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Abstract

With advent of several treatment options in multiple myeloma, a selection of effective regimen has 

become an important issue. Use of GEP is considered an important tool in predicting outcome; 

however, it is unclear whether such genomic analysis alone can adequately predict therapeutic 

response. We evaluated ability of GEP to predict complete response in MM. GEP from pre-

treatment MM cells from 136 uniformly treated MM patients with response data on an IFM, 

France led study were analyzed. To evaluate variability in predictive power due to microarray 

platform or treatment types, additional datasets from three different studies (n= 511) were 

analyzed using same methods. We used several machine learning methods to derive a prediction 

model using training and test subsets of the original four datasets. Among all methods employed 

for GEP-based CR predictive capability, we got accuracy range of 56% to 78% in test datasets and 

no significant difference with regard to GEP platforms, treatment regimens or in newly-diagnosed 

or relapsed patients. Importantly, permuted p-value showed no statistically significant CR 

predictive information in GEP data. This analysis suggests that GEP-based signature has limited 

power to predict CR in MM, highlighting the need to develop comprehensive predictive model 

using integrated genomics approach.
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Introduction

With the introduction of novel agents, there has been significant improvement in outcome in 

multiple myeloma (MM).1–5 Although median survival has improved from 3 years to over 7 

years, the clinical course is highly variable and unpredictable. Initially high-dose therapy6, 7 

and subsequently novel agents8–1112–14 have contributed to improvement in both response 

and survival15; however, MM remains uniformly fatal.3, 4, 14, 16, 17 Each of these treatments 

individually and in combination is effective in only a portion of patients, and currently 

predictability of response to therapy remains unreliable. A number of disease, host and 

therapy-specific features including age, performance status, tumor burden, tumor 

proliferative index, serum β-2 microglobulin, albumin, creatinine, LDH, International 

Staging System (ISS), and cytogenetic abnormalities have been reported to provide 

prognostic information.16 Although this and other systems help with prognosis for survival, 

they do not reliably predict probability of response and as of now, there is no pre-treatment 

response predictive biomarker to tailor patient-specific therapy.18

Moreover, with each new therapy attempted, patients often experience complications and 

toxicities requiring specialized intervention. With the improved understanding of 

oncogenomics in MM, a number of targeted agents have been investigated19, 20; three such 

novel agents, thalidomide, bortezomib and lenalidomide have already received FDA 

approval for use in MM, making selection of effective agents more difficult as well as 

economically taxing. As some of these novel agents were identified based on molecular 

identification of targets and the combinations were formulated based upon perturbation of 

expression profile by these agents, it is anticipated that integrative genomics will help 

provide more precise prognostic and predictive tools.

Gene expression profiling (GEP) is being widely used for tumor classification21–25 and 

survival risk prediction.26–31 However, it remains unclear whether the strategies used to 

define such prognostic genomic classifiers can be used to develop classifiers that predict 

response to specific therapy.32, 33 Efforts assessing potential use of GEP-based signatures in 

therapeutic decision making in MM have been limited. Mulligan et al. have studied 

pharmacogenomics in 169 relapsed multiple myeloma patients samples receiving 

bortezomib32 and another study by Kumar et al34 have attempted response prediction to 

thalidomide - dexamethasone combination using GEP based signature in newly-diagnosed 

patients. However, results from these studies are limited either by small sample size34 or 

response signature derived from GEP of relapsed and not from newly diagnosed patients 

with MM.32 Here, we have analyzed GEP data from one large study of 136 newly diagnosed 

patients with MM through a rigorous statistical approach, and have independently 

investigated 3 additional studies of total 349 newly diagnosed, and 162 relapsed cases to 

determine ability and significance of gene expression signature in predicting complete 

response (CR) in patients with MM.
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Patients and Methods

Datasets for Response Prediction

Gene expression profiles (n=647) from four independent clinical trials were analyzed to 

predict treatment response. Details about these studies are listed in Table 1. HOVON35 and 

Mulligan et al.32 datasets are publically available, while IFM datasets are now available at 

