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Abstract

The endothelium is the orchestral conductor of blood vessel func-
tion. Pathological blood vessel formation (a process termed patho-
logical angiogenesis) or the inability of endothelial cells (ECs) to
perform their physiological function (a condition known as EC
dysfunction) are defining features of various diseases. Therapeutic
intervention to inhibit aberrant angiogenesis or ameliorate EC
dysfunction could be beneficial in diseases such as cancer and
cardiovascular disease, respectively, but current strategies have
limited efficacy. Based on recent findings that pathological angio-
genesis and EC dysfunction are accompanied by EC-specific meta-
bolic alterations, targeting EC metabolism is emerging as a novel
therapeutic strategy. Here, we review recent progress in our
understanding of how EC metabolism is altered in disease and
discuss potential metabolic targets and strategies to reverse EC
dysfunction and inhibit pathological angiogenesis.
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Introduction

Blood vessels perform many functions that are critical for tissue

homeostasis (Carmeliet, 2003). The endothelium, a single layer of

endothelial cells (ECs) that lines the blood vessel lumen, controls

vessel function. EC functions include the regulation of vascular tone

and barrier, leukocyte trafficking, blood coagulation, nutrient and

electrolyte uptake and neovascularization of hypoxic tissue, to name

only a few (Cines et al, 1998; Pober et al, 2009; Potente et al, 2011).

Many diseases are characterized by pathological blood vessel

responses or formation. The inability of ECs to perform their physio-

logical function (a condition termed EC dysfunction) contributes to

cardiovascular disease and diabetes (Davignon & Ganz, 2004),

whereas diseases such as cancer and age-related macula degenera-

tion are characterized by new blood vessel formation (a process

termed angiogenesis) (Carmeliet & Jain, 2011). Targeting ECs to

prevent dysfunction or inhibit pathological angiogenesis is poten-

tially beneficial for a wide variety of diseases, but current treatment

modalities, focusing primarily on growth factors, receptors, signal-

ing molecules and others have limited efficacy or specificity (Bergers

& Hanahan, 2008; Versari et al, 2009; Lee et al, 2012).

An emerging but understudied therapeutic target is EC metabo-

lism. It has been long known that risk factors for cardiovascular

disease (hypercholesterolemia, hypertension, dyslipidemia, diabe-

tes, obesity and aging) cause EC-specific metabolic perturbations

leading to EC dysfunction (Davignon & Ganz, 2004; Pober et al,

2009). Similarly, the links between EC metabolism and angiogene-

sis are apparent as angiogenic ECs migrate and proliferate in

metabolically challenging environments such as hypoxic and

nutrient-deprived tissue (Harjes et al, 2012). Moreover, the

growth factor-induced switch from a quiescent to an angiogenic

phenotype is mediated by important adaptations in EC energy

metabolism (De Bock et al, 2013a,b; Schoors et al, 2014a,b). EC

metabolic alterations are therefore not just innocent bystanders

but mediate pathogenesis. In this review, we summarize existing

data on the role of EC metabolism in mediating vascular disease

and discuss how metabolism may be targeted for therapeutic

benefit.

General endothelial metabolism

Despite their close proximity to oxygenated blood, ECs rely on

glycolysis instead of oxidative metabolism for adenosine triphos-

phate (ATP) production (Parra-Bonilla et al, 2010; De Bock et al,

2013b). In fact, under physiological conditions, over 80% of ATP is

produced by converting glucose into lactate (Fig 1). Less than 1% of

glucose-derived pyruvate enters the mitochondria for oxidative

metabolism through the tricarboxylic acid cycle (TCA) and subse-

quent ATP production via the electron transport chain (ETC) (Fig 1)

(Culic et al, 1997; De Bock et al, 2013b). However, ECs retain the

ability to switch to oxidative metabolism of glucose, amino acids
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and fatty acids in case of reduced glycolytic rates (Krutzfeldt et al,

1990; Dranka et al, 2010).

ECs lining peripheral tissue vessels or the blood brain barrier

(BBB) express multiple members of the two major families of sugar

transporters, that is, glucose transporters (GLUT) and sodium/

glucose co-transporters (SGLTs), but the high-affinity GLUT1 is

considered to be the main route of glucose uptake in ECs (Fig 1)

(Mann et al, 2003; Gaudreault et al, 2004, 2008; Sahoo et al, 2014).

Phosphorylation of intracellular glucose by hexokinase (HK)

destines it for metabolic utilization, predominately by conversion to

lactate via glycolysis (Fig 1) (Paik et al, 2005; De Bock et al,

2013b). Glycolytic intermediates also serve as precursors for biosyn-

thetic pathways including the pentose phosphate pathway (PPP),

hexosamine biosynthesis and glycogenesis (Fig 1, for an extensive

review see (De Bock et al, 2013a,b)).

The PPP consists of oxidative and non-oxidative branches, and

its overall flux is determined by the rate-limiting enzyme glucose-6-

phosphate dehydrogenase (G6PD) (Fig 1). Partially regulated by

VEGF signaling, G6PD destines glucose-6-phosphate (G6P) for

utilization in the PPP (Pan et al, 2009). The oxidative branch of the

PPP converts G6P into ribulose-5-phosphate (Ru5P) and produces

NADPH from NADP+, thereby generating reducing power to main-

tain EC redox balance and biosynthetic reactions (Dobrina & Rossi,

1983; Jongkind et al, 1989; Spolarics & Spitzer, 1993; Spolarics &

Wu, 1997; Vizan et al, 2009). The non-oxidative branch converts

Ru5P into xylulose-5-phosphate (Xu5P) and ribose-5-phosphate

(R5P), the latter is necessary for nucleotide biosynthesis (Pandolfi

et al, 1995). However, PPP intermediates may also be converted

back into glycolytic intermediates via the action of transketolase

(TKT) and transaldolase. These reactions are reversible, allowing

biosynthesis of macromolecules from glycolytic metabolites via the

non-oxidative arm.

