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Podosomes are small, circular adhe-
sions formed by cells such as osteo-

clasts, macrophages, dendritic cells, and 
endothelial cells. They comprise a pro-
trusive actin core module and an adhesive 
ring module composed of integrins and 
cytoskeletal adaptor proteins such as vin-
culin and talin. Furthermore, podosomes 
are associated with an actin network and 
often organize into large clusters. Recent 
results from our laboratory and others 
have shed new light on podosome struc-
ture and dynamics, suggesting a revision 
of the classical “core-ring” model. Also, 
these studies demonstrate that the adhe-
sive and protrusive module are function-
ally linked by the actin network likely 
facilitating mechanotransduction as well 
as providing feedback between these two 
modules. In this commentary, we briefly 
summarize these recent advances with 
respect to the knowledge on podosome 
structure and discuss force distribution 
mechanisms within podosomes and their 
emerging role in mechanotransduction.

The Podosome Modules

Although the earliest observations date 
back to 1980,1 the first official report 
on podosomes appeared in 1985 when 
Marchisio and colleagues described the 
localization of actin, vinculin, and pTyr 
in distinct punctae in Rous sarcoma 
virus-transformed fibroblasts, which they 
called podosomes (i.e., little feet), refer-
ring to their localization at the ventral 

plasma membrane.2 Subsequently, studies 
involving interference reflection micros-
copy (IRM), fluorescence microscopy, 
and electron microscopy contributed to 
the identification of additional podosome 
components such as integrins and talin.2-6 
More recently, two distinct pools of polym-
erizing actin have been distinguished, the 
parallel branched actin of the core and the 
anti-parallel filamentous actin of the ring, 
the latter also known as the actin cloud or 
actin network.7-9 Currently, podosomes 
are defined as highly dynamic dot-shaped 
adhesion complexes, approximately one 
micron in size, comprising an adhesive 
ring and a protrusive core.10 Podosomes 
are often arranged into higher-ordered 
structures, such as large clusters in mac-
rophages and DCs, rosettes in endothelial 
cells, or circular belts in osteoclasts.11-14

Recent super-resolution microscopy 
studies have revealed details of podosome 
organization at the nanoscale challeng-
ing the traditional concept of a defined 
ring surrounding the core. By Bayesian 
localization microscopy, it was shown 
that podosome rings often have a polygo-
nal shape and that vinculin, in contrast 
to talin, localizes in short strands that 
radiate from the podosome edge.15 More 
recently, by dual-color Stochastic Optical 
Reconstruction Microscopy (dSTORM), 
we revealed that vinculin is preferentially 
enriched at the rim of the core and along 
the radiating actin filaments, whereas 
islets of αMβ2 integrin and talin are 
homogeneously distributed in core-free 
areas within the podosome cluster.16 
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Together, these observations demon-
strated that each of the ring proteins has 
a specific localization within the podo-
some cluster most likely related to its 
distinct role within podosomes. More 
specifically, vinculin localization seems 
guided by the actin network, while talin 
distribution seems dictated by the orga-
nization of the integrin molecules. The 
super-resolution data also highlight that 
podosome clusters should be regarded as 
one multifunctional zone consisting of 
three main modules: actin-dense cores 
as protrusion module, integrin islets dif-
ferentially populated by adaptor proteins 
acting as adhesion module, and a well-
organized network of radiating actin 
filaments that interconnects podosomes, 
possibly working as mechanotransduc-
tion module. Importantly, it should also 
be mentioned that, similarly to invado-
podia formed by invading cancer cells, 
podosomes have the capacity to degrade 
extracellular matrix.17,18 Although sev-
eral reports documented the existence of 
polarized secretory pathways responsible 
for matrix metalloprotease delivery and 
extracellular release at podosome sites,19-

24 their nanoscale organization as well as 
their molecular and temporal connec-
tion with the podosome modules are still 
poorly defined.

Interestingly, the organization of each 
of the podosome modules can be altered 
under specific conditions. In macrophages, 
reduced or enhanced core actin polymer-
ization by altered PAK4 kinase activity 
has been shown to lead to smaller or larger 
podosome cores, respectively.25 Defective 
ring formation is observed in bone mar-
row macrophages lacking Rac126 and bone 
marrow dendritic cells (DCs) lacking 
phospholipase C gamma2.27 Furthermore, 
osteoclasts lacking kindlin-3 are unable to 
form the actin network resulting in small, 
unstable podosome cores.9 More recently, 
it has been shown that podosome size and 
composition are also controlled by sub-
strate properties. When DCs are seeded on 
collagen impregnated filters with 1 micron 
sized pores, podosomes are enlarged and 
recruit transmembrane metalloproteases 
and c-type lectins.20,28 Proteomic analysis 
of podosome fractions isolated from pri-
mary human macrophages has revealed 
about 170 potential novel components.29 
The next challenge is to determine their 
spatiotemporal organization and role in 
preserving the integrity of each of the 
podosome modules. Development of 
image analysis software dedicated to spe-
cifically identify podosomes has allowed 
quantitative analysis of large numbers of 
podosomes, thus enabling robust statistics 

