
may therefore be more promising to promote reverse 
cholesterol transport with agents that directly target 
foam cells. Macrophage expression of the cholesterol 
transport proteins adenosine triphosphate binding cas-
sette transporter A1, adenosine triphosphate binding 
cassette transporter G1, and scavenger receptor class 
B member 1 is transcriptionally up-regulated by acti-
vated liver X receptors (LXR), whereas nuclear factor 
(NF)-kappaB antagonizes their expression. Taurine, 
which inhibits atherogenesis in rodent studies, has just 
been discovered to act as a weak agonist for LXRalpha. 
Conversely, it may be possible to oppose NF-kappaB 
activation in macrophages with a range of measures. 
Induction of heme oxygenase-1, which can be attained 
with phase 2 inducer phytochemicals such as lipoic acid 
and green tea catechins, promotes reverse cholesterol 
transport in macrophages and inhibits atherogenesis in 
rodents, likely due to, in large part, NF-kappaB antago-
nism. Inhibition of macrophage nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase activity with 
the spirulina-derived bilirubin-mimetic phycocyanobilin 
may also oppose NF-kappaB activation, and salicylic 
acid similarly should be useful for this purpose. The 
5' adenosine monophosphate-activated protein kinase 
activator berberine promotes macrophage reverse cho-
lesterol transport in cell culture; metformin probably 
shares this property. Many of these measures could 
also be expected to promote plaque stability by sup-
pressing foam cell production of inflammatory cytokines 
and matrix metalloproteinases, and to reduce intimal 
monocyte infiltration by anti-inflammatory effects on 
vascular endothelium. Direct targeting of foam cells 
with agents such as phase 2 inducers, spirulina, salicy-
late, taurine, and berberine or metformin, may hence 
have considerable potential for preventing and revers-
ing atheroma, and for preventing the plaque rupture 
that triggers vascular thrombosis. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Abstract
Although high density lipoprotein (HDL)-mediated re-
verse cholesterol transport is crucial to the preven-
tion and reversal of atheroma, a recent meta-analysis 
makes evident that current pharmaceutical strategies 
for modulating HDL cholesterol levels lower cardio-
vascular risk only to the extent that they concurrently 
decrease low density lipoprotein (LDL) cholesterol. This 
corresponds well with findings of a recent Mendelian 
randomization analysis, in which genetic polymor-
phisms associated with HDL cholesterol but no other 
known cardiovascular risk factors failed to predict risk 
for myocardial infarction. Although it is still seems ap-
propriate to search for therapies that could improve 
the efficiency with which HDL particles induce reverse 
cholesterol transport, targeting HDL cholesterol levels 
per se  with current measures appears to be futile. It 
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Core tip: Reverse cholesterol transport from foam cells 
is of key importance to prevention and control of ath-
erosclerosis. This essay reviews the molecular biology of 
foam cell regulation, and proposes that certain agents 
may be capable of acting directly on foam cells to am-
plify reverse cholesterol transport while also promot-
ing plaque stability by limiting foam cell production of 
inflammatory cytokines and matrix metalloproteinases. 
Phase 2 inducers such as lipoic acid and green tea cat-
echins, spirulina, salicylate, taurine, and 5' adenosine 
monophosphate-activated protein kinase activators 
such as metformin or berberine, appear to have poten-
tial in this regard-while acting in additional ways to ben-
efit vascular health. 
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PHARMACEUTICAL HIGH DENSITY 
LIPOPROTEIN MODULATION HAS 
PROVED DISAPPOINTING
Although reverse cholesterol transport from foam cells 
mediated by high density lipoprotein (HDL) particles 
clearly plays a key role in the prevention and control 
of  atherosclerosis (Figure 1) and its complications[1-3], a 
recent meta-analysis strongly suggests that current phar-
maceutical measures for increasing HDL cholesterol (e.g., 
niacin, fibrates, cholesterylester transfer protein inhibi-
tors) do not enhance health outcomes in at-risk subjects-
or rather, only do so to the extent that, like niacin, they 
favorably influence other determinants of  atherogenesis 
such as low density lipoprotein (LDL) and apoB-bearing 
lipoproteins[4]. The failure of  niacin in the AIM-HIGH 
trial-despite evidence of  benefit in other studies[5,6]-
might then be explained by the fact that patients in the 
control group received a higher dose of  statin such that 
reductions of  LDL cholesterol were equivalent in each 
group[7]. Analogously, a Mendelian randomization analy-
sis has determined that genotypes associated with elevat-
ed HDL cholesterol (but no other known determinants 
of  cardiovascular risk), are not associated with a decline 
in risk for myocardial infarction[8]. A similar analysis 
focusing on genetic determinants of  LDL cholesterol 
provides striking confirmation of  LDL’s pathogenic-
ity[9]. The well-established epidemiological association of  
low HDL cholesterol with increased cardiovascular risk 
might therefore reflect the fact that low HDL cholesterol 
levels can serve as a marker for metabolic states-such 
as the metabolic syndrome-that are truly pathogenic; a 

