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Classification of proteins into families is one of the main goals of functional analysis. Proteins are usually assigned to
a family on the basis of the presence of family-specific patterns, domains, or structural elements. Whereas proteins
belonging to the same family are generally similar to each other, the extent of similarity varies widely across
families. Some families are characterized by short, well-defined motifs, whereas others contain longer, less-specific
motifs. We present a simple method for visualizing such differences. We applied our method to the Arabidopsis thaliana
families listed at The Arabidopsis Information Resource (TAIR) Web site and for 76% of the nontrivial families
(families with more than one member), our method identifies simple similarity measures that are necessary and
sufficient to cluster members of the family together. Our visualization method can be used as part of an annotation
pipeline to identify potentially incorrectly defined families. We also describe how our method can be extended to
identify novel families and to assign unclassified proteins into known families.

Genome projects (Bernal et al. 2001) are generating sequence
data at a much faster rate than can be effectively analyzed. The
goal of functional genomics is to determine the function of pro-
teins predicted by these sequencing projects (Bork et al. 1998;
Eisenberg et al. 2000; Tsoka and Ouzounis 2000). Because experi-
mental evidence about individual proteins is difficult to obtain,
a common strategy is to classify proteins into families on the
basis of the presence of shared features or by clustering using
some similarity measure. The underlying assumption is that
members of the same family may possess similar or identical
biochemical functions (Hegyi and Gerstein 1999) and that one
can assign the functions of well-characterized members of a fam-
ily to other members whose functions are not known or not well
understood (Heger and Holm 2000).

The simplest methods for clustering proteins into families
rely on sequence-similarity measures, such as those obtained by
BLAST (Altschul et al. 1990). More sophisticated approaches de-
tect domains using domain databases (Bateman et al. 2002; Ser-
vant et al. 2002; Mulder et al. 2003), optionally use the order of
domains as a fingerprint for the protein, and classify proteins
into families on the basis of the presence of shared domains or
similar domain architecture (Geer et al. 2002). Classification of
proteins into families using structural similarities (Holm and
Sander 1996) is, at present, limited by the relatively small num-
ber of structures available in PDB (Berman et al. 2000)—only
22,874 as of Oct 16th, 2003.

Similarity-based clustering is a two-step process—one first
needs to determine pairwise similarities between all pairs of pro-
teins and then apply a clustering method that uses the similarity
matrix to group proteins into clusters. However, methods that
quantify similarity by using some attribute of the best BLAST hit
and use single-linkage clustering are not always successful. One
problem such methods face is the detection of the multidomain
structure of many protein families. Ideally, proteins should be
classified into a single family only if they exhibit highly similar
domain architecture. Best hit-based approaches may group to-
gether different multidomain proteins that share a common do-
main (Smith and Zhang 1997) and are prone to mistakes in the
presence of promiscuous domains (Doolittle 1995; Marcotte et al.

1999). Several graph-based clustering methods have been pro-
posed to overcome some of the limitations of single-linkage clus-
tering (Matsuda et al. 1999; Enright and Ouzounis 2000; Enright
et al. 2002). We show that some of the shortcomings of single-
linkage clustering can be overcome by post-processing (and, if
possible, grouping) BLAST hits into matches.

In this study, we test our methods on the protein families of
Arabidopsis thaliana. The Arabidopsis thaliana genome was fully
sequenced in 2000 (Arabidopsis Genome Initiative 2000), and the
predicted proteome contains 28,995 annotated proteins. How-
ever, as of Jan 7th, 2004, only 5473 proteins have been classified
into 741 families. The gene family information page maintained
at The Arabidopsis Information Resource (TAIR) (Rhee et al. 2003)
lists the different research groups involved in Arabidopsis thaliana
gene-family identification, and provides references to publica-
tions describing the properties and construction of the gene
families. In several cases, the construction of the family is fairly
complicated and is based on an in-depth understanding of the
properties of similar well-characterized families in other se-
quenced genomes. The computational methods utilized include
scanning the protein sequences for known domains or motifs,
identifying transmembrane regions, analyzing hydropathy plots,
detecting homologs of characterized proteins from other species,
etc. Phylogenetic analysis or clustering based on domain archi-
tecture is usually used to further divide large clusters into smaller
families.

