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Abstract

Recent genome wide association studies (GWAS) have implicated bridging integrator 1 (BIN1) as

a late-onset Alzheimer’s disease (AD) susceptibility gene. There are at least 15 different known

isoforms of BIN1, with many being expressed in the brain including the longest isoform (iso1),

which is brain-specific and localizes to axon initial segments and nodes of Ranvier. It is currently

unknown what role BIN1 plays in AD. We analyzed BIN1 protein expression from a large number

(N = 71) of AD cases and controls from five different brain regions [hippocampus, inferior

parietal (IP) cortex, inferior temporal (IT) cortex, frontal cortex (BA9), and superior and middle

temporal gyri (SMTG)]. We found that the amount of the largest isoform of BIN1 was

significantly reduced in the AD brain compared to age-matched controls, and smaller BIN1

isoforms were significantly increased. Further, BIN1 was significantly correlated with the amount

of neurofibrillary tangle (NFT) pathology but not with either diffuse or neuritic plaques, or with

the amount of amyloid-β peptide. BIN1 is known to be abnormally expressed in another human

disease, myotonic dystrophy, which also features prominent NFT pathology. These data suggest

that BIN1 is likely involved in AD as a modulator of NFT pathology, and that this role may extend

to other human diseases that feature tau pathology.
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Introduction

Alzheimer’s disease (AD), the most common form of late life dementia, is characterized by

two hallmark neuropathological lesions: senile plaques, composed primarily of the amyloid-

β (Aβ) peptide, and neurofibrillary tangles (NFT), containing hyperphosphorylated tau

protein [1]. Numerous mutations in the amyloid precursor protein (APP) gene and the

presenilin 1 and 2 (PSEN1 and PSEN2, respectively) genes, which are involved in Aβ

generation, are responsible for familial, early-onset AD. However, familial AD cases are

rare, comprising only a small percentage of the total number. The cause of the majority of

sporadic, late-onset AD cases is not known, and large scale efforts have been undertaken to

discover additional genetic factors that might influence disease risk. The best understood

genetic risk factor for AD is the apolipoprotein E (APOE) gene, although recent genome

wide association studies (GWAS) have identified several additional genes that may

contribute [2-4].

Bridging Integrator 1 (BIN1; sometimes called amphiphysin 2, or AMPH2) was originally

discovered as a MYC-interacting protein and possible tumor suppressor [5]. Functional

deletions of the BIN1 gene are found in many types of cancers including primary breast

carcinomas [5] and metastatic prostate cancers [6]. There are at least 15 different isoforms of

BIN1, with many being expressed in the brain including the longest isoform (iso1), which is

brain-specific and localizes to axon initial segments and nodes of Ranvier [7]. In the central

nervous system, BIN1 interacts with proteins such as clatherin, dynamin, amphiphysin 1,

synaptojanin, and endophilin, and may function as an adapter protein that regulates synaptic

vesicle endocytosis and cytoskeletal dynamics [8, 9]. The largest isoform encodes a

predicted 95 kDa protein that is believed to be expressed exclusively in neurons. A number

of smaller ubiquitously expressed BIN1 isoforms of unknown function are also present in

the brain, indicating various roles for the protein depending on splicing patterns.

Recently, BIN1 has been implicated as the second most important late-onset Alzheimer’s

disease susceptibility genetic locus after APOE [2-4]. The exact role that BIN1 plays in AD

is currently unknown. However, two recent papers have provided some useful insights,

indicating that BIN1 has little impact on APP processing or Aβ production [10], but may be

a direct modulator of tau pathology [11]. Interestingly, BIN1 is also abnormally expressed in

both forms of myotonic dystrophy, types I (DM1) and II (DM2), and is related to the muscle

weakness phenotype [12]. Tau [13-15] and NFT pathology [16, 17] are also prominent

features of both forms of myotonic dystrophy, as is neurodegeneration [18]. The expression

of BIN1 in healthy and diseased brain has not been examined in much detail. In this brief

report, we present evidence that the expression of BIN1 isoforms are altered in Alzheimer’s

disease brain in multiple brain regions, and that this is related to NFT pathology.