similar analysis applies to moderately elevated homo-
cysteine. There still may be scope for developing new 
drugs or procedures that improve the capacity of  HDL 
particles to achieve reverse transport[10-13]-but available 
pharmaceutical agents capable of  elevating HDL choles-
terol do not seem to have that property. As the authors 
of  the recent meta-analysis note: “Raising high density li-
poprotein cholesterol without considering effects on high 
density lipoprotein function seem to have little promise 
for the prevention of  cardiovascular events”[4]. 

It bears mentioning that the low HDL cholesterol 
levels seen in subjects carrying the Milano variant of  
apoA-1 are not associated with aggravated cardiovascular 
risk[14]; perhaps this reflects the efficiency with which Mi-
lano HDL delivers cholesterol to the liver for catabolism. 
Conversely, the elevation of  HDL cholesterol associ-
ated with niacin therapy may reflect the fact that clini-
cal concentrations of  niacin impede the liver’s ability to 
catabolize holo-HDL particles[15]; while this increases the 
circulating apoA-1 pool, the amount of  cholesterol per 
HDL particle also rises. Whether the increase in HDL 
associated with moderate alcohol consumption-likely at-
tributable to enhanced hepatic synthesis of  apoA-1[16]-
is partially responsible for the decrease in cardiovascular 
risk observed in by prudent drinkers, is not yet clear; acti-
vation of  5’ adenosine monophosphate-activated protein 
kinase (AMPK) by ethanol-derived acetate may contrib-
ute to alcohol’s vascular benefits[17]. 

TARGETING FOAM CELLS DIRECTLY TO 
MODULATE FOAM CELL FORMATION 
AND BEHAVIOUR
Despite the seeming inutility of  current efforts to modu-
late HDL, it may still be feasible to promote reverse 
cholesterol transport with agents that act directly on 
foam cells to enhance their capacity to export cholesterol. 
Moreover, some of  these agents could be expected to 
decrease foam cell uptake of  modified LDL particles, and 
to work in other ways to promote plaque stabilization. 

Egress of  cholesterol from macrophages and foam 
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Figure 1  An atherosclerotic plaque at its early stage of development in 
the thoracic aorta of an apolipoprotein E-KO mouse is illustrated. The 
plaque is primarily composed of apparent foam cells. HE staining × 400. 



