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BIG3 inhibits insulin granule biogenesis and
insulin secretion
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Abstract

While molecular regulation of insulin granule exocytosis is relatively
well understood, insulin granule biogenesis and maturation and its
influence on glucose homeostasis are relatively unclear. Here, we
identify a novel protein highly expressed in insulin-secreting cells
and name it BIG3 due to its similarity to BIG/GBF of the Arf-GTP
exchange factor (GEF) family. BIG3 is predominantly localized to
insulin- and clathrin-positive trans-Golgi network (TGN) compart-
ments. BIG3-deficient insulin-secreting cells display increased
insulin content and granule number and elevated insulin secretion
upon stimulation. Moreover, BIG3 deficiency results in faster
processing of proinsulin to insulin and chromogranin A to b-granin
in b-cells. BIG3-knockout mice exhibit postprandial hyperin-
sulinemia, hyperglycemia, impaired glucose tolerance, and insulin
resistance. Collectively, these results demonstrate that BIG3
negatively modulates insulin granule biogenesis and insulin secretion
and participates in the regulation of systemic glucose homeostasis.
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Introduction

Insulin is the key molecule to regulate glucose homeostasis [1], and

pancreatic b-cells are the primary source of insulin production and

release [2]. Besides defects in insulin secretion, increased proinsulin

levels are seen in patients with abnormal fasting glucose, impaired

glucose tolerance, and overt diabetes and are used as a predictive

marker for disease onset [1,3,4]. Elevated proinsulin levels may be

due to defects in proinsulin processing and disproportionate proin-

sulin release, both of which occur in immature secretory granules

(ISGs), the major organelles that store and process proinsulin [5].

Although insulin secretion process is well defined [6], the mecha-

nisms underlying insulin granule biogenesis and maturation and its

influence on systemic glucose homeostasis remain unclear.

The biogenesis of post-Golgi secretory vesicles is under the tight

control of Arf GTPases and coat proteins [7–10]. Precise temporal

and spatial activation of Arf proteins is controlled by their corre-

sponding Arf-GTP exchange factors (GEFs) [11–13]. Both the forma-

tion and maturation of ISGs require functional Arf and brefeldin A

(BFA)-sensitive Arf-GEFs [14,15]. The GBF/BIG subfamily of

proteins is the only known BFA-sensitive Arf-GEFs. Moreover,

proinsulin exits the trans-Golgi network (TGN) via clathrin-coated

compartments [16–18], which requires Arf1 and BFA-sensitive

Arf-GEF [8,11,12,19].

The insulin secretory granule contains a wide range of proteins

that coordinate and regulate its behavior [20]. Multiple proteomic

studies reveal a large number of unknown or uncharacterized

proteins that are associated with insulin granules [20,21]. While

searching for novel regulators of membrane trafficking by database

mining, we identified a large Sec7 domain-containing protein, BIG3

as a novel insulin granule-associated protein. Here, we report

functional studies of BIG3 in insulin granule biogenesis, insulin

secretion, and glucose homeostasis.

Results and Discussion

BIG3 is a novel insulin granule-associated protein

In a search for novel regulators of the insulin secretion pathway, we

found the gene kiaa1244 with a high tissue-specific expression

pattern. As the novel protein showed a significant sequence simi-

larity to the GBF/BIG subfamily of Arf-GEF proteins, it was named

BIG3. BIG3 was highly expressed in pancreatic islet, and to a lesser
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extent the brain, but was undetectable in other tissues when exam-

ined using a BIG3-specific antibody (Fig 1A and Supplementary Fig

S1), consistent with previous observations [22]. We confirmed

specific co-staining of BIG3 with insulin in the mouse endocrine

pancreas, but failed to detect BIG3 in the exocrine pancreas or

pancreatic ductal cells (Fig 1B and C). Furthermore, BIG3 predomi-

nantly localized to insulin granules of islet b-cells, as revealed by

immuno-EM (Fig 1D). These results confirm BIG3 as a novel insulin

granule-associated protein and suggest that BIG3 may play a specific

role in the insulin secretory pathway.

