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HMGB1 (high mobility group box 
1) is a multifunctional, ubiqui-

tous protein located inside and outside 
cells that plays a critical role in various 
physiological and pathological processes 
including cell development, differentia-
tion, inflammation, immunity, metas-
tasis, metabolism, and death. Increasing 
evidence demonstrates that HMGB1-
dependent autophagy promotes che-
motherapy resistance, sustains tumor 
metabolism requirements and T cell 
survival, prevents polyglutamine aggre-
gates and excitotoxicity, and protects 
against endotoxemia, bacterial infec-
tion, and ischemia-reperfusion injury in 
vitro or in vivo. In contrast, HMGB1 
may not be required for autophagy in 
some organs such as the liver and heart. 
Understanding HMGB1-dependent and 
-independent autophagy in more detail 
will provide insight into the integrated 
stress response and guide HMGB1-based 
therapeutic intervention.

HMGB1 is an evolutionarily ancient 
protein that possibly originated more than 
525 million years ago before the proto-
stomes and deuterostomes split. It was 
first identified in 1973 by Ernest Johns 
and coworkers as one of a group of non-
histone, chromatin-associated proteins 
with 2 DNA-binding HMG-box domains 
(A and B box) and an acidic C-terminal 
tail.1 HMGB1 is normally located in 
the nucleus, acting as a DNA chaperone 
involved in the regulation of a number of 
DNA-associated processes such as replica-
tion, transcription, recombination, and 
repair. In addition to its nuclear func-
tion, HMGB1 can act as a stress sensor 

and translocate from the nucleus to the 
cytoplasm and then be released into the 
extracellular space during various stress 
conditions. Autophagy is generally a 
programmed cell survival process and 
lysosome-mediated pathway involving 
the degradation of cellular components 
(e.g., long-lived proteins and damaged 
organelles) and invading pathogens in a 
selective or nonselective manner.2-4 The 
dynamic process of autophagy is primar-
ily controlled by the autophagy-related 
(ATG) protein family, and it shares regu-
lators from other trafficking pathways 
and cell death.4,5 In the past few years, 
increasing evidence supports the existence 
of ATG pathway (e.g., ATG5, ATG7, and 
BECN1)-independent autophagy, mak-
ing the autophagy machinery as well as 
autophagy monitoring extremely com-
plicated.6-8 Indeed, HMGB1 has a con-
text-dependent role in the regulation of 
autophagy and stress.9 Here, we outline 
the exciting new advances in our knowl-
edge of HMGB1-dependent and -inde-
pendent autophagy and discuss how these 
advances are driving the understanding of 
the integrated stress response.

HMGB1-Dependent Autophagy

HMGB1 participates in the autophagy 
process at several levels (Fig.  1A). First, 
HMGB1 translocates to the cytoplasm 
following several autophagic stimuli 
(e.g., hydrogen peroxide, rapamycin, 
and starvation), which in turn pro-
motes autophagy through direct interac-
tion with BECN1 to dissociate it from 
BCL2 in immortalized mouse embryonic 
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fibroblasts and cancer cells.10 Meanwhile, 
HMGB1 C23S and C45S mutants lose 
their ability to mediate autophagy, as they 
are unable to bind BECN1 and therefore 
cannot disrupt BCL2-BECN1 interac-
tions.10 In addition, the HMGB1-BECN1 
complex seems to be tightly controlled 
at the transcriptional, post-transcrip-
tional, post-translational, and protein-
protein interaction level. For example, 
ULK1 (unc-51 like autophagy activating 
kinase 1),11 MAPK (mitogen-activated 
protein kinase),10 and NACC1 (nucleus 
accumbens associated 1, BEN and BTB 
[POZ] domain containing)12 positively 
regulate HMGB1-mediated autophagy, 
whereas TP53,13 SNCA/α-synuclein,14 
IFI30/gamma-interferon-inducible lyso-
somal thiol reductase,15 MIR34A,16 and 
MIR2217 negatively regulate HMGB1-
mediated autophagy. Second, HMGB1 
regulates the expression of HSPB1 (heat 
shock 27 kDa protein 1) in immortal-
ized mouse embryonic fibroblasts and 
cancer cells.18 As a cytoskeleton regula-
tor, HSPB1 is important for dynamic 

intracellular trafficking during auto-
phagy and mitophagy. Thus, inhibi-
tion of the HMGB1-HSPB1 pathway 
impairs mitophagy and elimination of 
damaged mitochondria in response to 
mitochondrial electron-transport-chain 
inhibitors.18 Third, extracellular reduced 
HMGB1 induces autophagy and tumor 
growth through AGER/RAGE (advanced 
glycosylation end product-specific recep-
tor), whereas oxidized HMGB1 induces 
apoptosis in cancer cells.19 HMGB1 
released from cancer cells induces auto-
phagy in the muscle, which sustains 
anaerobic energy production (namely the 
Warburg effect) during tumor growth in 
vitro and in vivo.20 These findings suggest 
that HMGB1 is an important mediator of 
systemic autophagic syndrome.