The hexosamine biosynthesis pathway starts with the conver-

sion of the glycolytic intermediate fructose-6-phosphate (F6P) into

glucosamine-6-phosphate (GlucN6P) (Fig 1). GlucN6P is then

metabolized to uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc), a key substrate for glycosylation reactions that control

many aspects of EC function (Benedito et al, 2009; Laczy et al,

Glossary

1C metabolism
A complex metabolic network characterized by the transfer of carbon
from serine/glycine for folate compound chemical reactions and
involved in nucleotide, lipid and protein biosynthesis, redox
homeostasis and production of methylation substrates.
Advanced glycation end products (AGEs)
Proteins or lipids that have been non-enzymatically glycated, often as
a result of hyperglycemia and/or oxidative stress, that cause
damaging intracellular and extracellular dysfunction.
Angiogenesis
Growth of new blood vessels from existing microvasculature.
Endothelium
Continuous inner lining of all vasculature composed of endothelial
cells (ECs), which regulates physiological vascular function and
angiogenesis.
EC dysfunction
Inability of endothelial cells to fulfill their physiological role as
mediators of the blood barrier and vasotone.
Fatty acid oxidation
Metabolism of fatty acids in mitochondria into acetyl-CoA to fuel the
TCA cycle.
Glycolysis
Anaerobic metabolism of glucose producing ATP and pyruvate
Glycosylation
A post-translational modification that enzymatically adds glycans, or
oligosaccharides, to proteins and lipids.
Hexosamine biosynthesis pathway
Side pathway from glycolytic intermediate fructose 6-phosphate (F6P)
that produces substrates for glycosylation.
Isoprenoid
Mevalonate pathway intermediates used for the production of
cholesterol and as substrates for prenylation.
Metabolic flux
Flow of metabolites through a given metabolic pathway.
Metabolic flux analysis
Quantification of metabolic flux by tracing the fate of Isotope-labeled
substrates.
Metabolism
The spectrum of organic and chemical cellular reactions dedicated to
the production of energy and building blocks for general maintenance
and functionality.

Methylglyoxal pathway
Glycolytic side pathway from dihydroxyacetone phosphate (DHAP)
that results in production of methylglyoxal and/or AGEs.
Oxidative metabolism
Aerobic metabolic pathways that break down substrates through
oxidation for energy production and biosynthesis.
Pentose phosphate pathway
Metabolic pathway important for redox homeostasis and biosynthesis
which utilizes glucose-derived glucose-6-phosphate (G6P) for
production of NADPH through its oxidative branch, and fructose 6-
phosphate (F6P) and 3-phosphoglycerate (3PG) for nucleotide
production in its non-oxidative branch.
Polyol pathway
Pathway implicated in diabetic endothelial dysfunction by reduction
of glucose into sorbitol and then fructose to fuel production of AGEs.
Prenylation
Post-translational addition of isoprenoids such as farnesyl or geranyl–
geranyl to a protein.
Quiescence
Cell state defined by a lack of activity.
Reactive nitrogen species
Highly reactive nitrogen-containing molecules that often interact with
ROS, promote oxidative stress and reduce bioavailability of nitric
oxide.
Reactive oxygen species (ROS)
Highly reactive molecules that contain oxygen (produced by aerobic
metabolic processes) and are involved in normal cell homeostasis and
signaling, but whose accumulation, termed oxidative stress, leads to
cell damage.
Stalk cell
Endothelial cells that trail migratory tip cells and proliferate to extend
growth of a new blood vessel during sprouting angiogenesis.
Tip cell
Migratory endothelial cells that lead spouting microvessels up a
chemokine gradient during angiogenesis.
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Figure 1. Overview of general EC metabolism.
For clarity, not all metabolites and enzymes of the depicted pathways are shown. Abbreviations: 3DG: 3-deoxyglucosone; 3PG: 3-phosphoglycerate; 6PGD: 6-phosphogluconate
dehydrogenase; AGE: advanced glycation end-product; AR: aldose reductase; ARG: arginase; ATP: adenosine triphosphate; CPT: carnitine palmitoyltransferase; DHAP:
dihydroxyacetone phosphate; eNOS: endothelial nitric oxide synthase; ETC: electron transport chain; F6P: fructose 6-phosphate; F1,6P2: fructose 1,6-bisphosphate; F2,6P2:
fructose 2,6 bisphosphate; FA: fatty acid; G6P: glucose 6-phosphate; G6PD: glucose 6-phosphate dehydrogenase; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; GFAT:
glutamine-6-phosphate amidotransferase; GlucN6P: glucosamine-6-phosphate; GLS: glutaminase; GLUT: glucose transporter; GS: glutamine synthetase; GSH: glutathione:
hCYS: homocysteine; HMG-CoA: hydroxymethylglutaryl coenzyme A; IDH; isocitrate dehydrogenase; LDH: lactate dehydrogenase; MCT: monocarboxylate transporter; ME:
malic enzyme; MET: methionine; meTHF: 5.10-methylene-tetrahydrofolate; mTHF: 5-methyltetrahydrofolate; MS: methionine synthetase; NAD: nicotinamide adenine
dinucleotide; NADPH: nicotinamide adenine dinucleotide phosphate; NO: nitric oxide; ODC: ornithine decarboxylase; PFK1: phosphofructokinase-1 PFKFB3: 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase-3; PGK: phosphoglycerate kinase; ROS: reactive oxygen species; RPI: ribose-5-phosphate isomerase; SAH: S-adenosylhomocysteine: SAM:
S-adenosylmethionine; TCA cycle: tricarboxylic acid cycle; THF: tetrahydrofolate; TKT: transketolase; UDP-GlcNAc: uridine diphosphate N-acetylglucosamine.
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2009; Croci et al, 2014). The polyol pathway and methylglyoxal

pathways are glycolysis side-pathways that are mostly known for

their role in cardiovascular disease (Fig 1; see below) (Goldin

et al, 2006).

Other metabolic pathways are less well characterized in ECs.

Fatty acid (FA) oxidation (FAO) and glutamine oxidation have been

implicated in replenishing the TCA cycle to produce ATP via oxida-

tive phosphorylation (Fig 1) (Leighton et al, 1987; Hinshaw &

Burger, 1990; Dagher et al, 1999, 2001; De Bock et al, 2013b).