In this work, we study whether Arabidopsis thaliana families
constructed by such diverse methods can be characterized by a
small set of biologically meaningful parameters. In other words,
we do not attempt to discover families ab initio; rather, we show
that most discovered families can be described by one or two
parameters. We consider two different parameter schemes. In the
first scheme, similarity between two proteins is measured in
terms of the fraction of the proteins participating in a gapped
alignment (cover) and the percentage identity of such an align-
ment. We also analyze a second scheme in which similarity is
measured in terms of relative score, that is, the ratio of the score
of the alignment to the self-similarity score (score of a protein
with itself).

In either scheme, we say that a family is clusterable if car-
rying out single-linkage clustering with some particular thresh-
old value for the parameter(s) groups members of that family into
a single cluster. Carrying out the clustering operation with a
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lower threshold usually results in the cluster becoming corrupted
by members of other families, whereas raising the threshold
may split the family across multiple clusters. We describe a novel
method for visualizing the variation in clusterability with
choice of parameters. Our method identifies the parameter val-
ues that best characterize a family, and thereby provides ready
answers to questions of the form “How similar are members of
family X?”

One result of our work is the discovery that, despite the wide
variety of methods used in the construction of protein families,
76% of all analyzed Arabidopsis thaliana families are fully cluster-
able by the proposed simple parameter schemes. Our results,
available online at http://warta.bio.psu.edu/htt_doc/
ArabCluster, also show relationships between families that share
members, and help identify potentially incorrect family assign-
ments. We also show how our results could be used to identify
novel families and assign unclassified proteins to known fami-
lies.

METHODS

Constructing Matches From Hits
Let A be the set of all protein sequences. We compare the proteins
of A against each other by running BLASTp with e-value 0.0001.
The result is a set of hits, in which each hit is a local alignment
that aligns a region of one protein sequence with a region from
another protein sequence with a particular score. By parsing the
BLAST output, we can define, for each hit, location attributes
that specify which regions of the proteins are participating in the
local alignment and quality attributes that indicate how good the
hit is. More formally, a hit h that aligns region [x1, x2] of protein
x with region [y1, y2] of protein y has the following location
attributes:

● start(h, x) = x1, end(h, x) = x2, location(h, x) = [x1, x2]
● start(h, y) = y1, end(h, y) = y2, location(h, y) = [y1, y2]

and the following quality attributes:

● identity(h)—the percentage identity of the hit
● aln_len(h)—the length of the alignment
● cover(h, x)—the % of protein x participating in the hit
● cover(h, y)—the % of protein y participating in the hit
● score(h)—the bit score of the hit as reported by BLAST

We term the hit that aligns the entire length of a protein
sequence p against itself as a self-hit and use the notation self-
score(p) to refer to the score of such a hit. On the basis of these self
scores, we can define two relative score (quality) attributes for any
hit h involving distinct proteins x, y:

● relscore�h, x� =
score�h�

selfscore�x�
* 100

● relscore�h, y� =
score�h�

selfscore�y�
* 100

If there are multiple hits between a pair of
proteins, the best hit alone may not repre-
sent the full extent of similarity between
the proteins. At the same time, it may not
be possible to take all of the hits into con-
sideration, as a single domain in one pro-
tein can match multiple occurences of a re-
petitive motif in the other protein. A com-

mon strategy is to summarize the similarity using a compatible
set of hits. We say that a set of hits between a pair of proteins is
compatible if the regions participating in the alignments are
nonoverlapping, and if the lines representing the hits do not
intersect in a pictorial representation of the hits (see Fig. 1). More
formally, hits h1, h2 between a pair of proteins x, y, are compat-
ible if:

● location(h1, x) ∩ location(h2, x) = � and location(h1,
y) ∩ location(h2, y) = �

● (end(h1, x) < start(h2, x)) and (end(h1, y) < start(h2, y)) or
● (end(h2, x) < start (h1, x)) and (end(h2, y) < start(h1, y))

A set of hits H between a pair of proteins x, y is compatible
if all pairs of hits in H are compatible by the above definition.
Such a compatible set of hits can be grouped into a match, m. A
match has the same quality attributes as a hit. Percentage iden-
tity is computed by taking the weighted percentage identity
across the hits in H, that is,

identity �m� = �h�H �aln_len �h� � identity �h��

�h�H aln_len�h�

whereas all other quality attribute values can be obtained by
adding up the corresponding values across the hits in H. Thus, a
match can be thought of as a type of global alignment con-
structed from several local alignments. We define the best match,
m(x, y), between distinct proteins x, y as the match with the
highest score. A more formal treatment of compatible hits,
matches, and simple methods for calculating the best match are
available in Veeramachaneni (2002) and Zhang (2003). In the
remainder of this work, we use the term “match” to refer to the
best match between a pair of proteins.