Interestingly, in a small preliminary study, we also discovered that the ZNF9 protein (also

called the cellular nucleic acid binding protein, or CNBP [19]) was also correlated with

BIN1 expression in the human brain. An expansion in the first intron of ZNF9 causes DM2.

These data suggest that BIN1 is likely involved in AD as a modulator of tangle pathology,

and that this role may extend to other human diseases that feature tau pathology.
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Materials and Methods

Human Subjects and Tissue

Human tissue collection and handling conformed to Public Health Service (PHS) and

University of Kentucky Institutional Review Board (IRB) guidelines, including written

informed consent from all participants. Study of pathology specimens are covered under

exemption four of the PHS guidelines and do not require a specific protocol number; all

samples were coded and anonymized. Samples (N = 71) were obtained from the low post-

mortem interval (PMI) tissue repository of the Alzheimer’s Disease Center at the University

of Kentucky, Sanders-Brown Center on Aging. Individual case characteristics and their

detailed neuropathology (including how tangles are counted) have been extensively

documented elsewhere [20-22], and this set comprised both controls [n = 19, 5 M / 14 F;

Age (years), 85.2 ± 11.3; PMI (hours), 3.1 ± 0.7; Brain Weight (g), 1136 ± 149; Braak

(stage), 1.1 ± 1.0] and probable AD cases [n = 52, 19 M / 33 F; Age (years), 85.9 ± 7.8; PMI

(hours), 2.9 ± 0.9; Brain Weight (g), 1120 ± 114; Braak (stage), 4.6 ± 1.8]. A smaller set (N

= 6) was obtained from the University of Maryland Brain and Tissue Bank, including three

cases of myotonic dystrophy (2 × DM1, 1 × DM2). One AD case used for

immunohistochemical characterization studies was provided by the University of California

Irvine Alzheimer’s Disease Research Center. Details of the tissue collection procedures and

consensus diagnosis have been described previously [20-23]. Overall, the cases were

broadly similar for age (83.4 ± 11.8 years), and post-mortem interval (3.7 ± 3.2 hours).

Frozen samples were homogenized using a PowerMax Advanced Homogenizing System

200 (VWR, Batavia, IL) in five volumes (wet w/v) of phosphate-buffered saline

supplemented with a complete protease inhibitor cocktail with EDTA (PIC; Amresco, Solon,

OH). Whole tissue homogenate was centrifuged at 2000 × g for 15 minutes to pellet

insoluble material, followed by an additional spin at 20,800 × g for 30 minutes at 4 °C.

Pelleted material was sequentially extracted in an equal volume of 2% SDS (w/v, with PIC)

followed by 70% (v/v) formic acid (FA). In each case, the pellet was extracted by brief

sonication (10 × 0.5-second microtip pulses at 20% power (100 W); Fisher sonic

dismembrator, model 500, Fisher Scientific, Pittsburgh, PA) followed by centrifugation to

pellet insoluble material (detergent-soluble fraction: 20,800 × g for 30 minutes at 14 °C; FA

fraction: 20,800 × g for 1 hour at 4 °C). Protein content was determined by bicinchoninic

acid (BCA) assay (Pierce Biotechnology, Rockford, IL). Neuropathologic data (neuritic

plaques, NP; diffuse plaques, DP; neurofibrillary tangles, NFT) were provided by the

Sanders-Brown COA neuropathology core. Amyloid-β peptide (for total Aβ, Aβ40, and

Aβ42) immunoassay procedures and antibodies have been recently described elsewhere

[20-22].