However, since ECs predominately rely on glucose metabolism to

provide ATP, the energetic function of FAO and glutamine oxidation

is not clear (De Bock et al, 2013b). FAs and amino acids can serve

as precursors for biomass production, but such a role in ECs has not

been demonstrated using isotope tracer labeling studies. FAO

produces significant amounts of nicotinamide adenine dinucleotide

phosphate (NADPH), which is an important co-factor in many

biosynthetic reactions and essential to maintain redox balance. In

addition, FAO generates acetyl-coA which is another important

precursor for biomolecule production.

For example, acetyl-CoA is used, among other things, for the

synthesis of cholesterol via the mevalonate pathway (Fig 1).

Although endothelial cholesterol metabolism has been poorly stud-

ied, perturbations in cholesterol homeostasis are known to affect

key EC functions such as intracellular signaling, inflammatory acti-

vation, nitric oxide synthesis and angiogenesis (Boger et al, 2000;

Ivashchenko et al, 2010; Whetzel et al, 2010; Xu et al, 2010; Fang

et al, 2013). ECs express all the cholesterol biosynthesis enzymes

and the LDL receptor for extracellular uptake (Fig 1). These proteins

are under transcriptional control of the sterol regulatory element

binding protein (SREBP1 and -2) and liver X receptors (LXR)

(Noghero et al, 2012). SREBP1 and LXRs inhibit cholesterol synthe-

sis and absorption, whereas SREBP2 induces synthesis and inhibits

cholesterol efflux via transcriptional repression of the ATP-binding

cassette (ABC) transporter 1 ABCA1, which together with ABCG1

mediates cholesterol efflux from ECs (Hassan et al, 2006). Notably,

endothelial SREBP2 also controls expression of arginine metabolism

enzymes, although the physiological significance of this interaction

between cholesterol and arginine metabolism remains to be deter-

mined (Zeng et al, 2004).

Arginine and glutamine are the best studied amino acids

(AAs) in ECs. Arginine is a metabolite in the ornithine cycle and

converted into citruline and nitric oxide (NO) by endothelial

nitric oxide synthase (eNOS) (Fig 1) (Sessa et al, 1990). Altera-

tions in arginine and eNOS metabolism are among the best-

characterized causes of EC dysfunction and a prime therapeutic

target (Leiper & Nandi, 2011). Glutamine is the most abundant

AA in the peripheral blood and preferentially taken up by ECs

via the solute carrier family 1 member 5 (SLC1A5) trans-

porter (Fig 1) (Herskowitz et al, 1991; Pan et al, 1995).

Glutamine-utilizing pathways are mainly biosynthetic and can be

divided into those that utilize the c-nitrogen (nucleotide biosyn-

thesis, hexosamine biosynthesis, asparagine synthesis) and those

that use the a-nitrogen or carbon backbone (DeBerardinis &

Cheng, 2010). The latter reactions use glutamine-derived gluta-

mate rather than glutamine itself and include glutathione (GSH)

synthesis, anaplerotic refueling of the TCA cycle and biosynthesis

of polyamines, proline and other non-essential AAs (NEAAs)

(Fig 1) (DeBerardinis & Cheng, 2010).

Serine and glycine are especially interesting examples of gluta-

mine / glutamate-derived NEAAs, not only because of their direct

effects on ECs (Weinberg et al, 1992; Rose et al, 1999; Yamashina

et al, 2001; Mishra et al, 2008; den Eynden et al, 2009; McCarty

et al, 2009; Stobart et al, 2013), but also since their synthesis

requires both the glutamate a-nitrogen and the glycolytic intermedi-

ate 3-phosphoglycerate (3PG) (Fig 1) (Locasale, 2013). Hence,

serine and glycine metabolism integrates metabolic input from

central carbon (glycolysis) and nitrogen (glutamine) metabolism.

Moreover, the reversible interconversion of serine and glycine is

directly coupled to one-carbon metabolism, intermediates of which

are considered important targets to treat cardiovascular disease

(Fig 1; see below) (Locasale, 2013). In fact, while EC metabolism is

largely understudied, several of the above-mentioned metabolic

pathways have been implicated as mediators of pathological angio-

genesis or EC dysfunction.

EC metabolism in diseases characterized by angiogenesis
and EC hyperproliferation

Cancer

Tumors need blood vessels to supply oxygen and detoxify waste

products (Jain, 1987; Papetti & Herman, 2002; Welti et al, 2013).

When tumors become too large to allow adequate diffusion of

oxygen and nutrients from local vasculature they secrete pro-

angiogenic growth factors to induce angiogenesis (Bergers &

Benjamin, 2003). Pharmacological inhibition of growth factor

signaling (primarily vascular endothelial growth factor (VEGF)

signaling) is the only clinically approved anti-angiogenic strategy,

but the benefits are limited as tumors acquire resistance within

months after treatment initiation (Bergers & Hanahan, 2008; Carme-

liet & Jain, 2011; Ebos & Kerbel, 2011; Welti et al, 2013). Escape

from anti-angiogenic therapy is mediated by increased secretion of

pro-angiogenic factors, activation of alternative angiogenic signaling

pathways, recruitment of pro-angiogenic accessory cells and other

mechanisms (Loges et al, 2010; Sennino & McDonald, 2012). A

recent report indicated that glycosylation-dependent interactions of

galectin-1 with VEGF receptor 2 (VEGFR2) could activate pro-angio-

genic signaling even when the VEGF ligand is blocked (Fig 2A)

(Croci et al, 2014). Hence, angiogenic signaling is robust and redun-

dant, and inhibition of individual signaling molecules and growth

factors can be overcome by escape mechanisms.

The switch from a quiescent to an angiogenic phenotype (as

occurs in cancer) is metabolically demanding and mediated by

adaptations in EC metabolism (Fig 2A). While the changes in meta-

bolic fluxes of ECs, freshly isolated from tumors, have not been

characterized yet, ECs in tumors and inflamed tissues likely

resemble highly activated ECs. Lactate dehydrogenase B (LDH-B) is

upregulated in tumor endothelium, and VEGF signaling increases

glycolytic flux by inducing GLUT1 and the glycolytic enzyme

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3)

(Fig 2A) (van Beijnum et al, 2006; Yeh et al, 2008; De Bock et al,

2013b). PFKFB3 catalyzes the synthesis of fructose-2,6-bisphosphate

(F2,6P2), which is an allosteric activator of 6-phosphofructo-1-kinase

(PFK-1) (Van Schaftingen et al, 1982). PFK-1 converts fructose-6-

phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2) in the rate-

limiting step of glycolysis. EC-specific PFKFB3 deletion diminishes
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retinal and hindbrain vascularization in mice, showing that

increased glycolytic flux is required for growth factor-induced angio-

genesis (De Bock et al, 2013b). Moreover, PFKFB3 overexpression

in zebrafish drives EC specification into sprout forming tip cells,

even in the presence of tip cell-inhibitory Notch signals that

promote proliferating stalk elongating cells (De Bock et al, 2013b).