cells is mediated by several membrane transport proteins, 
namely adenosine triphosphate binding cassette trans-
porter A1 (ABCA1), adenosine triphosphate binding 
cassette transporter G1 (ABCG1), and scavenger recep-
tor class B member 1 (SRB-1); ABCA1 preferentially 
interacts with lipid-poor apoA-1, ABCG1 can transfer 
cholesterol to all HDL particles, and SRB-1 interacts 
with a wide range of  lipoproteins[18]. The transcription of  
ABCA1 and ABCG1 is promoted by the liver X recep-
tors (LXR) receptor, a transcription factor whose physi-
ological activation is mediated by certain hydroxylated 
metabolites of  cholesterol produced within macrophages 
which can function as ligands for LXR[19,20]. Increased 
intracellular cholesterol in macrophages also promotes 
increased expression of  SRB-1, although this effect 
does not seem to be mediated via LXR[21]. In this way, 
increased cholesterol uptake by macrophages provokes 
a compensatory increase in cholesterol export induced 
by cholesterol metabolites. This LXR-mediated promo-
tion of  reverse cholesterol transport via HDL can be 
antagonized by a number of  pro-inflammatory cytokines 
and agonists which have the common effect of  activat-
ing nuclear factor (NF)-kappaB; concurrent suppression 
of  NF-kappaB activity largely eliminates this inhibition 
of  reverse cholesterol transport[22-27]. NF-kappaB activity 
somehow opposes the transcription of  ABCA1, ABCG1, 
and SRB-1; how this occurs is still unclear. The balance 
between LXR and NF-kappaB activities is hence a key 
determinant of  foam cell formation. NF-kappaB activa-
tion also is a mediator of  inflammatory cytokine produc-
tion by foam cells, and can promote plaque destabiliza-
tion by inducing production of  matrix metalloproteinases 
(MMP)[25,28]-whereas LXR suppresses production of  
MMP-9[29].

Heme oxygenase-1, phase 2 inducers, bilirubin, and 
spirulina 
A number of  studies reveal that induction of  heme oxy-
genase-1 (HO-1) in foam cells promotes reverse choles-
terol transport, induces increased expression of  ABCA1, 
ABCG1, and SRB-1, and acts in other ways to suppress 
foam cell production of  pro-inflammatory cytokines 
and plaque-destabilizing metalloproteinases[30-37]. Hence, 
HO-1 induction can aid prevention of  plaque forma-
tion, promote plaque regression, and render plaque more 
stable. Suppression of  NF-kappaB activation appears 
likely to underlie many of  these protective effects, since 
HO-1 activity has been shown to impede NF-kappaB 
activation in a number of  circumstances[38-47]. There ap-
pears to be no evidence that HO-1 could influence LXR 
function. Macrophage HO-1 induction can also oppose 
AP-1 activation, an effect which could be expected to 
reduce uptake of  modified LDL by diminishing expres-
sion of  the SR-A receptor[32,33]. The respective roles of  
HO-1 products carbon monoxide and biliverdin/biliru-
bin in favorable modulation of  foam cell function have 
not yet been clarified. As HO-1 can be induced by phase 
2-inductive phytochemicals via the Nrf2 transcription fac-

tor[48], such agents evidently have potential for promoting 
reverse cholesterol transport and aiding prevention, re-
gression, and stabilization of  plaque. Lipoic acid, a broad 
range of  flavanoids (including notably green tea cat-
echins), isothiocyanates from crucifera, and organosulfur 
compounds from garlic and onions, can serve as phase 
2 inducers[49-57]-albeit what intakes of  these might have a 
functionally significant impact on HO-1 in foam cells is 
unknown. Lipoic acid is of  particular interest in this re-
gard, inasmuch as well-defined dose schedules (600-1800 
mg daily) exert protective effects in diabetic neuropathy, 
which seem likely to reflect phase 2 induction[58]. Not sur-
prisingly, lipoic acid exerts anti-atherosclerotic activity in 
rodents[59-62]. 

The antioxidant effects of  HO-1 are mediated largely 
by bilirubin, which functions physiologically to inhibit 
certain isoforms of  nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase[63-66]. The inverse correla-
tion of  serum bilirubin levels with cardiovascular risk 
observed in many epidemiological studies[67-69] may well 
reflect the antioxidant impact of  free bilirubin on the vas-
cular wall-endothelium, foam cells, and smooth muscle 
cells. A number of  agonists which stimulate NF-kappaB 
activity in macrophages concurrently activate NADPH 
oxidase, which boosts NF-kappaB activation via oxidant 
mechanisms[70-79]. It is therefore reasonable to suspect 
that HO-1 induction promotes reverse cholesterol trans-
port, in part, by suppressing the up-regulatory impact of  
NADPH oxidase on NF-kappaB activity. Consistent with 
this possibility, the ability of  advanced glycation end-
products to suppress expression of  ABCA1 and ABCG1 
expression in macrophages is blocked by inhibitors of  
NADPH oxidase[80,81]. Macrophage NADPH oxidase ac-
tivity could also be expected to promote foam cell forma-
tion by promoting oxidative modification of  LDL.