NCBI GEO website with accession ID, GSE39754 (IFM I) and GSE55145(IFM II). Patients 

were newly diagnosed and had not received any prior therapy except those in APEX/

SUMMIT trials from Mulligan et al datasets32 who were relapsed/refractory and had 

received 1–3 prior therapies. In two of four datasets [IFM I and HOVON], patients received 

three-drug regimen (VAD/PAD) followed by autologous stem cell transplantation (ASCT), 

and patients in the other two datasets received bortezomib with dexamethsone [IFM II and 

Mulligan et al.] prior to response evaluation using uniform European Group for Bone 

Marrow Transplantation criteria (EBMT).36

Data Preprocessing

GEP from samples within all four datasets was obtained on Affymetrix microarray platform. 

The IFM I and II datasets were obtained using Affymetrix Exon 1.0 ST gene array, while 

HOVON and Mulligan et al datasets were obtained using HG_U133_Plus_2 gene array and 

gene-level signal intensities were used for subsequent analysis. Pre-processing and 

normalization of datasets was carried out using dChip and R package - aroma.affymetrix.

Class Prediction Methods

Class prediction analysis was carried out in each of four datasets using a series of steps, as 

summarized in Figure 1. Specifically, each dataset was split into training and test datasets, 

with 2/3 samples in training dataset. Various feature selection approaches were used to 

eliminate redundant and non-varying gene probe sets, including gene filtering by variance, 

variable selection using LASSO and Ridge regression, among others. [Suppl. Table 1s] 

Patients having CR were labeled as positive class for further analysis. Then, classifier 

models were built and trained within a training set based on gene expression pattern of 

selected genes (features). Class prediction methods from six major groups of machine 

learning techniques were used in building a classifier model, including decision tree, support 

vector machines (SVM), prediction analysis of microarray (PAM), K-nearest neighbors 

(KNN), Bayesian additive regression trees (BART), and artificial neural networks (ANN). 

[Suppl. Table 1s] Several classifier models were built using different feature sets and tuning 

of method-specific criteria to minimize misclassification error. Also, response labels were 

randomly permuted for 1000 times to build a robust model. A final classifier model was 

obtained following leave-one-out cross-validation (LOOCV) and/or K-fold cross-validation. 

The entire model-building process, including gene selection step, was repeated during each 

cross-validation cycle. Finally, the best-performing cross-validated model was applied to the 

test dataset for an unbiased assessment of response prediction, and model performance was 

evaluated by measuring model-specific sensitivity, specificity, positive and negative 

predictive value (PPV and NPV), and overall model accuracy. Additionally, receiving-

operating characteristic (ROC) curves were drawn and compared among different class 

prediction methods. Machine learning packages in R language and BRB-ArrayTools 
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developed by Dr. Richard Simon and BRB-ArrayTools Development Team were used for 

the entire analysis.37 Specific details for each of classification methods were previously 

described.38

Results

We analyzed the ability of gene expression profile to predict response to therapy in multiple 

myeloma. We focused on the ability to predict complete response (CR), as the majority of 

patients (>90%) receiving newer therapeutic modalities and/or high-dose therapy and 

transplant (HDT) achieve at least a partial response (PR). Moreover, attaining CR is critical 

to achieving a curative outcome. With this consideration in mind, we first utilized the gene 

expression signature as a tool to predict CR. Our primary dataset (IFM I) included 136 

patients with MM receiving standard dose induction followed by HDT. Forty-four (32%) 

patients achieved CR in this group. Using random 2:1 sampling division, the training set of 

91 patients included 30 achieving CR and the test set of the remaining 45 patients included 

14 attaining CR. We applied SVM & KNN class prediction approach to the training set, as 

detailed in Methods and Figure 1, and observed an overall CR prediction accuracy of 60% 

with 24 % sensitivity, 77% specificity, 33% PPV, and 69% NPV. Applying the trained 

model to the test dataset gave accuracy of 62% with 27% sensitivity, 80% specificity, 40% 

PPV, and 69% NPV. To improve upon these results and to overcome any technical and/or 

statistical issues that may affect predictability, we reanalyzed the data using a number of 

different supervised machine learning methods. As seen in Figure 2, none of the analytical 

methods used significantly improved overall predictive accuracy, which remained between 

56 – 78 % in both training and test sets.