Increased glycolysis not only provides energy for proliferation and

biosynthesis, but also for locomotion. Specifically, PFKFB3 and

other glycolytic enzymes co-localize with F-actin bundles in filopodia

and lamellipodia to produce ATP needed for rapid actin remodeling,

underlying locomotion and tip cell formation (De Bock et al,

2013b).

The important role of glycolysis in angiogenesis provides

opportunities for therapeutic targeting. Indeed, pharmacological

blockade with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO)

or EC-specific genetic silencing of PFKFB3 inhibits tumor growth in

vivo (Xu et al, 2014). In addition, 3PO inhibits glycolytic flux

partially and transiently and has recently shown efficacy in reducing

pathological angiogenesis in a variety of disease models (Schoors

et al, 2014b; Xu et al, 2014). The systemic harm caused by inhibit-

ing glycolysis is minimal, however, showing that even moderate,

short-term impairment of glycolysis renders ECs more quiescent

without overt detrimental side effects (Schoors et al, 2014b). The

finding that partial and transient reduction of glycolysis may be

sufficient to inhibit pathological angiogenesis provides a paradigm

shift in our thinking about anti-glycolytic therapies, away from

complete and permanent blockade of glycolysis, which can induce

undesired adverse systemic effects.

Aside from serving as an energy source or building blocks for

biosynthesis, glycolytic metabolites can also modulate angiogenesis

by acting as bona fide signaling molecules. This is evidenced by the

observation that glycolytic tumor cells secrete lactate, which is

taken up by ECs through the monocarboxylate transporter 1 (MCT1)

(Fig 2A) (Sonveaux et al, 2012). Instead of being metabolized,

A The glycolytic pathway drives pathological angiogenesis
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Figure 2. Metabolic pathways implicated in diseases characterized by pathological angiogenesis or hyperproliferative ECs.
(A) Angiogenic ECs rely on glycolysis, instead of oxidative metabolism, for ATP production and upregulate PFKFB3 to increase the conversion of glucose into lactate through
glycolysis. Lactate is secreted and taken up through lactate transporters. High Lactate influx through MCT1 results in increased intracellular lactate levels that compete with
a-ketoglutarate for PHD-2 binding, leading to HIF-1a stabilization and upregulation of pro-angiogenic genes. VEGFR-2 glycosylation is required for galectin-1-induced VEGF-
independent signaling. (B) PAH ECs are metabolically characterized by high aerobic glycolysis and low oxidative metabolism. NO production through eNOS is impaired due to
upregulation of arginase II and increased oxidative stress due to limited availability of MnSOD. In addition, several enzymes in the pentose phosphate pathway and polyamine
biosynthesis pathway are differentially expressed in PAH ECs, but the importance of these findings remains to be determined (B). Green font / bold line: upregulated, red font /
broken line: downregulated. For clarity, not all metabolites and enzymes of the depicted pathways are shown. Abbreviations: as in Fig 1. FGF: fibroblast growth factor; HIF:
hypoxia-inducible factor; IL: interleukin; PHD: prolyl hydroxylase domain; R5P: ribose-5-phosphate; RPE: ribulose-5-phosphate 3-epimerase; RPIA: ribose-5-phosphate
isomerase; Ru5P: ribulose-5-phosphate; SRM: spermidine synthase; VEGFR: vascular endothelial growth factor receptor; Xu5P: xylulose-5-phosphate.
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lactate induces HIF-1a activation leading to increased expression of

VEGFR2 and bFGF (Sonveaux et al, 2012). Moreover, lactate

competes with a-ketoglutarate for binding to the oxygen sensing

prolyl hydroxylase-2 (PHD-2), resulting in diminished PHD-2 activ-

ity and subsequent hypoxia-inducible factor-1a (HIF-1a) stabiliza-

tion (Fig 2A). Stabilized HIF-1a induces pro-angiogenic signaling

pathways such as nuclear factor kappa-light-chain-enhancer of acti-

vated B-cells (NFkB)/interleukin 8 (IL-8) leading to increased angio-

genesis (Fig 2A) (Hunt et al, 2007; Vegran et al, 2011; Sonveaux

et al, 2012). Exploratory studies found that lactate induces angio-

genesis in vivo and that pharmacological blockade of MCT1 inhibits

angiogenesis and reduces tumor growth in mice (Sonveaux et al,

2012). Together, these data suggest an intricate relationship

between classical pro-angiogenic signals such as VEGF, HIF-1a and

hypoxia, and EC glucose metabolism. Targeting EC glucose metabo-

lism to inhibit tumor angiogenesis is in its infancy as a therapeutic

strategy, but recent evidence suggests its viability.

Pulmonary arterial hypertension

Idiopathic pulmonary arterial hypertension (PAH) is characterized

by heightened pressure in pulmonary arteries caused by excessive

EC proliferation and vascular dysfunction (Xu & Erzurum, 2011).

Emerging evidence indicates that metabolic abnormalities underlie

PAH (Fig 2B) (Sutendra & Michelakis, 2014; Zhao et al, 2014). In

line with recent findings that glycolysis regulates angiogenesis,

hyperproliferative PAH ECs rely on increased glycolytic flux and

reduced oxygen consumption, which may be related to HIF-1a
overexpression (Fig 2B) (Xu et al, 2007; Fijalkowska et al, 2010;

Majmundar et al, 2010; Tuder et al, 2012). Human pulmonary

ECs expressing mutated bone morphogenetic protein receptor 2

(BMPR2), which confers PAH, show altered expression of several

glycolytic enzymes including GLUT1 and phosphoglycerate kinase 1

(PGK1). PAH ECs also show increased expression of enzymes of the

PPP (R5P isomerase, Ru5P-3-epimerase) and polyamine biosynthe-

sis pathway (ornithine decarboxylase (ODC), spermine synthase

(SMS)). These metabolic changes may underlie the rapid prolifera-

tion of PAH ECs, since glycolysis, the PPP and mitogenic polyam-

ines all promote cellular proliferation (Morrison & Seidel, 1995).