Tissue Culture

Human neuroglioma cells (H4; ATCC, Manassas, VA) were cultured in Opti-MEM

supplemented with 10% FBS and 1% Pen-Strep at 37°C under 5% CO2. Cells were

transfected with FuGene® HD transfection reagent (Promega, Madison, WI) and harvested

24-72 hours later. Mammalian expression vectors used were pcDNA3-BIN1(-10) (iso9; gift

from Dr. George Prendergast) and pCMV6-XL5 (BIN1-1 [iso1] and empty vector; Origene,
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Rockville, MD). Iso1 and iso9 were the principal isoforms identified in the human brain

(Figure 1), based on their relative molecular weights. Cells were lysed in 1X RIPA buffer

(50 mM Tris, 150 mM NaCl, 0.1% SDS, 1.0% Triton X-100, and 0.5% sodium

deoxycholate) with PIC.

SDS-PAGE and Immunoblots

Total protein was measured by BCA assay (Pierce). Equal amounts of protein were

separated using a range of SDS-PAGE Criterion (Bio-Rad, Hercules, CA) or Nu-PAGE

(Invitrogen, Grand Island, NY) gels, electrically transferred to 0.45 μM nitrocellulose

membranes, and blocked overnight with a solution of 1% bovine serum albumin

(Calbiochem / EMD Millipore, Billerica, MA) and 2% Block Ace (AbD Serotec, Raleigh,

NC) in PBS. Some human samples (PBS fraction) were directly spotted onto membranes

using a MINIFOLD I spot blot system (Whatman, Piscataway, NJ). Commercially available

primary antibodies used were rabbit monoclonal anti-BIN1 (Epitomics, Burlingame, CA),

mouse monoclonal anti-BIN1 (99D; Sigma-Aldrich, St. Louis, MO), rabbit polyclonal anti-

GAPDH (Abcam, Cambridge, MA; this antibody was HRP-conjugated and did not require a

secondary antibody for detection), mouse monoclonal anti-tau (Tau46; Cell Signaling,

Boston, MA), rabbit monoclonal anti-BACE1 (5606, Cell Signaling), rabbit monoclonal

anti-BACE1 (D10E5; Cell Signaling), and mouse monoclonal anti-β-Actin (AC15; Sigma-

Aldrich). We have previously reported the specificity of our in-house rabbit anti-ZNF9

antibody [24]. HRP-conjugated secondary antibodies and enhanced chemiluminescent

detection reagents were used (Pierce), and densitometry data were obtained using Scion

Image.

Immunohistochemistry

For histology experiments, human frontal cortex tissue of an individual diagnosed with

Alzheimer’s disease was used (provided by the UC Irvine ADRC). Sections were cut at 50

μm and kept in 1X PBS with 0.02% sodium azide for long-term storage at 4°C.

Immunohistochemical methods have been published previously [25] but briefly, sections

were double-stained for BIN1 (99D; 1:3000) and PHF-1 (pSer396/Ser404; kindly provided

by Dr. Peter Davies, 1:1000); both antibodies were diluted in TrisB (0.1 M Tris, 0.85%

NaCl, 0.1% Triton X-100, 2.0% bovine serum albumin, pH 7.4 – 7.6). Following an

overnight incubation at room temperature in the first primary antibody (PHF-1), the tissue

was incubated in biotinylated secondary antibody (Vector Laboratories, Burlingame, CA).

After several PBS washes, sections were incubated for one hour in an avidin-biotin complex

(ABC; Vector Laboratories) and detection was performed using 3′-diaminobenzidine and

hydrogen peroxide (DAB; Vector Labs). Since both antibodies used were from a mouse

host, tissue was incubated in 37% formaldehyde at 37°C between stains. Following the

overnight incubation at room temperature in the second primary antibody (BIN1), the tissue

underwent the same protocol for both biotinylated secondary antibody and ABC (Vector

Labs). However, detection was instead performed using SG substrate (Vector Labs).