Different microarray platforms do not improve CR prediction accuracy

To evaluate any confounding effect of microarray platforms used on response predictability, 

we analyzed an independent dataset generated using the Affymetrix HG_U133_Plus_2 

platform from 282 patients (HOVON trial) treated with a standard-dose induction regimen 

followed by HDT. Actual CR rate was 27% (76/282) in this trial. All patients within IFM I 

and HOVON datasets received uniform treatment, but their MM cell expression profile was 

performed using different microarray platforms, namely, Affymetrix Exon 1.0 ST and 

Affymetrix HG_U133_Plus_2 arrays, respectively. We used an identical set of prediction 

methods as was used for IFM I dataset described above. As noted in table 2, the maximal 

achievable accuracy was 78% in the HOVON test set.

CR prediction accuracy does not improve even if patient selection includes extremes of 
responses

Next, we evaluated whether gene expression signature using patients achieving CR/nCR 

versus those with no response (NR) or progressive disease(PD) could improve predictive 

power. In this case, no patients with PR or MR were included in the analysis. The IFM II 

dataset had 67 patients, 34 with CR/nCR and 33 with NR/PD. Using K-nearest neighbor 

(K=1) method, we reached maximum sensitivity of 72% with overall accuracy of 65% in the 

training data set. However, the same 38-gene signature failed to enrich CR prediction in the 
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test dataset (see below), with reduced sensitivity and accuracy of 67% and 58%, 

respectively.

To evaluate if early-onset CR has better predictability, we performed CR modeling based on 

time-points when CR was achieved. Specifically, HOVON study determined CR status at 

the end of 3rd and 8th cycle of induction therapy (early-onset CR) and at the end of protocol 

(CR20). Also, we evaluated whether CR can be better predicted in those who have sustained 

CR, This group was classified under sustained CR group. Using similar analysis as above 

we did not observe significant improvement in CR prediction in these newly regrouped 

subsets. [Suppl. Table 2s]. Furthermore, we assessed performance of CR prediction 

separately in high and low GEP risk groups as defined by proliferation index (PI) and 

cytogenetic abnormalities.39–42 In these groups also, our results failed to show significant 

improvement in CR prediction. [Suppl. File 4 - Appendix]

Finally, we evaluated whether predictive accuracy changes if patients received therapy in the 

relapsed setting. We analyzed the Mulligan et al dataset using similar methods as above, 

except that we used PR as a response endpoint since not many CRs were achieved in this 

relapsed patient population. We achieved an accuracy of 44% in test set. Using all the 

additional methods described above, we did not improve upon these results.

Permutation to assess the prediction power

Finally, we compared the actual CR achieved by the patients (real CR) versus the enriched 

CR or positive predictive value from the classifier model giving maximum accuracy in our 

test set. As seen in table 3, we do not observe significant enrichment of CR compared to 

actual CR rate. Moreover, we performed a response permutation by randomly assigning the 

response labels of patients and analyzing the ability to predict. We performed 1,000 such 

permutations to predict CR. The permuted p-value is the proportion of permutations that 

give predictive ability higher than the one obtained using the actual response labels. As seen 

in table 3, none of the data sets have permuted p-value of < 0.05, suggesting that the data 

from gene expression profile is not adequately informative to predict CR outcome.

Discussion

In this study, we show that the ability of gene expression profiling (GEP) to predict CR in 

patients with MM is very limited. We have used uniformly treated patient population, and 

treatment responses were uniformly measured across all four studies using EBMT Blade 

Criteria.36 In our primary dataset, newly-diagnosed patients with MM in IFM I, we found 

the best accuracy of predicting CR at less than 67% in the test dataset. To confirm our initial 

observation, we have analyzed 3 different datasets using 2 different microarray platforms, as 

well as different treatment protocols. Among them, the Mulligan et al. study involved 

patients with relapsed MM who were refractory to 1–3 previous treatments. We used a set of 

common feature selection and supervised machine learning methods to build a robust 

response prediction signature in training set for each study, and evaluated the performance 

in a test dataset from the same study. In this thorough analysis, we have performed class 

prediction analysis within each of the four studies to define independent classifier gene 

signatures to ensure the best predictability within each dataset, and to avoid batch effects 
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when merging different datasets. Despite these efforts, as seen in Figure 2 and Table 2, our 

response predictability remains low in all the analyses.