However, the expression of other PPP and polyamine enzymes

[G6PD, TKT, spermidine synthase (SRM)] is reduced—a finding

that requires further explanation (Fig 2B) (Atkinson et al, 2002;

Rudarakanchana et al, 2002; Long et al, 2006; Fessel et al, 2012). In

addition, ECs isolated from EC-specific BMPR2 mutant mice show

similarly increased expression of PGK1, indicating altogether that

alterations in glycolysis as well as PPP likely underlie PAH (Majka

et al, 2011).

In addition to alterations in glycolysis, idiopathic PAH ECs have

fewer mitochondria and decreased mitochondrial metabolic activity

(Xu et al, 2007). BMPR2 mutant ECs have reduced quantities of TCA

cycle intermediates, reduced fatty acid oxidation and transcriptional

reduction of several enzymes involved in fatty acid metabolism,

including the rate-limiting enzyme of fatty acid oxidation carnitine

palmitoyltransferase 1 (CPT1) (Fig 2) (Fessel et al, 2012). Together,

these findings suggest reduced oxidative metabolism. Indeed, phar-

macological inhibition of hyper-activated pyruvate dehydrogenase

kinase (PDK), an enzyme that shunts glucose-derived pyruvate away

from oxidative TCA metabolism, has shown therapeutic efficacy.

However, whether these effects are mediated via ECs specifically

remains to be determined (McMurtry et al, 2004). For unexplained

reasons, PAH patients also show increased isocitrate dehydrogenase

(IDH)-1 and IDH-2 serum activity, a finding that corroborates with

the increased IDH activity observed in BPMR2 mutant ECs (Fessel

et al, 2012). Still, the mechanisms that alter metabolic pathways in

PAH ECs and the importance of some of these metabolic adaptations

in the pathogenesis of PAH remain unclear.

Reduced nitric oxide (NO) levels are another hallmark of PAH

ECs (Fijalkowska et al, 2010). Low NO levels may be related to the

reduced levels of the mitochondrial antioxidant manganese superox-

ide dismutase (MnSOD) (Fijalkowska et al, 2010). Indeed, MnSOD

increases NO availability by clearing superoxide anion, which inac-

tivates NO to form peroxynitrite (Fig 2) (Masri et al, 2008).

However, other factors likely contribute to the low NO levels in

PAH ECs (Xu et al, 2004). Indeed, human PAH ECs express high

levels of arginase II, which competes with endothelial nitric oxide

synthetase (eNOS) for their common substrate L-arginine (Fig 2)

(Xu et al, 2004). Inhibition of endothelial arginase II increases NO

production in vitro, suggesting that arginase II can be targeted to

prevent EC hyperproliferation and restore NO availability (Krotova

et al, 2010). While the mechanisms that induce abnormal metabolic

activity in PAH ECs are understudied, restoring NO may provide

dual benefits in preventing excessive EC proliferation as well as

restoring EC vasoactivity.

The metabolic adaptations in PAH (high glycolytic rates and

reduced oxidative metabolism) are partly reminiscent of the meta-

bolic profile of angiogenic ECs. It would be thus interesting to deter-

mine if reducing glycolysis by pharmacological blockade of PFKFB3

can reduce the hyperproliferative rate in PAH ECs. Alternatively, the

beneficial effects of PDK inhibition in PAH to induce oxidative

metabolism could also be beneficial to block angiogenesis by

preventing the glycolytic switch in ECs. Indeed, PDK blockade

with dichloroacetate inhibits angiogenesis in glioblastoma patients

(Michelakis et al, 2010).

EC metabolism in diseases characterized by
EC dysfunction

Diabetes

Diabetes is characterized by high blood glucose levels that affect EC

metabolism and cause dysfunction (Fig 3A) (Blake & Trounce,

2013). Hyperglycemia induces peroxisome proliferator-activated

receptor-gamma coactivator 1a (PGC-1a), an important regulator of

metabolic gene expression and mitochondrial biogenesis (Puigserver

et al, 1998; Herzig et al, 2001; Lin et al, 2002). PGC1a increases

angiogenesis when expressed in heart and muscle cells (Arany et al,

2008; Patten et al, 2012). In contrast, diabetes-induced PGC-1a
expression in ECs renders them less responsive to angiogenic factors

and blunts angiogenesis (Sawada et al, 2014).

In addition to affecting gene expression, high glucose levels

alter metabolism to induce the production of reactive oxygen

species (ROS) and reactive nitrogen species (RNS), which might be

mediators of EC dysfunction (Fig 3) (Blake & Trounce, 2013).

High glucose levels cause ECs to produce ROS via activation of

NADPH-dependent oxidases (Inoguchi et al, 2003). In addition,

hyperglycemia inhibits PPP flux by down-regulation of G6PD, the

rate-limiting enzyme of the PPP. The PPP is an important source
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of intracellular NADPH, which is necessary to convert oxidized

glutathione (GSSH) into reduced GSH, a critical ROS scavenger

(Fig 3A) (Leopold et al, 2003; Zhang et al, 2012). Therefore, by

reducing PPP flux, high glucose depletes NADPH levels and

contributes to ROS accumulation (Goldin et al, 2006). Interest-

ingly, G6PD overexpression restores redox homeostasis in high

glucose cultured ECs (Leopold et al, 2003; Zhang et al, 2012).

Some studies suggest that high glucose shifts the normally glyco-

lytic EC metabolism toward oxidative metabolism and increased

mitochondrial respiration (Fig 3). However, these results appear

contextual, as other studies did not report such an induction of

oxidative metabolism (Nishikawa et al, 2000; Koziel et al, 2012;

Pangare & Makino, 2012; Dymkowska et al, 2014). While the

precise effects on mitochondrial respiration require further study,

hyperglycemia-induced mitochondrial ROS induces DNA breaks

and thereby activates polyAPD-ribose polymerase (PARP-1) (Du

et al, 2000, 2003; Nishikawa et al, 2000; Giacco & Brownlee, 2010;

Blake & Trounce, 2013). PolyADP-ribosylation by PARP-1 inacti-

vates GAPDH and stalls glycolysis, allowing accumulation of glyco-

lytic metabolites (Du et al, 2003).