BIG3 has a negative regulatory role in insulin secretion

BIG3 was highly expressed in several insulin-secreting b-cell lines,
including MIN6 (Supplementary Fig S2). To analyze the cellular

functions of BIG3, we first generated stable BIG3 knockdown (BKD)

and scrambled control MIN6 cells by using lentiviral infection and

FACS. BIG3 protein level in BKD cells was efficiently suppressed,

while the expression levels of selected constitutive or vesicle-

associated proteins were unaffected (Fig 1E). We next investigated

the effect of BIG3 depletion on insulin secretion. BIG3 KD resulted in

a marked increase in insulin secretion upon high glucose stimulation,

and this effect was further exacerbated when combined with high K+

(Fig 1F and G). To examine whether increased insulin granule exocytosis

contributed to the enhanced insulin secretion in BKD cells, we

compared depolarization-evoked membrane capacitance at the single

cell level by using the whole-cell patch-clamp technique. The change

in capacitance, reflecting exocytosis-induced membrane expansion,

was increased by approximately 44% in BKD cells compared to

controls (Fig 1H and I). Importantly, expression of exogenous human

BIG3 (hBIG3) in BKD cells completely reversed the KD phenotype,

confirming that the observed insulin secretion phenotype is specific

to BIG3 depletion (Fig 1J). Consistent with a negative role in insulin

secretion, hBIG3 expression led to reduced insulin granule exocytosis

(Fig 1J). Collectively, these results reveal that excessive BIG3 attenu-

ates insulin granule exocytosis, while BIG3 deficiency promotes insulin

granule exocytosis and insulin secretion in cultured b-cells.

Generation of BIG3-knockout mice

To study the in vivo effects of BIG3 ablation on islet function and

consequent impact on systemic glucose homeostasis, we generated

a BIG3-knockout mouse (BKO) by targeting the 12th exon, the

largest exon encoding the majority of BIG3’s Sec7 domain (Fig 2A).

BIG3 gene knockout was verified by PCR of the neo-insertion from

genomic DNA (Fig 2B), and protein absence was confirmed by

Western blot in brain and islet lysates (Fig 2C and D) and by immu-

nohistochemistry in pancreas (Supplementary Fig S3). Deletion of

BIG3 had no effect on the expression of other BIG proteins and insu-

lin (Supplementary Fig S4). BKO, generated initially on a C57BL/6J-

129/Sv mixed background, was backcrossed to 129/Sv mice for

eight generations to generate a pure 129/Sv background. BKO mice

were viable and fertile with normal body weight gain (Fig 2E). We

also assessed the metabolic parameters by using the CLAMS system.

No obvious difference was observed between BKO and control litter-

mates in food intake, water consumption, respiratory exchange

ratio, or energy expenditure (Fig 2F–I).

Increased insulin secretion in BKO islets

We next examined insulin secretion from isolated intact islets of

BKO and control mice. Upon stimulation with high glucose, BKO islets

exhibited a marked increase in first phase and total insulin secretion

(Fig 2J and K). Depolarization-evoked exocytosis from isolated

BKO b-cells increased approximately twofold compared to control at

both early (immediately releasable pool) and late (releasable pool)

time points (Fig 2L and M). EM analysis revealed that BKO b-cells had
approximately 35% increase in the number of insulin granules when

compared to control cells, while the size of dense core was similar

(Fig 2N–P). We also observed a 50% increase in islet insulin and

proinsulin content when measured by ELISA (Fig 2Q and R). In

contrast, no difference was observed in the overall islet morphology,

islet area, islet number, or islet size between BKO and control mice

(Fig 2S–V). Together, these results indicate that BIG3 deficiency leads

to elevated insulin content, insulin granule number, and enhanced

secretion upon stimulation at the cell and islet level.