Clustering
In this study, we consider two different similarity measures; the
first measure, based on percentage identity (i) and percentage
cover (c) is called the (i, c)-similarity measure, and the second
measure, based on relative score (r) is termed the r-similarity mea-
sure. We describe in detail clustering based on the (i, c)-similarity
measure only, as the actual clustering algorithm used is indepen-
dent of the similarity measure.

We represent the similarity relationships in our protein data
set by an undirected weighted graph, G. The nodes of G corre-
spond to the set of all proteins A, and edges connect proteins x,
y if, and only if, there is some hit with x as the query and y as the
subject (or vice-versa). The weight of an edge represents the ex-
tent of similarity between the proteins connected by the edge. In
the case of (i, c) clustering, the weight of the edge is given by a
pair—the first element of the pair is the percentage identity of
the best match between the proteins and the second element is
the percentage of the proteins participating in the match (cover).
More formally,

w(x, y) = (identity(m), min(cover(m, x), cover(m, y)))

Figure 1 Three hits between proteins p1, p2 are shown at left. Hits h1, h2 are incompatible, as the
participating regions are in the opposite order. Thus, if score(h1) > score(h2), the best match will be
constructed from h1, h3, otherwise, it will be constructed from h2, h3.
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where m is the best match of proteins x, y. In a similar manner,
the weight used in the case of r-clustering is given by

w(x, y) = min(relscore(m, x), relscore(m, y))

The graph representation of similarity data is amenable to several
graph-based clustering algorithms including single-linkage clus-
tering, k-means (Michalski et al. 1998) and MCL (Enright et al.
2002). We used single-linkage clustering, which is equivalent to
finding connected components in the similarity graph, as it is the
simplest of all clustering methods, and more importantly, be-
cause it has no hidden parameters.

To observe the effect of using different percentage identity
and cover thresholds on the formation of clusters, we carried out
(i, c)-clustering 100 times by varying percentage identity i and
percentage cover c independently in increments of 10, from 0 to
90. For a particular choice of (i, c), we first construct a restricted
graph Gi,c from G by retaining only those edges with weight at
least (i, c). We then identify clusters by computing connected
components of Gi,c (see Fig. 2). It is easy to see that G0,0, which is
identical to G, will be a dense graph that yields a few large clus-
ters, and that G90,90 will be a relatively sparse graph that yields
several small clusters.

Relative score-based clustering is carried out in a similar
manner by varying the threshold r from 0 to 90, in increments
of 10.

Measuring Cluster Quality
Let P ⊆ A be the set of proteins that have been classified into a
set of families F (some proteins may belong to more than one
family). We are interested in checking whether the clusters pro-
duced by our method for a particular choice of (i, c) (or r) corre-
spond to the protein families, F, defined by experts. In this
respect, we are only interested in how well our method clusters
know family members, not whether it accurately identifies
unclassified proteins with similar properties. Therefore, we re-
move from our clusters all proteins that are unclassified (A–P).
We are now left with a partition of P into clusters that we shall
denote by Ci,c.

Ideally, each family of F will correspond to a single cluster of
Ci,c. However, the more likely scenario is that some families will
be spread across several clusters, or that several families will be
grouped into a single cluster. Intuitively, we would consider
the clustering parameters (i, c) to be “good” with respect to a
family F if

● the majority of the members of F are in a single cluster (con-
centration)

● in each cluster that contains members of F, the majority of
proteins belong to family F (purity)

Note that these two measures are orthogonal—if all of the
classified proteins P are placed in a single cluster, then con-
centration is high, but purity is low. On the other hand, if
each protein of P is placed in an individual cluster of size 1, then
purity is high, but concentration is low. Concentration and
purity reflect the sensitivity and specificity, respectively, of the
clustering with respect to the family under consideration. An-
other method for measuring clustering quality that attempts to
combine concentration, purity is matching rate (Kawaji et al.
2001).

We measure the concentration, purity, matching rate of
family F in a particular cluster C ∈ Ci,c as follows:

● concentration �F, C� =
|F∩C|

|F|

● purity �F, C� =
|F∩C|

|C|

● match_rate �F, C� =
|F∩C|
|F∪C|

In other words, concentration measures the fraction of
the family present in the cluster, whereas purity corresponds
to the fraction of the cluster that belongs to the family. It is
easy to see that the matching rate measure, which combines
these two measures, satisfies the condition match_rate(F,C) �

min(concentration(F,C), purity(F,C)) and, therefore, cannot dis-
tinguish clusters with high concentration, low purity from clus-
ters with low concentration, high purity.

