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ABSTRACT: We describe a novel two-step method, starting from bulk silicon wafers, to construct DNA conjugated silicon
nanoparticles (SiNPs). This method first utilizes reactive high-energy ball milling (RHEBM) to obtain alkene grafted SiNPs. The
alkene moieties are subsequently reacted with commercially available thiol-functionalized DNA via thiol−ene click chemistry to
produce SiNP DNA conjugates wherein the DNA is attached through a covalent thioether bond. Further, to show the utility of
this synthetic strategy, we illustrate how these SiNP ODN conjugates can detect cancer-associated miR-21 via a fluorescence ON
strategy. Given that an array of biological molecules can be prepared with thiol termini and that SiNPs are biocompatible and
biodegradable, we envision that this synthetic protocol will find utility in salient SiNP systems for potential therapeutic and
diagnostic applications.

■ INTRODUCTION

Spherical nucleic acids1composed of a nanoparticle scaffold
conjugated with a DNA shellare currently being investigated
as functional nanomaterials in applications ranging from in vitro
biosensors to in vivo transfection, diagnostic, and theranostic
agents.2−7 The reason these hybrid materials are considered for
use in such technologies is that they not only possess the
unique biomolecular recognition properties of oligonucleotides
(ODNs),8 but often have emergent properties that are not
present in free ODNs, such as increased binding affinity to
target sequences,9 enhanced nuclease resistance,10,11 and
entrance into cells without the need for ancilliary trans-
fectants.12 In terms of the core nanomaterial scaffold, a variety
of heavy metal inorganic nanoparticles (e.g., Au, Ag, CdSe,
Fe3O4)

13−16 have been explored with the goal of imparting
additional physiochemical properties to the system (such as
plasmonics, photoluminescence, scattering, and catalysis).
Although these cores have shown demonstrated use in spherical
nucleic acid systems, the potential toxicity and biodegradability
issues of heavy metal inorganic particles remain a concern17−20

and judicious passivation techniques are required.21 In this
regard, the construction of water-soluble, heavy-metal free,
silicon nanoparticles (SiNPs) conjugated with DNA is highly

attractive since silicon is well-established to be biocompat-
ible,22−24 biodegradable,25,26 and earth-abundant, and can
exhibit photoluminescence.27

A number of synthetic methods (including electrostatic
interactions, postsynthesis linking, and automated solid-phase
synthesis) have been explored to functionalize ODNs onto bulk
silicon substrates.28−30 In addition, methods have been
established to obtain SiNPs.31,32 However, the effective and
site-selective conjugation of SiNPs with ODNs remains a
formidable challenge since typical hydrogen- or halogen-
terminated SiNPs are readily oxidized and are also prone
toward nonselective nucleophilic attack.33 In fact, literature on
SiNP ODN conjugates is rare and the reported syntheses have
involved either multiple synthetic steps34,35 and/or harsh
conditions (such as the use of high concentrations of HF,36

bromine,35 or laser ablation37). In addition to the paucity of
synthetic methods to obtain SiNP based spherical nucleic acids,
to the best of our knowledge, there has been no report on
utilizing DNA conjugated SiNPs as functional systems. With
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this Communication, we first disclose a mild, two-step method,
featuring reactive high-energy ball milling (RHEBM)38

followed by thiol−ene click chemistry,39 to prepare SiNP
DNA conjugates from readily available silicon wafers. These
silicon-based spherical nucleic acids have been characterized via
a combination of microscopy (TEM and AFM), spectroscopy
(UV−vis and fluorescence), and gel electrophoresis. Further-
more, we demonstrate the utility of these SiNP ODN
conjugates by illustrating how these particles can be utilized
to detect oncogenic microRNA-21 (miR-21) via a fluorescence
ON strategy.40

The preparation of the SiNP ODN conjugates is illustrated in
Scheme 1. First, RHEBM of silicon wafers in the presence of 1-
hexene and 1,7-octadiene (∼3:2 v/v) generated alkene
terminated SiNPs. After removal of insoluble sediments via
centrifugation, the resultant SiNPs were covalently function-
alized with DNA by reacting an excess (110 equiv) of 3′-thiol
modified 27mer ODN (5′-TCAACATCAGTCTGA-
TAAGCT−FlAAAAAA-SH-3′)that also contains a fluorescein
(FL) unit as a spectroscopic handleto the surface alkene
moieties through the thiol−ene click reaction (initiated by 365
nm light in the presence of DMPA). The resultant SiNP ODN
conjugates were purified via a 30k Amicon centrifugal filter to
remove unreacted ODNs.