Abnormal glucose homeostasis in BKO mice

We next analyzed whether the altered insulin secretion at the islet

level affected proper glucose handling and systemic glucose homeo-

stasis. When fed a normal chow diet, three-month-old BKO mice

were hyperglycemic and hyperinsulinemic under postprandial

conditions (both ad libitum and fasting-refeeding), but not after 2-h

or overnight fasting (Fig 3A and B). Serum proinsulin levels and

proinsulin-to-insulin ratio were the same (Fig 3C and D). BKO mice

also displayed delayed glucose clearance during an oral glucose

tolerance test (GTT) after overnight fasting (Fig 3E), even though

insulin secretion was elevated (Fig 3F), suggesting reduced insulin

sensitivity in BKO mice. Consistently, impaired glucose clearance

was observed in BKO mice upon re-feeding after overnight fasting

(Fig 3G). To further ascertain the insulin sensitivity status, we

Figure 1. BIG3 associates with insulin granules and negatively regulates insulin secretion.

A BIG3 protein expression profile in adult mouse tissues.
B Immunostaining of mouse pancreas section showing BIG3 presence in insulin-positive cells.
C Immunostaining of isolated mouse islet showing co-localization of BIG3 and insulin.
D Representative electron microscopy (EM) image of mouse pancreatic b-cells. 87 � 3% of BIG3 antibody-labeled gold particles (arrow heads) localized to insulin

granules. N = 20 randomly selected images of b-cells.
E Immunoblot for BIG3 and other proteins in BIG3-knockdown (BKD) and control (Ctrl) cells.
F, G Insulin secretion time course (F) and quantification (area under curve, 0–60 min; G) in BKD and control cells under basal (2.8 mM glucose) and stimulated (16.7 mM

glucose) condition in the absence or presence of 50 mM KCl (indicated as K). Data are presented as mean � s.e.m. N = 6, *P < 0.05, **P < 0.01, t-test.
H, I Representative membrane capacitance recordings (H) and calculated exocytosis events (I) from capacitance increases in BKD and control cells. Data are presented as

mean � s.e.m. N = 10–12, **P < 0.01, t-test.
J Capacitance measurements of hBIG3 overexpression in BKD and control cells. Data are presented as mean � s.e.m. N = 12–19, **P < 0.01, t-test.
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performed hyperinsulinemic-euglycemic clamp studies on two-

month-old mice. BKO mice displayed approximately 1.5-fold lower

glucose infusion rate during clamping (Fig 3H), consistent with

impaired glucose uptake. In response to hyperinsulinemia, hepatic

glucose output (HGP) was reduced by > 75% in control mice, but

only approximately 30% in BKO mice (Fig 3I). Overall glucose

uptake rate doubled upon hyperinsulinemic clamping in control

mice, though remained at basal levels in BKO mice (Fig 3J). Exami-

nation of peripheral tissues revealed that impaired glucose uptake

was due to diminished muscle uptake, with approximately 80%

decrease in soleus uptake and approximately 50% decrease in

extensor digitorum longus uptake in BKO mice compared to controls

(Fig 3K). Neither brown nor white adipose tissue was affected

(Fig 3K). These results demonstrate that by 3 months of age, BKO

mice have developed severe liver and muscle insulin resistance,

possibly due to the chronic exposure of peripheral tissues to exces-

sive insulin released by BKO islets. Our findings indicate that exces-

sive insulin release may lead to severe peripheral insulin resistance

and eventually disrupt glucose homeostasis in mice. This notion is

consistent with the model that chronic hyperinsulinemia is the

primary force driving insulin resistance, which has been well

addressed by both in vitro and in vivo models[23].

BIG3 localizes to the TGN-ISG compartment

To investigate how BIG3 modulates insulin secretion, we assessed

BIG3 KD MIN6 cells. BIG3 predominantly co-localized to insulin/

chromogranin A (CGA)-containing granules, in close proximity to

the Golgi compartment, but distant from the plasma membrane

(Fig 4A). CGA is a prohormone co-sorted with proinsulin, and

processed to b-granin, which is co-stored and secreted with insulin

[24]. Furthermore, BIG3 co-localized with c-adaptin, a component

of Adapter Protein I and a marker of clathrin-coated vesicles.