We now extend these definitions to a set of clusters as:

● concentration(F, Ci,c) = 100 � maxC∈Ci,c concentration(F,C)
● purity(F,Ci,c) = 100 � ∑C∈Ci,c

[purity(F,C) � concentration(F,C)]
● match_rate(F,Ci,c) = 100 � maxC∈Ci,c

match_rate(F,C)

When measuring quality in terms of concentration and pu-
rity, we say that a family F is (x, y) clusterable by parameters (i, c)
if concentration(F,Ci,c) � x and purity(F,Ci,c) � y. Similarly, if
matching rate is the measure of clustering quality, we say that a
family F is x clusterable if match_rate(F,Ci,c) � x.

In the example shown in Figure 2, the proteins belong to
two families—the B family with five members is shown in black,

Figure 2 A similarity graph G of eight proteins is shown at left. The weights on the edges show the percentage identity and cover of the best match
between the pairs of proteins. When clustering with threshold (30, 20), G30, 20 is created from G by removing edges c—e, c—f, and d—g. G30,20 contains
three connected components that form the clusters C1, C2, C3 shown at right.
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and the W family with three members is shown in white. The
computation of concentration, purity, and matching rate for the
two families is summarized in the table below:

C1 C2 C3 overall

family B concentration 2/5 1/5 2/5 40
purity 2/4 1/2 2/2 70
match rate 2/7 1/6 2/5 40

family W concentration 2/3 1/3 0/3 66
purity 2/4 1/2 0/2 50
match rate 2/5 1/4 0/2 40

Although (30, 20) may not be the right clustering param-
eters for families B, W, this does not mean that the families are
not clusterable. In fact, family B is (100, 100) clusterable by pa-
rameters (0, 50) and family W is (100, 100) clusterable by param-
eters (60, 0).

Displaying Clustering Quality
For a particular family, we display the variation in clustering
quality as a function of the clustering parameters (i, c) in the form
of a 10 � 10 grid (see Fig. 3). If the quality is measured in terms
of concentration and purity, each grid element is shown in a rgb
color triple, where the extent of red corresponds to the purity,
and the extent of green corresponds to the concentration (blue is
always set to 0.0). When matching rate is used as the quality
measure, the grid element is shown in shades of gray, with white
representing match rate 100, and black representing match rate
0. In the interest of conciseness, these Variation in Clustering
Quality pictures will be referred to as VCQ pictures in the rest of
this work.

The clustering quality of family B, which consists of the
black nodes from Figure 2, is shown on the left hand side
of Figure 3. In the top left corner, where i = 0, c = 0, all members
of the B family are in the same cluster (high concentration
or green), but the cluster also contains all members of the W
family (low purity or red). This leads to a strong green color. At
the opposite end of the picture, each member of the B family is
in its own trivial cluster of size 1 (high purity, low concentra-
tion), leading to the red color. As indicated by the calculations
shown in the table, the grid element corresponding to i = 30,
c = 20 is filled with a color that is 40% green and 70% red,
resulting in a slightly reddish color. Also note that because the
B family is fully clusterable by parameters (0, 50), the grid ele-

ment at that location is 100% red, 100% green, that is, yellow. A
small blue dot is used to indicate such perfect concentration,
purity.

The results for the MDR family of proteins (Sanchez-
Fernandez et al. 2001), are also shown in Figure 3. This family
clusters perfectly when percentage identity is chosen between 30
and 40 and percentage cover at least 60. The perfect clusterability
at high cover indicates that members of the family are of approxi-
mately the same length, and that a low-percentage identity ex-
tends across almost the entire length of the proteins.

Notes on Clusterability
Because every protein matches itself with 100% identity and
cover, it is easy to see that any family of size 1 is (100, 100)
clusterable. We call such families trivial families.

We classify nontrivial families into several categories on the
basis of the extent of shared family members. The categories can
be described without ambiguity in set theoretic terms; however,
we choose to illustrate them with the help of Figure 4 due to
space constraints.

● atomic family: no members are shared (A)
● subset family: all members are shared with some family (B)
● superset family: contains a subset family (C)
● intersected family: some members are shared (D, E)

In reality, the picture can be more complicated, as a family
can fall into more than one category, for example, a superset
family can itself be a subset or intersected family, etc. However,
even with this simple picture, one can see that our expectations
regarding the clusterability of a family vary with the category in
which the family falls. For instance, we would expect family A to
be more clusterable than the other families.