HMGB1-Independent Autophagy

HMGB1 global knockout mice die 
shortly after birth due to the downregu-
lation of glucocorticoid receptor and 

subsequent hypoglycemia, suggesting a 
critical role for HMGB1 in sustaining 
life.21 We and others recently generated 
transgenic mice with conditional knock-
out (Fig.  1B) or knockin (Fig.  1C) of 
HMGB1 within the pancreas,22 liver,23,24 
heart,24,25 and myeloid cells26 through a dif-
ferent strategy. All these mice were viable 
and had no significant defects such as glu-
cose and energy metabolism defects under 
unstressed growth conditions. However, 
these mice have various, even opposite, 
phenotypes in response to different stress-
ors. For example, knockout of HMGB1 in 
the pancreas (n = 18–25 mice per group), 
liver (n = 6 mice per group), and myeloid 
cells (n = 6–9 mice per group) make mice 
more sensitive to sterile inflammation 
(e.g., pancreatitis22 and liver ischemic 
reperfusion23) and infection (e.g., lipo-
polysaccharide and L.monocytogenes26), 
partly through downregulation of auto-
phagy26 and upregulation of mitochon-
drial injury23 and nuclear catastrophe.22 
Knockin of HMGB1 in the heart protects 
mice against myocardial infarction.25 

Figure 1. HMGB1 is involved in autophagy and other stress responses. (A) HMGB1 plays important nuclear, cytosolic, and extracellular roles in the 
regulation of autophagy. (B and C) Various phenotypes of HMGB1 knockout (B) and knockin (C) mice with or without stress (indicated by lightning bolt).
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In contrast, a recent study from Robert 
Schwabe’s lab indicates that HMGB1 is 
not required for mitochondrial function 
and autophagy in the liver. In this study, 
the authors crossed HMGB1 conditional 
liver knockout mice with GFP-LC3 mice 
and then starved these mice for 24 h (n = 3 
mice per group). The expression patterns 
of GFP-LC3 puncta and GFP-LC3 cleav-
age were similar between these mice upon 
starvation, suggesting that an HMGB1-
independent autophagy system exists in 
the liver.24 Although the exact mechanism 
of this phenotype is not clear, a major dif-
ference between Robert Schwabe’s engi-
neered HMGB1 mice and other groups 
is the tissue-level expression of HMGB1 
after knockout. Mice with hepatocyte-
specific deletion of Hmgb1 from Robert 
Schwabe’s lab are not complete condi-
tional knockout mice; the protein level of 
HMGB1 in the liver is decreased by about 
70%.24 Thus, autophagy appears to cor-
relate with HMGB1 protein level, and low 
HMGB1 levels may still sustain autophagy 
pathway activation. Moreover, the original 
GFP-LC3 mice study by Mizushima et al. 
demonstrated that the regulation of auto-
phagy is tissue/organ-dependent and not 

restricted to a starvation response at 24 or 
48 h.27

Conclusions

It has become clear that HMGB1-
dependent autophagy promotes chemo-
therapy resistance,11,12,28-35 sustains the 
tumor metabolism requirement19,20 and 
T cell survival,36 prevents polygluta-
mine aggregates37 and excitotoxicity,38 
and protects against endotoxemia, bacte-
rial infection, and ischemia-reperfusion 
injury.26,39-41 However, many questions 
remain unanswered regarding HMGB1-
independent autophagy in the liver, 
including its tissue-specific role. HMGB1 
dysfunction has been implicated in various 
forms of liver disease ranging from liver 
damage to fibrosis, as well as tumorigene-
sis.42 Extensive research is needed to deter-
mine the relationship between HMGB1, 
autophagy, and liver diseases. Of note, 
primary cells and cell lines have differ-
ent baseline levels of autophagy as well as 
HMGB1 because transformed cell lines 
display different gene expression profiles.43 
Understanding HMGB1-dependent and 

-independent autophagy in more detail 
will provide insight into the integrated 
stress response and guide HMGB1-based 
therapeutic intervention in cancer and 
other diseases.44
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