Accumulation of F6P increases the flux through the hexosamine

biosynthesis pathway (HBP), which produces UDP-GlcNac, an

important precursor of glycosylation reactions (Fig 3A) (Brownlee,

2001). While glycosylation is important for physiological EC func-

tion, hyperglycemia-induced protein glycosylation inhibits angio-

genic functions (Du et al, 2001; Federici et al, 2002; Luo et al,

2008). Other glycolytic intermediates are diverted into the polyol

and methylglyoxal pathways that produce damaging agents such

as ROS and advanced glycation end products (AGEs) (Fig 3A)

(Goldin et al, 2006). AGEs induce vascular dysfunction by altering

extracellular matrix protein function and dysregulating cytokine

expression (Yan et al, 2008). In addition, receptor of AGE (RAGE)

binding by AGEs in vascular cells causes inflammation and

reduced NO availability associated with vascular complications in
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Figure 3. Metabolic pathways implicated in diseases characterized by EC dysfunction.
(A) High glucose levels in diabetes pushes glycolytic flux and cause ROS production and AGE formation. (B) Metabolic alterations that cause eNOS dysfunction mediate
atherosclerosis pathogenesis. Asymmetric dimethylarginine (ADMA) competes with arginine for binding to eNOS. Arginase expression is increased and eNOS expression is
decreased, leading to reduced eNOS activity. 1C metabolism and mevalonate metabolism provide eNOS coupling co-factors and inhibit ROS production. The mevalonate
pathway also provides farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), required for GTPase prenylation. For clarity, not all metabolites and enzymes
of the depicted pathways are shown. Green font / bold line: upregulated, red font / broken line: downregulated. Abbreviations: as in Figure 1. BH2: dihydrobiopterin; BH4:
tetrahydrobiopterin; ADMA: asymmetric dimethylarginine; CoQ10: coenzyme Q10; DDAH: dimethylarginine dimethylaminohydrolase; DHF: dihydrofolate; DHFR:
dihydrofolate reductase; FPP: farnesyl pyrophosphate; GGPP: geranylgeranyl pyrophosphate; GTP: Guanosine triphosphate; HMGCR: hydroxymethylglutaryl coenzyme A
reductase; PRMT: protein arginine methyltransferase.
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diabetic patients (Bucala et al, 1991; Vlassara et al, 1995; Min

et al, 1999; Wautier & Schmidt, 2004; Goldin et al, 2006; Manigrasso

et al, 2014).

Excess glucose that cannot be metabolized by glycolysis enters

the polyol pathway when converted into sorbitol by aldose reduc-

tase (AR) at the expense of NADPH, increasing ROS. Sorbitol

is subsequently converted into fructose and the highly reactive

3-deoxyglucosone (3DG), which promotes the formation of AGEs

(Fig 3A) (Kashiwagi et al, 1994; Oyama et al, 2006; Giacco &

Brownlee, 2010; Sena et al, 2012; Yoshida et al, 2012). Transgenic

overexpression of human AR in the endothelium of diabetic mice

accelerates atherosclerosis formation and inhibition of endothelial

AR reduces intracellular ROS, EC migration and proliferation

(Obrosova et al, 2003; Tammali et al, 2011; Vedantham et al, 2011;

Yadav et al, 2012). Methylglyoxal is another AGE precursor and

produced from the glycolytic intermediates glyceraldehyde-3-phosphate

(G3P) and dihydroxyacetone phosphate (DHAP). Methylglyoxal is

detoxified by conversion into pyruvate via the multienzyme

glyoxalase system, of which glyoxalase-I (GloI) is rate-limiting

(Fig 3A) (Thornalley, 1993). Glyoxalase-I overexpression reverses

hyperglycemia-induced angiogenesis defects in vitro and transgenic

overexpression of glyoxalase-I in rats reduces vascular AGE

formation and improves vasoreactivity (Brouwers et al, 2010, 2014)

(Ahmed et al, 2008). Together, these observations indicate that

targeting AR and glyoxalase might confer a therapeutic benefit in

diabetic patients.

Atherosclerosis

Atherosclerosis is a chronic inflammatory process in the blood

vessel wall leading to luminal narrowing and subsequent cardio-

vascular events (Hopkins, 2013). Systemic metabolic perturbations

are among the most important risk factors of atherosclerosis.

However, metabolic flux changes have not been studied in ECs

isolated from atherosclerotic lesions, and the effects of atheroscle-

rosis on central metabolism of ECs thus remains to be character-

ized. Nonetheless, EC metabolism is strongly associated with a key

pathophysiological feature of atherosclerosis: reduced and uncou-

pled eNOS activity resulting in low NO bioavailability and high

ROS production (Fig 3B) (Kawashima & Yokoyama, 2004). eNOS

activity critically depends on the availability of L-arginine,

co-factor tetrahydrobiopterin (BH4) (Fig 3B) and possibly co-

enzyme Q10 (CoQ10) (Gorren et al, 2000; Crabtree et al, 2009a;

Mugoni et al, 2013). If L-arginine, BH4 or CoQ10 become limited,

eNOS no longer oxidizes L-arginine to form citrulline and NO, but

instead produces ROS (a condition termed eNOS uncoupling)

(Fig 3B) (Stroes et al, 1998; Mugoni et al, 2013). Targeting L-arginine

and BH4 metabolism to increase eNOS activity in patients with

cardiovascular disease is potentially beneficial, but available

evidence indicates that the picture is more complex than initially

anticipated.

Small-scale clinical trials indicate that administration of L-arginine

to patients with coronary heart disease improves vasoresponsive-

ness, possibly by increasing NO production by eNOS (Lerman et al,

1998). Interestingly, however, intracellular and plasma arginine

levels are sufficiently high to support NO biosynthesis via eNOS.