Figure 3 Clustering quality of the B family from Figure 2 is shown at left. The quality picture for the MDR family of the ABC superfamily of Arabidopsis
thaliana is shown at right.

Figure 4 Possible relationships between families on the basis of shared
members.
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RESULTS
The complete set of 28,581 Arabidopsis thaliana protein se-
quences from TIGR formed the set A. Gene family information
downloaded from http://www.arabidopsis.org on July 28, 2003
helped us classify 4241 of these proteins into 571 families. A total
of 119 families are trivial and 345 are atomic. The classification of
the remaining 107 families is shown in Figure 5.

The entire set of proteins A was compared against itself us-
ing BLASTp with a e-value threshold of 0.0001. The distribution
of the resulting 2,254,453 hits is shown in Figure 6. A total of
8.6% of proteins participate in no hits at all, whereas 1.3% par-
ticipate in more than 1000 hits. A total of 19 nontrivial families
defined by experts contain proteins that have no hits to any
other proteins—clearly these families will not be (100, 100) clus-
terable for any choice of clustering parameters.

In 76% of the cases, there is exactly one hit between a pair
of proteins, so the best match is identical to this hit. In the other
cases, where there are multiple hits—due to repeated motifs or
conserved domains separated by a distance—we compute the
compatible set of hits with the maximum score and create the
best match.

Clusters were determined using single linkage clustering.
Graph G0,0, in which no edges are discarded, contains 238 con-
nected components (clusters), whereas G90, 90, in which all edges
with percentage identity and cover less than 90 are removed,
yields 3961 clusters.

Finally, unclassified proteins were removed from the
computed clusters, and the clustering quality for each family
was computed for all choices of clustering parameters. Over-
all, 86% of atomic families are at least (90,
90) clusterable for some choice of clustering
parameters, whereas only 64% of nona-
tomic families are similarly clusterable. The
variation of clusterability, with family size and
classification is shown in Figure 7. The results
for r clustering are almost as good (within 2%).

VCQ pictures similar to Figure 3 for
each family and superfamily are available at
http://warta.bio.psu.edu/htt_doc/ArabCluster.
All of the pictures and the Web pages are
constructed on-demand by perl scripts que-
rying a MySQL database that stores the nec-
essary information.

DISCUSSION

Match as Unit of Similarity
In this study, we use single-linkage cluster-
ing as the mechanism for grouping similar

proteins. The potential drawbacks of using single-linkage cluster-
ing have been documented in several papers that propose more
sophisticated clustering methods. However, our goal in this
study was not to discover families, but rather to characterize ex-
isting families by meaningful attributes such as identity, cover,
and relative score. We avoided the use of biologically unmean-
ingful parameters such as inflation value (Enright et al. 2002),
connectivity ratio (Matsuda et al. 1999), z-score cutoff value (En-
right and Ouzounis 2000), which are used in the automated de-
tection of families by other similarity graph-based clustering
methods. Another reason for using single-linkage clustering is
that it was the most common clustering method used by re-
searchers involved in the creation of Arabidopsis families listed at
http://www.arabidopsis.org.

In an effort to overcome some of the problems associated
with using single-linkage clustering for grouping members of
multidomain families, we use the notion of a match that can be
thought of as a form of gapped alignment composed of possibly
multiple BLAST hits. Note that the concept of a match is not
novel—it has been used implicitly by programs such as Sim4
(Florea et al. 1998), est_genome (Mott 1997) and Spidey
(Wheelan et al. 2001) to align mRNA sequences to genomic se-
quences. In fact, even the construction of a gapped BLAST hit
from ungapped hsps embodies this concept (although, of course,
there are additional parameters like gap penalties at work in this
case). It has also been used as a measure of similarity by programs
such as XDOM (Gouzy et al. 1997), and in the creation of HOVERGEN
(Duret et al. 1994), HOBACGEN (Perriere et al. 2000) databases.

Figure 8 shows an instance where our usage of match as the
basic unit of similarity helps distinguish members of two differ-
ent families in the ABC superfamily (Sanchez-Fernandez et al.
2001). In this particular case, all hits have very similar identities
(≈30%), cover (≈40%) and score. Thus, single-linkage clustering
based on the best hit alone would have grouped all three proteins
together. However, when we compute the best match, the cover
(and relative score) between the two MDR family proteins
doubles, and this helps separate them from the ATH family. A
similar process helps distinguish the MDR proteins from those of
the PMP, ATM, and TAP families of the ABC superfamily (see
http://warta.bio.psu.edu/htt_doc/ArabCluster/sfams/sf2.html).

