Skip to main content
. 2014 Oct 15;9(10):e110052. doi: 10.1371/journal.pone.0110052

Table 2. Performance metrics of classifiers on the lung cancer test set (AC and SCC subtype classification).

The data used (Total # of samples) N# of Genes Error (%) GBS (0) BCM (1) AUPR (1)
Ben-Hamo's study GSE10245, GSE18842, GSE31799 (151, 81AC, 70SCC) 1 15.3 NA NA NA
TGDR GSE10245, GSE18842, GSE2109, GSE31908 (175, 100AC, 75SCC) 20 16 0.1153 0.8325 0.9416
A. Radiz on 3-gene signature selected by AC and SCC subtype classification
Radviz alone GSE10245, GSE18842, GSE2109 (only stage I &II, 145, 71AC, 74SCC) 3 16.67
Radviz +TGDR GSE10245, GSE18842, GSE2109 (145) 3 14.67 0.2360 0.5144 0.8917
Radviz+naïve Bayes GSE10245, GSE18842, GSE2109 (145) 3 13.33 0.1260 0.8447 0.8908
Radviz+SVM GSE10245, GSE18842, GSE2109 (145) 3 13.33 0.1208 0.6974 0.8978
B. Radiz on 8-gene signature selected by subtype & stage classification
Radviz alone GSE10245, GSE18842, GSE2109 (145) 8 14
Radviz +TGDR GSE10245, GSE18842, GSE2109 (145) 8 13.33 0.1061 0.8271 0.8935
Radviz+naïve Bayes GSE10245, GSE18842, GSE2109 (145) 8 12.67 0.1191 0.8719 0.9067
Radviz+SVM GSE10245, GSE18842, GSE2109 (145) 8 14 0.1029 0.7983 0.9211

NA: not available. –: not computable because no posterior probabilities were provided.