to determine subtle changes in podosome 
composition.30-32 We envisage that bio-
imaging techniques allowing 3D recon-
struction and multicolor labeling will 
soon allow detailed characterization of 
the structural arrangement of the podo-
some modules shedding new light on the 
molecular mechanisms regulating podo-
some composition and function.

Balancing Forces  
within Podosomes

Podosomes, in sharp contrast to focal 
adhesions (FAs), have classically been 
associated with cytoskeletal relaxation.33,34 
However, evidence is emerging that 
mechanical forces and cytoskeletal tension 
also play an important role in podosomes, 
albeit differently from FAs.

For cytoskeletal tension to be gener-
ated, two opposing forces are required. In 
the case of FAs, forces are actively gener-
ated by the actomyosin apparatus and 
opposed by the binding of activated inte-
grins to immobilized extracellular matrix 
proteins. The resulting tension within the 
adhesion complex drives the recruitment 
of tension-sensitive molecules vinculin and 
zyxin creating stable, FAs. Importantly, 
in the absence of internal forces, such as 
upon myosin inhibition35 and actin fila-
ment disruption,36 or when external forces 
are weak (e.g., on compliant substrates37 
or in the absence of ligand38), FAs do not 
stabilize and rapidly turnover.

Interestingly, podosomes appear to 
form and grow in the absence of the clas-
sical forces described for FAs. Actomyosin 
contractility is not required for podosome 
stability or the presence and recruitment 
of the tension-sensitive molecules vinculin 
and zyxin.31 Also, integrin ligation appears 
redundant for podosome formation, as 
podosomes rapidly form on uncoated 
substrates and in the absence of ligand-
containing serum in Src-transformed 
fibroblasts and monocyte-derived DCs.2,39 
Moreover, REF52 fibroblasts have recently 
been shown to form podosomes on fluid 
Arg-Gly-Asp (RGD) peptide-lipid surfaces, 
demonstrating that podosomes indeed 
form in the absence of traction forces.40

How do podosomes generate tension 
within the adhesion scaffold to drive the 

Figure 1. Force distribution within podosomes and focal adhesions. Schematic representation of 
the top and side view of a focal adhesion and a podosome. the forces generated within these 
adhesions are indicated with an arrow. the growth of focal adhesions and podosomes is both 
tension-mediated but since opposite forces are generated within a podosome, force derived from 
integrin-mediated eCM ligation is not necessary to facilitate the growth of podosomes.
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recruitment of tension-sensitive molecules 
in the absence of classical traction forces? 
One interesting possibility is that this dis-
tinguishing feature is facilitated by the 
intrinsic ability of podosomes to account 
for two opposing forces that are balanced 
within the podosome structure (Fig. 1). 
Whereas FAs are anchored to the ventral 
plasma membrane by a tangential-shaped 
cluster of integrins (Fig. 1, top view), thus 
requiring integrin–ECM ligation as a 
counter force to generate tension (Fig. 1, 
side view), podosomes are anchored to the 
plasma membrane through many different 
integrin clusters that are organized around 
the actin core and are connected to it 
through the F-actin network. This unique 
architecture ensures that the combina-
tion of actin polymerization in the core 
and myosin contractility in the radiating 
F-actin filaments is apparently sufficient 
to create two opposing forces within the 
podosome structure, thereby creating ten-
sion on the F-actin filaments (Fig. 1, side 
view). Once a podosome core is formed, 
it will continuously grow and shrink, ver-
tically oscillating over time before it dis-
solves again. Our model implies that the 
tension on the filamentous actin network 
will successively increase and decrease 
during podosome oscillations. This is 
supported by our observation that the 
levels of the tension-sensitive components 
vinculin and zyxin oscillate in harmony 
with the actin core, while the levels of 
the tension-insensitive components are 
relatively stable.31 Future studies should 
directly determine whether tension within 
the filamentous actin is indeed built up 
during podosome core growth or myosin 
IIA-mediated contraction. To fully sup-
port this model, the presence of a linkage 
between the central protruding core and 
the surrounding adhesive module is essen-
tial. To date, the exact molecular nature of 
this connection remains unknown.