Overall, only 2% of the matches computed are composed of
multiple hits. One reason for this unexpectedly small number
could be that our criteria for hits to be compatible is too strin-
gent—we require hits not to overlap at all. It is possible that
allowing for small overlaps between hits—as is done in XDOM
(Gouzy et al. 1997)—will permit more nontrivial matches. A sec-

Figure 5 Venn diagram showing the classification of the nonatomic
families as of July 28, 2003. A total of 22 families can be classified as
subset and intersected, whereas one family falls into all of the three
shown categories.

Figure 6 Distribution of the number of BLAST hits per protein.
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ond reason for the small number of matches with multiple hits is
that in many cases, multidomain proteins are connected by a
single hit. For instance, proteins PHYB_ARATH, PHYD_ARATH of
the Histidine Kinase family (Hwang et al. 2002) have identical
domain architecture comprising of five full-length, nonoverlap-
ping Pfam (Bateman et al. 2002) domains. However, the BLAST
comparison results in a single hit between the proteins that en-
compasses all the five domains. Overall, the matches formed by
a single hit are always likely to be a significant majority, as the
number of multidomain proteins is exponentially smaller than
the number of single domain proteins (Wolf et al. 1999).

Usefulness of VCQ Pictures
At present, the usual manner of describing the sequence level
similarity of a family is by statements of the form “amino acid
identity of family F ranges from 20%–80%”.
However, such statements are not very
helpful in understanding what distin-
guishes family F from other families at the
sequence level, that is, it is possible for a
protein to match a member of F with iden-
tity 30% and still not be a member F. Our
VCQ pictures provide this information, as
the underlying method takes into consider-
ation all known protein families. Thus, if
family F clusters perfectly for all (i, c) param-

eter combinations from, say, (30, 30) to (50, 80), then one can be
confident that no (classified) protein not belonging to F matches
any member of F with similarity (30, 30) or higher; (30, 30) is the
parameter that distinguishes F from other families, whereas the
overall yellow region in the picture gives an idea of the similarity
within the family.

VCQ pictures (like Fig. 3), can give a rough idea of the nature
and extent of conserved domains in a family. Families with
small, unique domains are clusterable by a high identity, low-
cover threshold that is visible as a yellow region in the top right-
hand side of the (i, c)-clustering VCQ picture, whereas multido-
main families are likely to be clusterable by low-identity, high-
cover thresholds.

One can also use the pictures to identify families that have
been defined too broadly (concentration is unusually low, even
at low thresholds), or too narrowly (purity is unusually low, even
at high thresholds).

Note that the VCQ picture of a family may change as more
proteins are classified and novel families are created. However,
updating the pictures is fairly simple, as the time-consuming
steps of measuring similarities and carrying out the clustering
with different thresholds are independent of the classification of
proteins into families. When family definitions are added or
modified, we simply have to filter the precomputed clusters to
discard unclassified proteins and remeasure the quality.

Comparison of Clustering Schemes
Our first clustering scheme uses percentage identity and cover as
the similarity measure. We analyzed our (i, c)-clustering results to
measure how effective these parameters were individually. The
results summarized in Table 1 show that using these parameters
in combination improves the clusterability results significantly.
Figure 9 shows the number of families that are clusterable for
different (i, c) parameter combinations. Because low values of
threshold can decrease purity and high values can decrease con-
centration, it comes as no surprise that intermediate values of
parameters i, c are most effective at clustering families – in par-
ticular, the parameter combination (i = 30, c = 50) alone is ca-
pable of clustering 252 (56%) of the nontrivial families.

The second clustering scheme uses relative score as a mea-
sure of similarity. Relative score-based clustering is computation-
ally simpler, as it needs to be carried out only 10 times as opposed
to 100 times for (i, c)-clustering. The results shown in Table 1
indicate that it is almost as effective as (i, c)-clustering. However,
as high-identity, low-cover matches and low-identity, high-cover
matches can have the same relative score, it is harder to gain an
understanding regarding the nature of similarity within a family
by viewing the relative score-based clustering quality picture.
Analogous to Figure 9, we show in Figure 10 the number of fami-
lies that are clusterable at different relative score levels.

Factors Affecting Clusterability
As can be inferred from the results presented in the previous
section, small families have a higher chance of being clusterable.

Figure 7 The graph at top shows the variation of clusterability with
family size for atomic families. A similar graph for nonatomic families is
shown at bottom. Please note that the scales used are different.