To uncover potential information that may reside in the expression data that may allow 

response predication, we performed permuted prediction analysis. In this approach, we 

randomly shuffled patients’ response labels and analyzed the ability to predict CR. If the 

data has some predictive power, then the prediction performance achieved with such random 

assignment should have significantly lower ability to predict CR than the performance 

achieved with the real response labels. Following 1,000 such permutations, as seen in Table 

3, we observed predictive p-value to be greater than 0.05 in all the four data sets. This 

indicated limited inherent information in the expression profiles to predict CR.

Our study clearly shows that GEP alone has inherent limitations in CR-prediction in MM. 

Despite using six major classification methods with various feature selection procedures in 

building more than 240 models [Figure 2 and Suppl. Figure 2s], the overall prediction 

accuracy remained low. Furthermore, our analysis reveals inadequate response prediction 

using GEP regardless of the treatment type used, i.e., patients in IFM I and HOVON trials 

received VAD followed by ASCT therapy, while patients in IFM II and Mulligan et al. 

studies received bortezomib therapy. It is possible that GEP of pre and post-treatment may 

help in feature selection by identifying treatment-specific genes and thereby improving 

prediction power. However, so far such datasets are not available in public domain. Also, we 

do not observe significant improvement in CR prediction by stratifying data based on time 

of achieving CR [Suppl. Table 2s] and GEP based risk-status [Suppl. File 4 - Appenidx].

Among the number of classification methods and data sets used, the highest sensitivity was 

67% in IFM II dataset, representing accurate prediction of CR amongst those achieving real 

CR. False negative rate (1-specificity) remained between 36% – 80%, which is the 

percentage of patients misclassified as non-CR who might have responded to the treatment. 

Finally, the sensitivity and overall accuracy dropped significantly below 60% when 

classifier gene signatures from one dataset was used to predict CR in a different dataset. 

Among various methods from six major classification groups we used, SVM and KNN 

performed better than the other methods. [Figure 2]

Based on our analysis, we recognize that the expression profile alone has limited ability in 

predicting treatment response, especially when actual response rate is high, i.e., prediction 

using expression profile fails to significantly enrich actual response patients using the data 

available from the published clinical study. [Table 3] Although we do report sensitivity of 

more than 70% in some prediction models (IFM II and Mulligan et al.), these values are 

associated with poor accuracy (65–69%); and importantly, the signature trained from the 

training dataset performs poorly in the validation dataset of the same study. Previous efforts 

at GEP-based response prediction in MM have met with very limited success. Mulligan et 

al.32 showed overall 71% accuracy in predicting bortezomib response using 169 patients 

with relapsed MM. A report from Mayo clinic researchers showed inadequate prediction 

power in a small number of patients receiving thalidomide-dexamethasone combination 

therapy34. Such limited ability of expression profiling to predict response has also been 

described in breast cancer, leukemia, and other cancer studies.33, 43, 44 For example, two of 
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seven distant recurrence risk-prediction signatures in breast cancer have recently been 

commercialized, with test accuracy of more than 80%; however, these signatures are 

prognostic rather than true predictors of response. Also, risk prediction is restricted to 

particular subtypes of breast cancer (ER +, Node −). Similarly, a number of risk signatures 

have been described in myeloma, but they are developed for event-free or overall survival, 

not correlated with predicting response to initial therapy.27, 45, 46 In the era of personalized 

medicine, a response predictive signature will be required to select correct combinations of 

agents that provide best response with reduced toxicity.