Recent studies indicate that bilirubin’s antioxidant 
effect can be mimicked by phycocyanobilin (PhyCB), a 
prominent light-absorbing chromophore in cyanobacteria 
such as spirulina; PhyCB is a metabolite and close struc-
tural analog of  biliverdin, the precursor of  bilirubin[82,83]. 
Not surprisingly, the only study to date which has evalu-
ated oral administration of  spirulina or its PhyCB-bearing 
protein phycocyanin in a rodent model of  atherogenesis 
(cholesterol-fed hamsters) observed a profound anti-
atherosclerotic effect[84]. An anti-inflammatory impact 
on vascular endothelial cells, coupled with a suppressive 
impact on intimal foam cell formation, seems likely to ac-
count for this observation. The ability of  bilirubin and of  
PhyCB to maintain reverse cholesterol transport in mac-
rophages stimulated with various pro-inflammatory ago-
nists that otherwise would inhibit it, should be assessed. 

Salicylate suppresses NF-kappaB activity
Activation of  NF-kappaB can often be suppressed more 
directly with salicylate, a direct inhibitor of  inhibit the in-
hibitor of  nuclear factor kappa-B kinase beta (IKK-beta), 
in clinical doses that do not entail important inhibition of  
cyclooxygenase, and hence are relatively safe[85-88]. In foam 
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favorably influence platelet stability, blood pressure, and 
the failing heart[107]. The continuing neglect of  this inex-
pensive and well tolerated nutrient by clinical researchers 
is mystifying.

AMPK activators 
The anti-diabetic nutraceutical berberine, whose clinical 
efficacy resembles that of  metformin in being contingent 
on activation of  AMPK, has exerted anti-atherogenic 
effects in some but not all rodent models of  this disor-
der[108-110]. The AMPK activator AICAR has been shown 
to promote reverse cholesterol transport in cultured mac-
rophages by boosting expression of  ABCG1[111]. Studies 
examining the impact of  berberine on cultured macro-
phages report that it can exert a range of  effects likely to 
antagonize foam cell formation and stabilize plaque-in-
hibiting activation of  NADPH oxidase and NF-kappaB, 
inhibiting MMP-9 expression, and antagonizing choles-
terol accumulation by inducing expression of  ABCA1 or 
SRB-1, or suppressing expression of  the LOX-1 LDL 
receptor for oxidized LDL[112-114]. On the other hand, one 
study found that berberine exposure increased macro-
phage uptake of  modified LDL by increasing expression 
of  the SRA-1 receptor[115]. The impact of  metformin on 
foam cell function appears to have received little or no 
study. In vivo, berberine could also be expected to reduce 
foam cell formation by decreasing circulating LDL; it 
boosts hepatocyte expression of  the LDL receptor by a 
mechanism that is complementary to that of  statins[116].

CONCLUSION
It should not go unnoted that many of  the agents dis-
cussed here-notably phase 2 inducers[117-122], PhyCB[123-125], 
salsalate[126-128], and berberine or metformin[129-134]-have the 
potential to impede foam cell formation by exerting anti-
inflammatory effects on endothelial cells that would be 
expected to impede monocyte migration across the en-
dothelial barrier into arterial intima. Each of  these agents 
can work in various ways to inhibit endothelial NF-kap-

cells in vitro, aspirin (which shares salicylate’s capacity to 
inhibit IKK-beta) was found to suppress the transcrip-
tional activity of  NF-kappaB and-likely as a result - boost 
expression of  ABCA1 and SRB-1 while suppressing that 
of  matrix metalloproteinase-9 (a mediator of  plaque in-
stability)[25]. In doses of  3-4.5 g daily, salicylate (preferably 
as salsalate) has been shown to modestly aid glycemic 
control in diabetics, likely via its inhibition of  IKK-be-
ta[89-91]; it might be feasible to employ salicylate in compa-
rable doses to promote reverse cholesterol transport and 
stabilize plaque in patients with atheroma. 