Figure 8 MDR family proteins contain two transmembrane domains, whereas ATH family pro-
teins contain only one. All of the hits between the MDR proteins and the ATH protein are shown
at left as lines connecting the transmembrane regions. The hits that form the best matches are
shown at right.
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However, equally important is the type of the family—atomic
families are much more likely to be clusterable than subset, su-
perset, or intersected families. One should also keep in mind that
the same family is sometimes independently listed by several
groups. For instance, the PDR family appears three times—as a
member of the ABC superfamily (Sanchez-Fernandez et al. 2001),
as a member of the ABC Transporters superfamily, and yet again,
independently as the ABC transporter PDR subfamily (van den
Brule and Smart 2002). Only the final version, which is a superset
of the other two is fully clusterable. Due to such inconsistencies,
it is natural that some nonatomic families will not be clusterable.
Our Web site displays for each family all other related families
(families with which members are shared), and thus makes it
easier to spot such inconsistencies.

We now list some of the reasons why an atomic family may
not be clusterable in our analysis:

1. Idiosyncracies in the family: One example is the structure
of the two members of the PMP family (ABC superfamily)
shown in Figure 11. The PMP proteins are supposed to be
half-molecule ABC transporters (Sanchez-Fernandez et al.
2001), however, Q94FB9 is a full-molecule transporter with
each half being PMP like. This causes the cover of the match
between the two proteins to reduce by 50%. Attempts to clus-
ter them together by lowering the threshold for cover will
only gather other ABC proteins with two transmembrane do-
mains.

2. Very similar families: Two of the Eukaryotic Initiation Factors
Gene superfamily are eIF4A eIF4A, and eIF4A-like (Metz et al.
1992). The former family is fully clusterable, but the latter
consists of five members, that by all quantitative measures of
similarity, are as similar to each other as they are to members
of the eIF4A family. The main reason for the proteins to be in
different families seems to be historical; the members of the
eIF4A family were the first ones of the superfamily to be char-
acterized and studied, whereas the members of the eIF4A-like
family have not been studied completely. Note that the two
families taken together are clusterable, so it is still possible
that experimental validation will result in the families being
merged at some later point in time. In that case, the resulting
family will be fully clusterable.

3. Level of grouping: Proteins can be classified into groups that
are variously labeled as classes, subfamilies, families, super-
families, etc. In general, it is expected that members of the
same family share significant sequence similarity, whereas
members of a superfamily may share structural similarity.
However, these criteria are not rigid and can be interpreted
differently by different groups. For instance, the plant U-box

Figure 9 Contour plot showing, for each choice of identity and cover, the number of nontrivial families that are (90, 90) clusterable.

Table 1. Clustering Quality Results for the 452
Nontrivial Families

(i, c) i c r

(100,100) 340 (75%) 274 (61%) 229 (51%) 332 (73%)
(90,90) 369 (82%) 290 (64%) 256 (57%) 362 (80%)

The columns represent different clustering schemes – column labeled
i refers to clustering using percentage identity alone, column labeled
c refers to clustering using percentage cover alone, etc. The first row
lists families that are (100,100) clusterable, whereas the second in-
cludes families that are at least (90,90) clusterable.
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proteins are classified into a single family with five different
classes on the basis of their domain architecture (Azevedo et
al. 2001). However, concentration(F, C0,0) is <100, that is, all
proteins of the U-box family do not come into one cluster,
even when none of the edges in the similarity graph are dis-
carded! This indicates that the overall level of similarity is not
very high.

4. Incorrect data at TAIR: We mined the tabular data at TAIR for
information about protein families. Occasionally, the data
is inconsistent with literature. For instance, the 67 members
of the Core Cell Cycle gene superfamily that fall into seven
families (Vandepoele et al. 2002) are listed in a single family.
Again, due to the overall low level of similarity, the members
fail to cluster together, even when no threshold is applied. We
indicate such cases by drawing an X in the grid element cor-
responding to (i = 0, c = 0). Overall, there are 22 such atomic
families.

The one nonbiological parameter that affects our results
slightly is the e-value that was chosen for the initial BLAST run.
All of the results described in this study were the result of run-
ning BLAST with an e-value threshold 0.0001. This somewhat
stringent e-value is responsible for some low-similarity families
not being clusterable. When we repeated our analysis with e-
value set to 1, the number of no-trival families that had proteins
with 0 hits reduced from 19 to 7. This resulted in a small increase
in the overall number of families that were clusterable.