What are the possible biological reasons for not being able to predict response using a large 

number of gene expression datasets? This analysis highlights the limitation of gene 

expression by itself to influence the eventual cellular behavior. The transcriptome and 

proteome modifiers play a significant role in cell growth and survival, especially following 

therapy.47, 48 It is well described that alternate splicing and miRNA affect the eventual 

translation of the expressed gene, and post-translational modifications further control 

cellular effects of the transcribed proteins.49–51 Variability in single nucleotide 

polymorphism also affects response to therapy.52, 53 Finally, intra-tumoral and inter-tumoral 

genetic heterogeneity54, 55 can significantly influence both, individualized response to 

therapy as well as a major analytical issue for development of GEP-based response 

signatures.

While the strength of our analysis was in having larger patient cohorts from comparable 

datasets and use of rigorous and comprehensive statistical classification methods, we 

acknowledge potential limitations in response prediction imposed by two fundamental 

statistical challenges in high-dimensional data analysis, e.g., curse of dimensionality (large p 

for genes) and curse of sparsity (small n for sample size).44, 56, 57 Nonetheless, we addressed 

these limits to the best of current knowledge and yet fail to significantly improve response 

prediction. Also, during the time of this analysis, we have not been able to assess some of 

GEP datasets with survival information but without response information, which is required 

for our analysis.

In conclusion, we report that GEP based signature have very limited ability to predict CR in 

MM which is in accordance with recent consensus report on risk stratification.40 This 

analysis highlights the need to develop more comprehensive signatures that can incorporate 

various genomic elements in final predictive models. Failure in predicting response as an 

end-point (binary) also warrants need to concurrently measure durability of response 

(continuous variable), which may improve prediction performance similar to available 

survival and prognostic GEP based signatures. Finally, integration of next generation 

sequencing data with available gene expression and miRNA profiling information, along 

with GEP, may allow development of better predictive models for potential application in 

clinics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow-chart showing major steps to develop response (CR) prediction model.
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Figure 2. Summary of CR prediction performance
Performance of various class prediction methods in predicting CR in the validation dataset 

using IFM I dataset (a) and HOVON dataset (b). CCP: Compound covariate predictor; LDA: 

Linear discriminant analysis; KNN: K-nearest neighbor; NC: Nearest centroid; SVM: 

Support vector machine.
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Table 1

Characteristics and details of studies used for gene expression profile-based response prediction.

IFM I IFM II HOVON Mulligan et al.

Study IFM 2005# IFM 2005# HOVON 65
MM / GMMG
HD4$

APEX /
SUMMIT

Number of Samples 136 67 282 162

Platform Affymetrix Exon 1.0 
ST array

Affymetrix Exon 1.0 ST 
array

Affymetrix U133 Plus 2.0 
array

Affymetrix U133 Plus 2.0 
array

Patient Population Newly-diagnosed Newly-diagnosed Newly-diagnosed Relapsed

Treatment Protocol VAD, ASCT Bortezomib, ASCT VAD/PAD, ASCT Bortezomib

Time of Response 
Measurement

Post-transplant Post-Induction Post-transplant Post Salvage therapy

Complete response 44 (32%) 24 (36 % %) 76 (27 %) 73 (43%)∞

#
: NCBI GEO accession IDs: IFM I: GSE39754, IFM II: GSE55145.

$
: Broyl A, et al. Blood 2010

∞
: Includes patients with partial response; 13 patients with CR and 60 with PR.
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Table 3
Permuting class labels to assess the power of predicting CR

During the training of classifiers, the treatment response labels were permuted 1000 times to measure the 

statistical significance of prediction performance. P-values indicate the proportion of total 1000 permutations 

giving better prediction performance than the original analysis using real treatment response labels. Hence, 

higher p-value suggests lower confidence in prediction analysis results using gene expression data.

Real CR % Predicted CR:
Positive Predictive Value % (p-value

– 1000 permutations)

IFM I 32 (44/136) 25 (0.36)

IFM II 36 (24/67) 27 (0.11)

HOVON 27 (76/282) 45 (0.13)

Mulligan et al. 43 (73/162) 43 (0.49)

Predicted CR or Positive Predictive Value is derived from the test or validation dataset analysis using criteria giving the best possible overall model 
accuracy.
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