’s expansion.

The technical details of ’s uniform consistency is also omitted. We focus on  only.

To this end, we define Zi,jk = I(Xij = k) − πjk. By that we know ,

and ∣Zij,k∣ ≤ M with M = 1. Also, for a fixed pair of (j, k), we know that Zij,k are independent

for i. All those conditions remind us of Bernstein’s inequality, by which we have,
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where ε > 0 is an arbitrary positive constant. Since M = 1 and , the right-

hand side of the inequality can further bounded above by exp{−6ε2/(4ε + 3n)}, Thus,

With , we have

(A.1)

where the first inequality is due to Bonferonni’s inequality. By Condition (C3), the

righthand side of the final inequality goes to 0 as n → ∞. Then we have, under Condition

(C1) – (C3), .

STEP 3. Recall that . Define c = (2/3)Δmin and we should have .

Otherwise, there must exist a  but . Accordingly, we must have

 and Δj* > Δmin. Thus , which implies, if

 then . On the other hand, we know by ’s uniform

consistency, with , as

n → ∞.

Similarly, we have . Or else there should be a  but . Thus

 and Δj* = 0. We should have . Let ε =

(2/3)Δmin, and by uniform consistency again, we have

, as n → ∞. As a result, we know

that  with c = (2/3)Δmin, as n → ∞. This completes the proof.
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Table 2

Example 1 Detailed Simulation Results

Main Effect Interaction Effect

p n Method CME IME CIE IIE MS CP%

1000 200 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 9.8 0.0 0.0 0.0 9.9 98.6

Ŝ + Î 9.8 0.0 0.0 1.1 11.0 98.6

500 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.2 10.2 100.0

1000 SF 10.0 990.0 0.0 0.0 1000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.0 10.0 100.0

5000 200 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 9.6 0.0 0.0 0.0 9.6 96.6

Ŝ + Î 9.6 0.0 0.0 1.1 10.7 96.6

500 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.8 10.8 100.0

1000 SF 10.0 4990.0 0.0 0.0 5000.0 100.0

Ŝ 10.0 0.0 0.0 0.0 10.0 100.0

Ŝ + Î 10.0 0.0 0.0 0.0 10.0 100.0
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Table 3

Probability Specification for Example 2

j

θ kj 1 3 5 7

k=1 0.8 0.8 0.7 0.9

k=2 0.1 0.3 0.2 0.3

k=3 0.7 0.9 0.1 0.1

k=4 0.2 0.1 0.9 0.7
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Table 4

Example 2 Detailed Simulation Results

Main Effect Interaction Effect

p n Method CME IME CIE IIE MS CP%

1000 200 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 5.4 0.0 0.0 0.0 5.4 45.7

Ŝ + Î 5.4 0.0 1.4 5.0 12.0 58.2

500 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 7.8 0.0 0.0 0.0 7.8 65.5

Ŝ + Î 7.8 0.0 3.8 1.1 12.8 97.8

1000 SF 8.0 992.0 0.0 0.0 1000.0 66.6

Ŝ 8.0 0.0 0.0 0.0 8.0 66.6

Ŝ + Î 8.0 0.0 4.0 0.2 12.2 100.0

5000 200 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 4.9 0.0 0.0 0.0 4.9 41.2

Ŝ + Î 4.9 0.0 0.9 4.0 9.9 49.5

500 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 7.5 0.0 0.0 0.0 7.5 63.1

Ŝ + Î 7.5 0.0 3.5 1.7 12.8 92.9

1000 SF 8.0 4992.0 0.0 0.0 5000.0 66.6

Ŝ 7.9 0.0 0.0 0.0 7.9 66.6

Ŝ + Î 7.9 0.0 3.9 0.2 12.2 99.9
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Table 5

Example 3 Detailed Simulation Results

Main Effect Interaction Effect

p n Method CME IME CIE IIE MS CP%

1000 200 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 17.9 0.2 0.0 0.0 18.2 89.6

Ŝ + Î 17.9 0.2 0.0 0.3 18.5 89.6

1000 500 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 19.9 0.0 0.0 0.0 19.9 99.9

Ŝ + Î 19.9 0.0 0.0 0.0 19.9 99.9

1000 1000 SF 20.0 980.0 0.0 0.0 1000.0 100.0

Ŝ 20.0 0.0 0.0 0.0 20.0 100.0

Ŝ + Î 20.0 0.0 0.0 0.0 20.0 100.0

5000 200 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 15.7 0.2 0.0 0.0 16.0 78.9

Ŝ + Î 15.7 0.2 0.0 1.0 17.1 79.1

5000 500 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 19.9 0.0 0.0 0.0 19.9 99.9

Ŝ + Î 19.9 0.0 0.0 0.0 19.9 99.9

5000 1000 SF 20.0 4980.0 0.0 0.0 5000.0 100.0

Ŝ 20.0 0.0 0.0 0.0 20.0 100.0

Ŝ + Î 20.0 0.0 0.0 0.0 20.0 100.0
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Table 6

Detailed Results for Search Engine Marketing Dataset

Model Main Interaction Forecasting Accuracy%

Method Size Effect Effect kNN SVM RF

SF 341.00 341.00 0.00 76.89 51.13 60.57

Ŝ 14.60 14.60 0.00 85.20 87.19 67.55

Ŝ + Î 36.85 14.60 22.25 86.96 88.66 78.01
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