Identifying New Families
As indicated by Figure 9, the parameters at which a family forms
a distinct cluster can vary widely. At one extreme, we have
the MLO (Devoto et al. 2003), MRS2 (Li et al. 2001) fam-
ilies, which are so distinctive that they cluster perfectly at the
(0, 0) level, and at the other extreme, we have the families of
the ABC superfamily, that, because of the presence of com-
mon domains, form distinct clusters only when the threshold is
raised to (50, 30). Clearly, there is no magic parameter combina-
tion at which the clusters are guaranteed to form a complete
family.

The only fact we can be sure of is that clusters that form at
higher thresholds are purer than those that form at lower thresh-
olds. For instance, consider Figure 12, which shows the distribu-
tions of the number of clusters (of size at least 5) with respect

to relative score threshold. For the purpose
of this figure, each cluster was classified into
one of four categories:

● T1: pure, fully classified (all members of
the cluster belong to the same family)

● T2: pure, partially classified (all of the
classified members of the cluster belong
to the same family)

● T3: impure
● T4: none of the members of the cluster

have family annotations

The negligible number of clusters of
type T3, when relative score threshold 50
(or greater) is used, indicates that, at this
level, almost all clusters are likely to be
pure. Thus, one can choose a cluster of type
T4, align its member sequences, detect con-
served blocks in the multiple alignment,
and construct a new family by identifying
all unclassified proteins that contain the

blocks. Whereas T4 clusters formed with relative score threshold
90 are also going to be pure, they are not appropriate seeds for the
discovery of new families, as the sequences in those clusters are
likely to be almost identical, making it impossible to extract func-
tionally relevant blocks from the alignment. In many cases, one
can also predict the family of unclassified members of clusters of
type T2 on the basis of the classified members.

However, any such predictions or new family definitions
need to be followed with more comprehensive work to identify
the functional role of the conserved regions. One should also
note that the relative score threshold of 50 may not be appro-
priate in the case of other genomes—only after a significant
number of protein families are defined, can we calibrate a suit-
able threshold that can aid in the detection of the remaining
families.

Applicability to Other Species Data
The genomes of complex eukaryotes like human, mouse, and rat
have recently been completed. The proteomes of these organisms
differ in domain complexity from that of Arabidopsis thaliana.
A preliminary analysis of InterPro (Mulder et al. 2003) domain
matches to each of these proteomes indicates that, on an aver-
age, each Arabidopsis protein matches 4.5 InterPro domains,
whereas the corresponding number for human proteins is 9.
Given that protein families usually consist of proteins with simi-
lar domain architectures, we believe that the larger number of
domains per protein actually improves the clusterability of the
protein families. For instance, consider two families F1 defined
by domain architecture Dx.Dy and F2 with domain architecture
Dy.Dz. Under the simplistic assumption that the domains are
distinct, but of equal length, one can see that F1, F2 will separate
into different clusters only when the cover (or relative score)

Figure 10 Number of families that are (90, 90) clusterable at different levels of relative score
thresholds.

Figure 11 The domain structure of two PMP proteins is shown in the
figure. The transmembrane domains are colored black, and the nucleo-
tide-binding factors are shown in gray. The two hits between the proteins
are shown by black lines.
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threshold is >50. On the other hand, if the domain architecture
consisted of 10 distinct domains, and the two families shared
only one of them, this separation of the families can be accom-
plished with any cover (or relative score) threshold >10. Note
that because clusters may become pure at lower thresholds, the
best choice of clustering parameters is likely to be different for
these proteomes.

Conclusion
In this study, we describe a similarity measure that is more com-
prehensive than simply choosing an attribute of the best BLAST
hit. We show that this similarity measure can help overcome
some of the limitations of single-linkage clustering with regard to
multidomain protein families. We present a novel method for
visualizing the sequence similarity within protein families. This
is accomplished by showing, in a color plot, how the clusterabil-
ity of a family varies with choice of clustering parameters. Fami-
lies that cluster with highly specific small domains display a dif-
ferent pattern in their clusterability plot from families with large,
but variable domains. We applied our method to visualize the
protein families of Arabidopsis thaliana and make the results
available through a Web interface. Our display method provides
answers to questions of the form—“What is the similarity of
members of family X?”—thus helps reveal some of the param-
eters that might have been used in the creation of the family. We
show how our method can be used to detect possibly incorrect
family assignments. Finally, we describe how our method can be
used to assign families to some unclassified proteins and how
novel families can be discovered.
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