Taurine as an LXR agonist
Pharmaceutical LXR agonists can promote reverse cho-
lesterol transport in macrophages, and some of  these 
are being evaluated as potential new drugs for control 
of  atherosclerosis[92-94]. Unfortunately, most such agents 
also boost hepatic lipogenesis via LXR activity, an effect 
viewed as undesirable[94]. A particularly intriguing recent 
discovery is that the essential cofactor taurine can act 
as a weak agonist for LXRalpha; moreover, taurine can 
enhance the expression of  ABCA1and ABCG1, and 
promote reverse cholesterol transport, in cultured macro-
phages[95]. Curiously, owing to a countervailing effect, tau-
rine fails to promote hepatic lipogenesis, and is very well 
tolerated[95]. A number of  studies have demonstrated that 
dietary taurine can impede atherogenesis in rodent mod-
els of  this disorder[96-103]; this effect is stronger than could 
be predicted from the modest hypolipidemic effects of  
taurine in rodents, and it would be of  interest to know 
whether a favorable impact on the function of  intimal 
macrophages plays a role in taurine’s anti-atherosclerotic 
activity. If  so, taurine-which appears to have minimal im-
pact on serum lipids in humans-might have clinical utility 
for preventing and controlling atherosclerosis[104,105]. Of  
related interest is the possibility that taurine’s antioxidant 
activity may be helpful for preventing LDL modifica-
tion mediated by hypochlorous acid, a myeloperoxidase 
product[106]. Moreover, rodent and limited clinical studies 
suggest that taurine supplementation has the potential to 
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Figure 2  Nutraceutical/drug regulation of foam cell cholesterol transport and plaque stability. LXR: Liver X receptors; HO-1: Heme oxygenase-1; NF-kappaB: 
Nuclear factor-kappaB; ABCA1: Adenosine triphosphate binding cassette transporter A1; ABCG1: Adenosine triphosphate binding cassette transporter G1; SRB-1: 
Scavenger receptor class B member 1; NADPH oxidase:: Nicotinamide adenine dinucleotide phosphate oxidase:; EGCG: Epigallocatechin gallate; HO-1: Heme oxy-
genase-1; PhyCB: Phycocyanobilin.
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paB activity, which promotes the adhesion of  monocytes 
to the endothelial surface and their subsequent transmi-
gration (Figure 2)[135-137]. 

In summation-whereas current pharmaceutical strate-
gies for increasing HDL cholesterol appear to have little 
clinical utility (aside from those which concurrently lower 
LDL levels), other clinically feasible measures which 
directly influence intimal macrophages have the poten-
tial to promote reverse cholesterol transport, and hence 
achieve the primary purpose intended for HDL elevation. 
These measures include administration of  phase 2-induc-
ing nutraceuticals (such as lipoic acid, green tea catechins, 
and cruciferous isothiocyanates), spirulina or PhyCB, 
salsalate, taurine, and berberine. These effects are medi-
ated primarily by inhibition of  NF-kappaB activation or 
by LXRalpha agonism. Moreover, most of  these agents 
might be expected to impact foam cell function in other 
complementary ways that would be clinically useful-
suppressing macrophage uptake of  modified LDL, and 
inhibiting macrophage production of  inflammatory cyto-
kines and matrix metalloproteinases that could destabilize 
plaque. And most of  them, via direct anti-inflammatory 
effects on vascular endothelium, should also impede 
foam cell formation by suppressing transendothelial 
migration of  monocytes. These agents evidently merit 
further evaluation, both in animal models and ultimately 
clinical trials, as measures for preventing, reversing, and 
stabilizing arterial plaque. And the fact that most of  these 
agents are nutraceuticals suggests that they might be es-
pecially feasible for use in primary prevention.
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