■ RESULTS AND DISCUSSION

The successful coupling of the ODNs to the SiNP was first
inferred from UV−vis spectroscopy. As shown in Figure 1a, the
purified SiNP ODN conjugate clearly shows absorption bands
for both the ODN unit (λmax = 260 nm) as well as the
fluorescein reporter group (λmax = 490 nm). Although the core
SiNP does absorb in the 200−400 nm region (Figure 1a, inset),
the extinction coefficient of the ODN is significantly higher
(e.g., at 260 nm the free ODN has an ε of 3.33 × 105 L·mole−1·
cm−1 which is ca. 5.5-fold higher than that of the SiNP). Thus,
using the absorption of the DNA at 260 nm in conjunction with
the calculated concentration of the core SiNP, we estimated
that 4−5 ODN strands are loaded onto each SiNP core.
A polyacrylamide gel electrophoresis (PAGE) study was

performed to further confirm the production of SiNP ODN
conjugates. As can be observed from Figure 1b, the major band
in Lane 2 is a distinct green band (due to the emission from the
fluorescein unit of the ODN) that runs slower than the
unconjugated ODN (Lane 1), as would be expected for a
nanoparticle containing multiple ODN conjugates.
Transmission electron microscopy (TEM) was first applied

to characterize the morphology and size of the SiNP ODN
conjugates. Shown in Figure 2 are images of SiNPs that are
unconjugated (a: after step 1 of synthesis) and ODN
conjugated (b: after step 2). The unconjugated SiNPs display
spheroid particles with an average diameter of 3 nm. In

Scheme 1. Straightforward Two-Step Synthesis for the Production of SiNP ODN Conjugates

Figure 1. (a) Absorption spectra in H2O of purified SiNP ODN conjugate (inset: Absorption in CH2Cl2 of SiNPs before bioconjugation). (b) PAGE
of unconjugated ODN (Lane 1) and DNA-SiNP conjugates (Lane 2). The gel was run in 1 × TBE buffer and visualized via excitation (λexc = 254
nm) of the fluorescein unit on the ODNs.
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contrast, the ODN conjugated SiNPs exhibit a significantly
larger diameter (10 nm). The increase in nanoparticle size
provides further evidence for the successful conjugation
reaction. AFM measurements (Figure 2c,d), performed under
tapping mode, gave additional information about the size and
distribution of the SiNPs. These measurements are consistent
with the TEM data and display an average height of 3 nm for
the unconjugated SiNPs and 10 nm for the spherical nucleic
acids.
With evidence in hand for the formation of SiNP ODN

conjugates, we were keen on exploring the capacity of these
silicon based spherical nucleic acids as sensing agents for
biologically relevant RNA. As a proof-of concept, we focused
on detecting miR-21 since this noncoding RNA is overex-
pressed in a variety of cancers, as it downregulates the
production of tumor suppressor proteins.41,42 In fact, due to its
integral nature in cancer, sensing agents for miR-21 are an
important are of research interest.43,44

Our miR-21 detection scheme is shown in Figure 3 and relies
on a fluorescence ON strategy. While the core SiNP does
fluoresce, the quantum yield of fluorescence is not substantial
(2%) and thus we chose to use the fluorescein moiety on the
conjugated ODNs as the reporter group. In stage 1, a 15-mer
quencher strand (5′-Dabcyl-TAGCTTATCAGACTG-3′) hy-
bridizes with the ODNs conjugated to the SiNP. Since the
fluorophore and dark quencher are in proximity, a significant
decrease in the fluorescence intensity is observed with a plateau
at 1 equiv of the quencher strand (Figure 3b). This OFF state,
which contains a 7 base toe-hold on the 5′ terminus of the
SiNP ODN conjugate, transitions to a fluorescence ON state

upon introduction of miR-21 which displaces the quencher
strand (Figure 3c) since the conjugated ODN forms a more
stable DNA:RNA duplex with miR-21. In contrast to the clear
binding of the SiNP ODN conjugate to miR-21, which displays
saturation behavior, when a negative control (miR-155) is
added, the silicon based spherical nucleic acid system does not
turn ON as the conjugated ODN on the SiNP is not
complementary to miR-155.

■ CONCLUSION
In summary, we have disclosed a facile two-step synthesis
from bulk silicon waferto prepare SiNP ODN conjugates, by
performing tandem RHEBM and thiol−ene click chemistry. In
addition to characterizing the SiNP ODN conjugates by a series
of spectroscopic and microscopic studies, we have for the first
time demonstrated that SiNP DNA conjugates can serve as
fluorescence ON sensors that detect oncogenic miR-21. Given
that (a) SiNP cores have been found to have minimal toxicity
and favorable biodegradable characteristics,25,26 (b) these
SiNPs are attached to ODNs via nonlabile thioether bonds,
and (c) spherical nucleic acids with a variety of cores are known
to transfect into cells,1,12,45,46 we envision that these silicon
based spherical nucleic acids may serve as potential diagnostic
and/or therapeutic agents that can be used in cellular
environments. We are currently exploring these possibilities.
It is also important to note that, in general, many biological
molecules can be functionalized with thiols (e.g., cysteine linked
peptides and thiol terminated glycosides) and thus this simple
two-step strategy may pave the way for the rapid investigation
of a variety of SiNP bioconjugates for biomedical applications.

Figure 2. TEM and AFM images of the unconjugated (a and c, respectively) and the ODN conjugated (b and d, respectively) SiNPs. The inset
within panels c and d display the height histogram from the AFM images.
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