Therefore, the benefits of L-arginine supplementation on

elevating NO levels are not readily explained by increasing the

supply of L-arginine; however, it is possible that L-arginine is

compartmentalized in poorly interchangeable pools. Another possi-

ble explanation of the beneficial effects of L-arginine is competition

with asymmetric methylated arginines, which bind and inhibit

eNOS (Fig 3B) (Boger, 2004; Chen et al, 2013). More in detail, post-

translational methylation of arginine residues in proteins by protein

arginine methyltransferase (PRMT) results in the addition of up to

two methyl groups to arginine. Protein turnover releases these

post-translationally modified amino acids as asymmetric dimethyl-

arginine (ADMA) and symmetric dimethylarginine (SDMA). The

asymmetric dimethylarginines bind and uncouple eNOS resulting in

increased ROS production and reduced NO availability (Fig 3B)

(Dhillon et al, 2003; Leiper & Nandi, 2011). Hence by competing

with ADMAs, supplemented L-arginine could maintain eNOS activ-

ity to produce NO (Bode-Boger et al, 2003). Additional potential

interventions to reduce eNOS inhibition by ADMA include PRMT

inhibition (to reduce arginine methylation) and activation of methyl-

arginine catabolism by dimethylarginine dimethylaminohydrolase

(DDAH) (Fig 3B) (Leiper & Nandi, 2011). Interestingly, DDAH1 is

predominantly expressed in ECs and EC-specific deletion attenuates

NO production and induces hypertension, indicating that ADMA

scavenging by ECs is important to maintain homeostasis (Hu et al,

2009).

Because L-arginine is a substrate for both eNOS and arginase

(Wu & Meininger, 1995), NO production depends on the relative

expression levels of each enzyme (Fig 3) (Chang et al, 1998; Ming

et al, 2004; Ryoo et al, 2008). Endothelial arginase expression is

induced by many risk factors for cardiovascular disease, while

reducing arginase expression restores NO production in vitro

and improves vasodilatation in vivo (Ryoo et al, 2006, 2008;

Thengchaisri et al, 2006; Romero et al, 2008). The activity of

eNOS and arginase is regulated by the RhoA/ROCK signaling

cascade. RhoA and Rock decrease eNOS expression, while RhoA

also increases arginase activity (Fig 3B) (Laufs et al, 1998;

Takemoto et al, 2002). For proper activation and localization to

the cell membrane, RhoA must be prenylated (more specifically,

geranylgeranylated) by geranylgeranyltransferase (GGT) using

geranylgeranyl pyrophosphate (GGPP) as a substrate (Laufs &

Liao, 1998). This isoprenoid is an intermediate of the mevalonate

pathway, which produces cholesterol from acetyl-coA (Fig 3B).

Blocking the mevalonate pathway by inhibiting HMG-coA reduc-

tase using statins lowers cholesterol synthesis and is clinically

approved to prevent cardiovascular events in dyslipidemia

patients. In addition, HMG-coA blockade also decreases geranyl-

geranyl production, which reduces RhoA activity and restores a

more beneficial eNOS/arginase balance (Goldstein & Brown, 1990;

Liao & Laufs, 2005). Interestingly, UBIAD1 was recently identified

as a novel prenyltransferase that produces non-mitochondrial

CoQ10 from farnesyl pyrophosphate (FPP), another isoprenoid

produced in the mevalonate pathway (Fig 3) (Mugoni et al, 2013).

CoQ10 is an important anti-oxidant with beneficial effects on EC

function and hypothesized to be a novel co-factor required for

eNOS coupling (Gao et al, 2012; Mugoni et al, 2013). Hence, in

contrast to the above-mentioned beneficial effects, HMG-coA

reductase inhibition might thus also have a less favorable effect by

increasing ROS levels through reducing CoQ10 synthesis (Fig 3)

(Mugoni et al, 2013).

In addition to CoQ10, eNOS requires BH4 as a co-factor.

Reduced BH4 availability is found in patients at risk of
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atherosclerosis and promotes ROS production through eNOS

uncoupling (Fig 3B) (Pieper, 1997; Stroes et al, 1997; Heitzer et al,

2000). Endothelial BH4 levels are maintained by de novo biosyn-

thesis via the rate-limiting enzyme guanosine triphosphate

cyclohydrolase I (GTPCH) and by a salvage pathway from dihydro-

biopterin (BH2) via dihydrofolate reductase (DHFR) (Fig 3B)

(Bendall et al, 2014). Insufficient levels of GTPCH and DHFR,

important enzymes in GTP and folate metabolism, respectively, have

been associated with reduced BH4 availability, endothelial dysfunc-

tion and cardiovascular disease in several preclinical models

(Chalupsky & Cai, 2005; Crabtree et al, 2009b, 2011; Sugiyama

et al, 2009; Kidokoro et al, 2013). Interestingly, DHFR not only

regenerates active BH4 from oxidized inactive BH2 but is also a

key enzyme in folate and one-carbon metabolism, intermediates of

which in turn regulate BH4 biosynthesis and are associated with

cardiovascular disease (Humphrey et al, 2008).

One-carbon (1C) metabolism centers around the ability of

folate-derived co-enzymes to carry activated 1C units (Fig 3)

(Tibbetts & Appling, 2010). DHFR catalyzes the formation of

tetrahydrofolate (THF) from folate fueling 1C metabolism. THF

accepts 1C units from serine to produce 5,10-methylene-THF

(meTHF) and glycine. MeTHF is reduced to 5-methyl-THF (mTHF)

by methylenetetrahydrofolate reductase (MTHFR) (Fig 3).

Importantly, inactivating mutations in the MTHFR gene result in

hyperhomocysteinemia, which decreases GTPCH and DHFR levels

and may subsequently reduce BH4 levels (Bendall et al, 2014).