Consistently, there was little co-localization of BIG3 with medial

Golgi to TGN-resident protein markers, such as Vti1a, Stx6, GS28,

and GM130 (Supplementary Fig S5). These findings suggest that

BIG3 may exert its inhibitory effect at the early stages of secretory

granule biogenesis, where they remain physically close to the Golgi

compartment with clathrin coats.

Granule biogenesis from the TGN can be promoted by stimuli and

inhibited by cargo protein depletion [25]. Therefore, we examined

the redistribution of BIG3 upon treatment with high K+, which stim-

ulates insulin release, and cycloheximide (CHX), which suppresses

granule biogenesis, in reference to markers of various subcellular

compartments (Fig 4B, C). After high K+ stimulation, the subpopu-

lation of docked granules, characterized by CGA staining and distrib-

uted along the plasma membrane, were depleted. Conversely,

freshly generated granules were still clustered close to the Golgi

region, where BIG3 overlapped with CGA and c-adaptin (Fig 4B and C),

suggesting that BIG3 is actively recruited to granules and influences

secretory granule production. Following CHX treatment, CGA was

mostly redistributed to the plasma membrane and did not overlap

with BIG3 (Fig 4B). In contrast, BIG3 dispersed slightly, but

remained in proximity to the Golgi region marked by c-adaptin
(Fig 4C). The c-adaptin staining pattern did not change significantly

after either treatment, indicating that the Golgi structure remained

largely unaffected (Fig 4C). Taken together, these findings suggest

that BIG3 is dynamically and predominantly recruited to the TGN

where nascent immature granules are generated and whose abun-

dance directly correlates with granule biogenic activity.

BIG3 negatively regulates insulin granule biogenesis

Both in vitro KD and in vivo KO experiments consistently demon-

strate that regulated secretion is elevated in the absence of BIG3,

consistent with the notion that BIG3 is a negative modulator of insu-

lin secretion in b-cells. Similar to other types of secretory granules,

nascent insulin granules form from the TGN as ISGs with clathrin

coats, followed by prohormone processing and removal of clathrin

coats to generate a clathrin-free mature secretory granule (MSG)

[16]. Therefore, there are typically two distinct populations of insulin/

CGA-marked granules: ISGs that cluster toward the Golgi region and

MSGs that spread along the plasma membrane. The fact that BIG3 is

predominantly associated with insulin granules concentrated to the

clathrin-patched TGN compartment suggests that BIG3 may be

involved in insulin granule biogenesis. To explore the involvement

of BIG3 in regulating nascent granule biogenesis, we assessed gran-

ule biogenic activity by measuring the prohormones and

Figure 2. Increased insulin secretion and granule number in BIG3-knockout (BKO) islets.

A BKO vector: a Neo cassette was introduced into exon 12 to disrupt BIG3 gene expression.
B PCR genotyping of wild-type and mutant allele.
C, D Immunoblot of lysates of brain (C) and islets (D) from adult BKO and control mice.
E Body weights of BKO and littermate control mice. Data are presented as mean � s.e.m. N = 11 per group, t-test.
F–I Metabolic parameters for food intake (F), water intake (G), respiratory exchange ratio (RER, H), and total energy expenditure (I). Data are presented as mean � s.e.m.

N = 6 per group, t-test.
J, K Perifusion analysis of insulin secretion time course (J) and quantification (AUC, K) of first phase and total insulin secretion in isolated islets from BKO and control

mice. Data are presented as mean � s.e.m. N = 8 from three independent islet isolations, *P < 0.05, **P < 0.01, t-test.
L, M Representative membrane capacitance recordings (L) and calculated exocytosis events (M) in BKO and control b-cells excited by five 50-ms (for measuring

immediately releasable pool or IRP), and 8- to 500-ms depolarization pulses from �70 to 0 mV. RP, releasable pool. Data are presented as mean � s.e.m. N = 16
from three independent islet isolations, **P < 0.01, t-test.