Data Analysis

Data were analyzed using SPSS® (SPSS Inc., Chicago, IL). Simple group comparisons were

made using either Student’s t-test, or the Mann Whitney U-test, where appropriate. Group
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data were analyzed by a general linear model (GLM) analysis of variance, covarying for age

and postmortem interval when necessary, and post hoc comparisons were performed using

Dunnett’s or Tukey’s test. Correlations were determined using either Pearson’s r or

Spearman’s π, where appropriate. For multiple comparisons, inflation of type I error rate

was controlled by the Holm-Bonferroni method [26].

Results

Although the overall amount of BIN1 showed a modest trend (p<0.10) towards increased

levels in the AD brain across all regions analyzed, there were striking differences in the two

most prominent bands, iso1 and iso9 (Figure 2). There was a consistent increase in the

amount of the smaller iso9 (F[1,40] = 7.12, p < 0.02), and a corresponding decrease in the

amount of the larger iso1 (F[1,40] = 6.25, p < 0.02). Similar results were obtained using a

different antibody, Epitomics anti-BIN1 (Figure 3), although this antibody did not detect the

larger iso1 band. Using this second antibody, we performed a densitometric analysis of all

cases and brain regions, and found a similar increase in BIN1 in the AD cases (F[1,189] =

16.71, p < 0.0001). There was also a significant negative correlation between the isoform 1

and 9 bands within subjects (99D; π = −0.271, p < 0.04), and between these bands using

different antibodies (99D and the Epitomics anti-BIN1 antibody; π = −0.382, p < 0.005)(not

shown). These data suggest that there is a significant shift of BIN1 expression in the AD

brain towards smaller isoforms of the protein.

We next wanted to examine the relationship between BIN1 expression and standard indices

of AD neuropathology. The amount of BIN1 (as determined by Epitomics anti-BIN1 spot

blot) was not significantly correlated with either Aβ40 or Aβ42 in any extractable fraction

(PBS, SDS, or FA; mean p value = 0.57; not shown). Consistent with these data, BIN1 was

also not correlated with either diffuse (π = −0.084, p < 0.4) or neuritic (π = −0.077, p < 0.4)

plaques. However, the smaller BIN1 isoform (iso9) was significantly and positively

correlated with the number of NFTs (π = 0.393, p < 0.0001; R2 = 0.10, p < 0.0002; Figure

3C). BIN1 was ubiquitously distributed throughout the brain, and was strongly colocalized

with PHF1 positive neurons, as expected based on the NFT correlation (Supplementary

Figure 1).

BIN1 is known to be abnormally expressed in another human disease, myotonic dystrophy

(DM), which also features prominent NFT pathology [12-15]. We obtained a small number

of cases of DM (types 1 and 2) and performed a preliminary study (Supplementary Figure 2)

to determine if the relationship between NFTs and BIN1 was specific to AD or a more

general phenomenon. As expected, we found differences in tau expression in samples of

frontal cortex from DM brains (obtained from the NICHD Brain and Tissue Bank for

Developmental Disorders at the University of Maryland). BIN1 expression trended towards

an increase, but in these cases this was the higher molecular weight iso1. Interestingly, we

also found an increase in the amount of the β-secretase enzyme BACE1, which may show

general increases in neurodegenerative disease [20]. Expression of the cellular nucleic acid

binding protein (CNBP), encoded by the ZNF9 gene, was also increased. A noncoding RNA

expansion in this gene is known to cause type II myotonic dystrophy [27], but expression

may be abnormal in both DM1 and DM2 [28], suggesting that it plays a more general role in
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the disease process. The amount of BIN1 was highly correlated with both tau (R2 = 0.69, p <

0.05) and CNBP (R2 = 0.53, p = 0.05) in this set; CNBP was also strongly correlated with

BACE1 expression (R2 = 0.71, p < 0.02) (not shown). CNBP may have a broad role in

protein translation [24, 29-31], leading us to look at the relationship between this protein and

BIN1 in a subset of our AD cases (Supplementary Figure 2C). We found that CNBP

expression was highly correlated with BIN1 in the AD brain (R2 = 0.65, p < 0.001).