Indeed, MTHFR mutations have been associated with cardiovascu-

lar disease, but the exact association is still controversial (Kelly

et al, 2002; Klerk et al, 2002; Frederiksen et al, 2004; Yang et al,

2012). mTHF produced by MTHFR activity is required as a methyl

donor in the methionine synthase (MS) catalyzed reaction that

converts mTHF into THF (completing the folate cycle) and forms

methionine (MET) from homocysteine (hCYS) (Fig 3B) (Locasale,

2013). Methionine is used to generate S-adenosylmethionine

(SAM), which is an important methyl donor and plays a pivotal

role in methylation of lysine and arginine residues in proteins

(Fig 3B) (Leiper & Nandi, 2011). As discussed above, methylated

arginine residues are emerging as important mediators of EC

dysfunction. Moreover, SAM-mediated protein methylation

produces S-adenosylhomocysteine, which is converted back into

homocysteine. Homocysteine decreases the bioavailability of BH4

possibly through downregulation of GTPCH and DHFR, while BH4

supplementation alleviates homocysteine-induced EC dysfunction

(Dhillon et al, 2003; Topal et al, 2004). Together, these findings

suggest that dysregulation of endothelial 1C metabolism is

involved in the pathogenesis of cardiovascular disease, but the
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Figure 4. Targeting EC metabolism as an alternative to targeting growth factors in angiogenesis.
(A) Vascular endothelial growth factor (VEGF) induces 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) and increases glycolytic flux, required for
angiogenesis. (B) Anti-VEGF treatment reduces glycolytic flux and angiogenesis. (C) Increased growth factor signaling through alternative pathways, in this case fibroblast
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exact mechanisms remain to be elucidated. Nonetheless, early

clinical and preclinical studies have found that therapeutic target-

ing of 1C metabolism, for example, via folate supplementation

lowers levels of homocysteinemia and increases BH4 regeneration

from BH2 (Verhaar et al, 2002). However, large-scale clinical trials

failed to show benefits of folate or BH4 supplementation to

prevent cardiovascular disease (Clarke et al, 2010; Cunnington

et al, 2012; Marti-Carvajal et al, 2013). These clinical and preclini-

cal findings suggest that while L-arginine, folate, methionine,

COQ10 and homocysteine metabolism are potential therapeutic

targets, a more detailed understanding of how these pathways

cause dysfunction is required to design more rational therapeutic

agents.

EC metabolism in the pathogenesis of other diseases

EC metabolism is best characterized in the diseases discussed

above. However, these represent only a minor fraction of the disor-

ders in which pathological EC responses are presumably involved.

Indeed, it is highly likely that EC metabolic alterations are also

involved in the pathogenesis of other diseases such as ischemia,

pre-eclampsia, vasculitis, vascular neoplasms and others although

this has hardly been studied.

On the other hand, many of the EC metabolic alterations that

lead to EC dysfunction are likely induced by cardiovascular risk

factors such as those that characterize metabolic syndrome, hyper-

homocysteinemia and hyperuricemia. For example, elevated serum

uric acid (a breakdown product of purine nucleotides generated by

xanthine oxidase with potent anti-oxidant activity) is common in

patients with hypertension and may even be a root cause of EC

dysfunction leading to cardiovascular disease (Feig et al, 2008).

Interestingly, while uric acid has been described as major anti-

oxidant in human plasma, ECs exposed to uric acid display

increased ROS production creating a paradox that has not been

resolved (Lippi et al, 2008; Sautin & Johnson, 2008). Regardless, in

cardiovascular disease models uric acid reduces mitochondrial

content, intracellular ATP and arginase activity (Zharikov et al,

2008; Sanchez-Lozada et al, 2012). In addition, uric acid inhibits

NO production in ECs in vitro, and in vivo levels of serum nitrites

(an indicator of NO production) are inversely proportional to serum

uric acid concentrations (Khosla et al, 2005). Interestingly, ECs

exposed to uric acid increase expression of AR and alter expression

of several other proteins linked to metabolism (Zhang et al, 2014).

These studies suggest that hyperuricemia induces EC dysfunction

through metabolic alterations. Whether the same is true for other

cardiovascular risk factors remains in question.

A broader characterization of EC metabolism in the future might

reveal novel therapeutic targets in metabolic pathways that are

generally not considered to be important in pathological EC func-

tion. Recent findings that endothelial cholesterol efflux to high-

density lipoprotein regulates angiogenesis (Fang et al, 2013), and

that EC-specific insulin receptor knock-out accelerates atheroscle-

rotic plaque formation (Gage et al, 2013) point to a key role for EC

metabolism in the pathogenesis of disease and indicate that many

more yet to be identified non-traditional but potentially druggable

metabolic enzymes, transporters and pathways may play a role in

vascular disease.

Therapeutic targeting of EC metabolism

Overall, it is clear that pathological blood vessel responses are

associated with metabolic alterations in ECs. These metabolic

adaptations are not just innocent bystanders, but in many cases

mediate important aspects of disease. Increased EC glucose metabo-

lism is emerging as a key feature of angiogenic and hyper-prolifera-

tive ECs. Targeting EC glucose metabolism has recently been shown

as a viable strategy to curb pathological angiogenesis, but is still in

its infancy (Schoors et al, 2014b). Recent technical and conceptual

advances, however, now make it possible to perform comprehen-

sive metabolic studies. These technical breakthroughs have led to a

resurgent interest in targeting cell metabolism for therapeutic gains.

As a proof of concept, targeting EC metabolism by pharmacological

inhibition of the glycolytic enzyme PFKFB3 has shown recent

success in inhibiting pathological angiogenesis (Fig 4) (De Bock

et al, 2013b; Schoors et al, 2014b; Xu et al, 2014). These results,

together with the observation that EC metabolism is altered in many

diseases, suggest that EC metabolism is an attractive and viable but

understudied therapeutic target.

For more information
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Pending issues

The findings in this review suggest that blood vessel pathology is medi-
ated, or at least characterized, by disease-specific alterations. However,
at present, there are no studies that incorporate state-of-the-art meta-
bolomics tools to characterize EC metabolism in disease. Metabolic
profiling using isotope incorporation studies and metabolic flux analysis
could greatly increase our understanding of the metabolic alterations
that underlie EC pathology.

In vivo studies to characterize EC metabolism in animal models of
human disease could provide highly relevant insight in disease-
specific metabolic alterations. However, this requires isolation of ECs
from diseased tissue, which at present poses technical and interpreta-
tional challenges for proper analysis of metabolism using advanced
metabolomics methods.

Another pressing issue is the lack of studies characterizing metabolism in
patient-derived tissue using either in or ex vivo models. The recent devel-
opment of new protocols to isolate ECs from patient tissue offers the
possibility to study metabolism in clinically relevant systems. Accordingly,
such studies could greatly advance the identification of novel biomarkers
and therapeutic targets in EC metabolism.
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