N Representative EM images of islet b-cells.
O Quantification of insulin granule density in the cytoplasm in b-cells. Data are presented as mean � s.e.m. of 80 EM images of four mice per group, **P < 0.01, t-test.
P Size of insulin granule dense core. Data are presented as mean � s.e.m. of 12 randomly selected EM images per group, t-test.
Q, R Insulin (Q) and (R) proinsulin content, normalized to total protein. Data are presented as mean � s.e.m. N = 8 from three independent islet isolations, *P < 0.05,

t-test.
S Representative images of H&E-stained pancreatic sections from BKO and control mice. Scale bars = 1 mm.
T–V Cumulative islet area (T), number (U), and size (V) were analyzed from 120 randomly selected pancreatic sections from four mice per group. Data are presented as

mean � s.e.m., t-test.
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corresponding mature hormones. BIG3 KD in MIN6 cell resulted in a

marked increase in cellular insulin (Fig 5A) and moderate increase

in proinsulin (Fig 5B) under basal conditions. In addition, mature

b-granin markedly increased, along with a minor increase in the

precursor CGA in BKD cells (Fig 5C and D). The proportional

change of the two pairs of proteins indicates that BIG3 may have a

general role in modulating secretory granules.

The decreased prohormone-to-mature-hormone ratio may be due

to enhanced prohormone processing. Therefore, we measured

proinsulin processing at multiple time points in MIN6 cell lysates
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after 1-h high K+ stimulation to promote and synchronize proinsulin

synthesis, and another hour of CHX treatment to inhibit proinsulin

synthesis and exocytosis. BKD cells had a significant decrease in

proinsulin at 30 min, indicating that proinsulin was processed faster

in BKD than in control cells (Fig 5E). The timing on proinsulin

processing is in line with s previous study [26]. We also determined

CGA processing in BKD cells by pulse-chase labeling of newly made

proteins with 35S-methionine and found faster conversion of CGA to

b-granin in BKD cells than in control cells (Fig 5F). Since granule

production is coupled with prohormone production, these findings

suggest that BIG3 is involved in a negative feedback mechanism to

restrain granule biogenesis. The notion is further supported by the

finding that BIG3 overexpression attenuated simulated exocytosis in

MIN6 cells (Fig 1J). Collectively, these results suggest that BIG3
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Figure 3. Hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance in BIG3-knockout (BKO) mice.

A, B Postprandial glycemia (A) and insulinemia (B) in BKO and control mice. Data are presented as mean � s.e.m. N = 14 per group, *P < 0.05, **P < 0.01, t-test.
C, D Serum proinsulin (C) and proinsulin-to-insulin ratio (D) at rest, fast, and refed conditions. Data are presented as mean � s.e.m. N = 8 per group, t-test.
E Glucose levels of oral glucose tolerance tests (OGTT) for BKO and control mice. Data are presented as mean � s.e.m. N = 12 per group, *P < 0.05, t-test.
F Insulin response during OGTT for BKO and control mice. Data are presented as mean � s.e.m. N = 10 per group, *P < 0.05, t-test.
G Postprandial glycemia time course after fasting-refeeding. Data are presented as mean � s.e.m. N = 10 per group, *P < 0.05, **P < 0.01, t-test.
H–K Hyperinsulinemic-euglycemic clamp measurements of glucose infusion rate (H), hepatic glucose production (HGP, I), overall glucose uptake (J), and muscle/adipose

glucose uptake (K). BAT: brown adipose tissue; WAT: white adipose tissue; SOL: soleus muscle; EDL: extensor digitorum longus muscle. Data are presented as
mean � s.e.m. N = 3 per group, *P < 0.05, **P < 0.01, t-test.
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negatively regulates granule biogenesis: upon its removal, granule

biogenesis and hormone production and storage are elevated.