Discussion

Recent interest in BIN1 has risen as a consequence of large, genome wide association

studies linking the BIN1 gene to the risk of late-onset AD [2-4]. Although we currently

know little about the biological mechanism that underlies the linkage, recent studies have

connected BIN1 with the modulation of tau function [11] and with the progression of AD

[32]. A recent study found a modest increase in plasma BIN1 in AD cases versus controls,

and a significant decrease with disease severity, as measured by a negative correlation with

MMSE scores [33]. However, there appears to be no association between tau-related CSF

biomarkers and several known single nucleotide polymorphisms in BIN1 [34], and Tg2576

mice show no significant change in BIN1 protein expression [35]. Our data confirm that a

connection with tau exists, and suggest that BIN1 is a likely mediator of tau expression and

tangle pathology in the AD brain. We also demonstrated a tentative connection between tau

and BIN1 expression in myotonic dystrophy, a neuromuscular disorder that also features

NFT pathology [16, 17], and that this connection may be mediated by a DM-related protein,

CNBP. How BIN1 may directly affect tau expression and, ultimately, NFT formation is

unknown. The major biological role of BIN1 is in the process of receptor mediated

endocytosis [36, 37], and it is possible that dysfunction in this system is responsible for the

observed effects on tau. Future studies, especially in cell culture and animal models which

coexpress BIN1 and tau, will be required to elucidate this interaction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of BIN1 Isoforms
(A) The largest isoform (iso1) is found in neurons and nerve terminals, whereas the smaller

isoform (iso9) is relatively generic, and is expressed ubiquitously. The major differences

between these two forms are insertions encoded by variants of exons 6 and 12. (B)

Comparison with H4 cells overexpressing different isoforms of BIN1 indicated that antibody

99D detects the largest full-length isoform 1 (~80 kDa; iso1) in human brain along with at

least two smaller isoforms (~60kDa), one of which is likely isoform 9 (iso9; V = empty

vector), based on migration at the similar relative molecular weights.
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Figure 2. Small M.W. Isoforms of BIN1 Increase in Alzheimer’s Disease Brain
(A) Representative Western blot showing that smaller BIN1 isoforms (~40-60 kDa; antibody

99D) were increased in AD cases compared to controls (2% SDS extracts from frontal

cortex, area BA9, are shown); GAPDH levels are shown to confirm equal gel loading. (B)

The larger BIN1 isoform (iso1) was significantly decreased in AD cases across brain regions

analyzed individually, and when all regions were combined and treated as a single variable

in the analysis. (C) In contrast, the smallest isoform (iso9) showed a corresponding increase.

Mann-Whitney U-Test; * = p<0.05, ** = p<0.01; error bars represent the standard error of

the mean (s.e.m.).
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Figure 3. Confirmation of Increase in Smaller Isoforms of BIN1 and Relationship with AD
Neuropathology
(A) Representative Western blot using a different antibody (Epitomics anti-BIN1; 2% SDS

extracts from frontal cortex, area BA9, are shown); GAPDH levels are shown to confirm

equal gel loading. Interestingly, the Epitomics antibody was considerably less effective at

detecting the higher molecular weight isoform of BIN1 (iso1), indicating that the epitope for

this antibody may be modified in the human brain. (B) Densitometric analysis confirms that

the smaller isoforms of BIN1 were increased across brain regions in the AD cases using this

antibody (similar to Figure 2, above; the difference in the SMTG was also significant,

p<0.05; not shown). (C) The smaller BIN1 isoform was significantly correlated with the

number of NFTs in the brain over a large number of cases (sections were taken from the

same brain region as the tissue sample used for Western blotting). Mann-Whitney U-Test; *
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= p<0.05, ** = p<0.01, *** = p < 0.001; error bars represent the standard error of the mean

(s.e.m.).
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