A recent elegant study by the 
Waterman’s group using interferometric 
photoactivated localization microscopy 
(iPALM) showed for the first time the 
composite multilaminar protein architec-
ture of FAs, which share similar compo-
nents with podosomes.41 In the future, 
similar 3D super-resolution techniques 
should be applied to understand whether 
podosome adhesive modules have a similar 

composite multilaminar structure respon-
sible for translating the tension within the 
ring into intracellular signals.

Podosomes as 
Mechanotransducers

Mechanotransduction is the process by 
which cells translate mechanical cues such 
as matrix elasticity and geometric con-
straints into chemical signals, directing 
key processes such as adhesion, growth, 
and differentiation.42-44 By controlling 
both the perception of mechanical cues 
and the execution of the cellular response, 
integrin-based adhesions are thought to 
play a crucial role in mechanotransduc-
tion. Indeed, FAs have been shown to 
respond to substrate mechanical proper-
ties, thereby regulating cellular processes. 
For example, FA size and dynamics are 
critically regulated by substrate elastic-
ity,37,45 thereby regulating the migration of 
cells on a rigidity gradient toward higher 
rigidity.45,46 Although much less is known 
about the role of podosomes in mecha-
notransduction, clear evidence is emerg-
ing that they also respond to substrate 
mechanical properties such as substrate 
texture and rigidity.

Substrate texture has been shown to 
influence podosomes in osteoclasts and 
DCs. In osteoclasts, podosomes orga-
nize into small unstable sealing zones on 
smooth surfaces and large stable actin 
rings on rough surfaces.47 In DCs, we have 
shown that podosomes respond to 3-D 
geometric cues by specifically aligning on 
the edges of micropatterned substrates.39 
Although the mechanisms that regulate 
podosome behavior on textured substrates 
are not well understood, it is tempt-
ing to speculate that the surface induces 
membrane curvatures, thereby recruiting 
specific lipids and proteins to the ventral 
plasma membrane, in turn influencing 
the dynamics and spatial organization of 
podosomes. In this respect, it is interesting 
to note that lipids associated with mem-
brane curvature, such as phosphoinositi-
des (PtdIns), especially PtdIns(4,5)P2 and 
PtdIns(3,4,5)P3, were reported to regu-
late the recruitment and binding of many 
podosome components during podo-
some initiation but also in later stages of 

podosome assembly.48 Also, membrane 
curvature-sensing proteins have been 
shown to be present within podosomes in 
macrophages.49 How the complex inter-
play between membrane proteins and 
lipids regulates podosome texture sensing 
remains to be elucidated.

Podosome organization is also regu-
lated by substrate rigidity in various cell 
types. Substrate rigidity positively cor-
relates with the lifetime and stability of 
individual podosomes and podosome 
rosettes in 3T3 fibroblasts.50 Furthermore, 
traction stress, exhibited by rings of podo-
somes in rous sarcoma virus-transformed 
baby hamster kidney cells, increases with 
substrate rigidity.51 More recently, it was 
demonstrated that podosomes in DCs 
seeded on filters with 1 µm pores spe-
cifically form on soft spots of low physi-
cal resistance (i.e., the pores).20,28 Once a 
podosome is formed on such a soft spot, it 
becomes increasingly invasive and, when 
possible, protrudes into the substrate. 
Substrate stiffness sensing by podosomes 
is likely to be regulated by the balance 
between myosin IIA activity and actin 
polymerization that control the tension 
on the actin network. The tension on the 
network could subsequently be sensed 
by structural proteins such as cofilin52 or 
formin and profilin53 to control podo-
some oscillations and the recruitment of 
mechanosensitive proteins. As podosome 
cores have been shown to undergo peri-
odic stiffness oscillations,54 another pos-
sibility is that substrate stiffness sensing is 
orchestrated directly by the stiffness of the 
podosome core itself. Altogether, it would 
be interesting to investigate whether actin 
network tension, podosome oscillations, 
and/or podosome core stiffness are differ-
entially regulated on substrates with vari-
able stiffness. Also, future work should be 
directed toward unraveling the signaling 
pathways and feedback mechanisms that 
are responsible for translating podosome 
stiffness sensing into cellular decisions, 
such as cell protrusion and migration 
within tissues.

Outlook and Perspectives

Podosomes have recently been iden-
tified in cells that are seeded within 3D 
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matrices,55-57 indicating that podosomes 
are not just artificial adhesion structures 
formed by cells seeded on 2D substrates. 
Future challenges will include the char-
acterization of the functional role of 
podosomes in 3D migration and how 
podosomes and FAs, through their differ-
ent functions and mechanosensing abili-
ties, together orchestrate the migration of 
cells. The availability of novel 3D imag-
ing setups58 and 3D biomimetic migration 
models59 finally enables us to address these 
exciting questions.
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