Consistent with preferential release of newly synthesized insulin

granules [27–29], increased granule biogenesis leads to a larger pool

of fresh insulin granules and consequently enhances secretion upon

stimulation.
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Figure 4. BIG3 dynamically localizes to trans-Golgi network (TGN)-immature secretory granule (ISG) compartment.

A–C Confocal images of MIN6 cells showing (A) TGN-granule localization of BIG3 under normal growth conditions, (B) perinuclear relocalization of BIG3 and chromogranin
A (CGA) after high K+ and CHX treatments, and (C) intact TGN compartments during high K+ and CHX treatments. Scale bars = 10 lm.
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The molecular mechanism by which BIG3 modulates granule

biogenesis is yet to be elucidated. It is well known that proinsulin

transport requires Class I Arfs and their corresponding GEFs.

GBF/BIG are the only known BFA-sensitive Arf-GEF, and multiple

lines of evidence have shown that both secretory granule forma-

tion from the TGN and ISG maturation require Class I Arf activity

in a BFA-sensitive manner. This suggests that a yet to be identi-

fied BFA-sensitive Arf-GEF is required. It is worth noting that the

single known functional domain in BIG3 by sequence analysis,

the Sec7 domain, has a non-functional catalytic motif [11]. Thus, one

of our hypotheses is that BIG3 acts as a competitive non-functional

Arf-GEF, thereby negatively modulating granule production. The

expression levels of BIG1/2 and GBF1 were not changed in BKO

or BKD cells; however, whether their bioactivity in granule forma-

tion is affected remains to be studied. An alternative explanation

could involve a mechanism similar to Arf4/Arf5, which binds to

soma calcium-dependent activator protein for secretion (CAPS)

proteins at the TGN to promote dense core vesicle formation in a

guanosine diphosphate (GDP)-dependent manner, thereby bypass-

ing the need for a functional GEF [30]. It is not clear whether a

similar mechanism applies to insulin granule formation and how

BIG3 is involved. Currently, we are exploring direct evidence of

BIG3 engagement in granule formation. It is worth noting that

BIG3 is also expressed in the brain (Fig 1A). Whether BIG3 in the

CNS contributes to the observed metabolic phenotypes remains to

be determined.

In summary, our study shows that BIG3 is associated with imma-

ture insulin granules and negatively modulates insulin granule

biogenesis in b-cells and, in turn, insulin output by islets. Conse-

quently, deletion of BIG3 in mice results in increased levels of circu-

lating insulin and disrupted glucose homeostasis, including

postprandial hyperglycemia and impaired glucose tolerance. Overall,

our study identifies a novel regulatory mechanism for granule

biogenesis and maturation that plays a significant role in modulat-

ing systemic metabolism.

Materials and Methods

All experiments involving animals were reviewed and approved by

the Institutional Animal Care and Use Committee of A*STAR. Indi-

rect calorimetry and other physiology tests were performed as previ-

ously described [6,31,32]. For detailed information, see

Supplementary Materials and Methods.
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Figure 5. BIG3 negatively regulates insulin granule biogenesis.

A, B Cellular content of insulin (A) and proinsulin (B), normalized to total protein in BIG3-knockdown (BKD) and control cells. Data are presented as mean � s.e.m. N = 6
per group, **P < 0.01, t-test.

C, D Cellular content of b-granin and chromogranin A (CGA) by immunoblotting (C) and normalized to actin (D) in BKD and control cells. Data are presented as
mean � s.e.m. N = 4 per group, *P < 0.05, **P < 0.01, t-test.

E Proinsulin processing rate, normalized to total protein and Time 0 after CHX treatment. Data are presented as mean � s.e.m. N = 7 per group, **P < 0.01, t-test.
F Cellular CGA and b-granin processing was assessed by pulse-chase experiments, and lysates were immunoprecipitated from BKD and control cells. Representative

blots from three independent experiments are shown.
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Supplementary information for this article is available online:

http://embor.embopress.org
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