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The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle
contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in
agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies
against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because
null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be
deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ
maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR
clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate
potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency.
We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and
postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4
is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient
to cause myasthenic symptoms.
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Introduction
Neuromuscular junction (NMJ) formation requires intricate in-
teraction between motor neurons (MNs), muscle fibers, and
Schwann cells that wrap up the synapse (Sohal, 1995; Sanes and
Lichtman, 2001; Feng and Ko, 2008; Wu et al., 2010). Agrin is a
heparan sulfate proteoglycan used by MNs to instruct postjunc-
tional differentiation, including AChR clustering and synapse-
specific transcription (McMahan, 1990; Brenner et al., 1992; Jo
and Burden, 1992; Herczeg et al., 1995; Meier et al., 1997). Mice
lacking agrin do not form NMJ, but form primitive aneural
AChR clusters that are thought to be involved in nerve-induced
AChR clusters (Gautam et al., 1996; Lin et al., 2001). Agrin is
enriched at the synaptic basal lamina (SBL) between presynaptic
and postsynaptic membranes (Ruegg et al., 1992; Jones et al.,
1997; Burgess et al., 1999, 2000; Eusebio et al., 2003; Bolliger et al.,
2010) and remains at the NMJ for weeks after nerve degeneration.
MuSK is a receptor tyrosine kinase that is essential for agrin-
induced clustering and for NMJ formation in vivo (DeChiara et

al., 1996; Glass et al., 1996; Lin et al., 2001; Kim et al., 2008; Zhang
et al., 2008). Agrin and MuSK do not directly interact (Glass et al.,
1996); rather, MuSK activation by agrin requires LRP4, a mem-
ber of the low-density lipoprotein (LDL) receptor (LDLR) family
(Kim et al., 2008; Zhang et al., 2008). Evidence indicates that
LRP4 is a receptor of agrin (Weatherbee et al., 2006; Kim et al.,
2008; Zong et al., 2012). It is necessary for NMJ formation and
agrin-induced activation of MuSK and AChR clustering in mus-
cle cells (Weatherbee et al., 2006; Kim et al., 2008; Zhang et al.,
2008). In addition, muscle LRP4 may also regulate presynaptic
differentiation (Wu et al., 2012b; Yumoto et al., 2012).

The NMJ is a target of various disorders, including myasthe-
nia gravis (MG), congenital myasthenic syndrome (CMS), and
amyotropic lateral sclerosis (ALS). CMS patients could possess
mutations in genes in agrin signaling, including agrin itself, LRP4,
MuSK, or rapsyn, a cytoskeletal protein that interacts with AChR
(Müller et al., 2004, 2006; Beeson et al., 2006; Hamuro et al., 2008;
Maselli et al., 2010, 2012; Ben Ammar et al., 2013; Ohkawara et
al., 2014). On the other hand, MG patients could develop anti-
bodies against agrin, MuSK, and/or LRP4 that are pathogenic
(Hoch et al., 2001; Punga et al., 2011; Pevzner et al., 2012; Hui-
jbers et al., 2013; Shen et al., 2013). These observations suggest
that NMJ maintenance or function in adulthood may require
agrin-LRP4-MuSK signaling. The hypothesis is supported by so-
matic mutation of agrin (Bogdanik and Burgess, 2011; Samuel et
al., 2012) or MuSK (Chevessier et al., 2008), or neonatal mutation
of MuSK in muscle cells (Hesser et al., 2006). However, little is
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known about the effect of disrupting agrin signaling after NMJ
development. Due to the embryonic lethality of null mutation of
LRP4 or MuSK, it remains unclear whether they are involved in
NMJ maintenance. Here, we generated inducible LRP4 mutant
mice, which enabled us to eliminate LRP4 expression in adult
mice, to investigate the role of LRP4 in NMJ maintenance in adult
mice. A combination of biochemical, morphological, and func-
tional approaches was used to characterize the NMJ. Results in-
dicate a critical role of LRP4 in maintaining NMJ presynaptic and
postsynaptic structure and function. Experiments designed to-
ward deciphering underlining mechanisms showed specific, con-
comitant loss of synaptic agrin from the SBL. This suggests that
LRP4 may be necessary for agrin stability in the SBL, identifying a
novel function of LRP4.

Materials and Methods
Mouse strains. Mice with LRP4 floxed alleles (LRP4 f/f) were described
previously (Wu et al., 2012b). B6;C3-Tg(ACTA1-rtTA; tetO-Cre) mice
were from The Jackson Laboratory (stock #012433), which carry two
transgenes: tetO-Cre, which expresses Cre under the control of the
tetracycline-responsive regulatory element tetO; and ACTA1-rtTA,
which expresses reverse tetracycline-controlled transactivator rtTA un-
der the control of the promoter of the human � 1-actin gene ACTA1 or
HSA (Rao and Monks, 2009). LRP4 f/f mice were backcrossed with
C57BL/5J mice before being crossed with B6; C3-Tg (tetO-Cre; ACTA1-
rtTA) mice. Resulting tetO-Cre; ACTA1-rtTA; LRP4 f/f mice are referred
as inducible muscle-specific LRP4 knock-out (imKO) mice. Genotyping
of LRP4 f/f allele was performed as described previously (Wu et al.,
2012b). tetO-Cre; ACTA1-rtTA was genotyped with primers: tetO-Cre
with forward ACT GAG AGG TGG GAA GCT CA and reverse GGC GAG
TTT ACG GGT TGT TA and for ACTA1-rtTA with primers: forward
AGG TGT AGA GAA GGC ACT TA and reverse CTA ATC GCC ATC
TTC CAG CA. Crosses generated the expected Mendelian numbers of
each genotype. To induce Cre expression, imKO mice were treated with
doxycycline in drinking water (2 mg/ml in 5% sucrose, in light proof
bottles) ad libitum at 30 d of age for 3 weeks when doxycycline and
glucose were omitted from the drinking water. Mice were housed in a
room with a 12 h light/dark cycle with ad libitum access to water and
rodent chow diet (Diet 7097, Harlan Teklad). Unless otherwise indi-
cated, male mice were characterized in the current study. The Institu-
tional Animal Care and Use Committee of the Georgia Regents
University approved experimental procedures.

Measurement of muscle strength and weight. Limb muscle strength was
measured using an SR-1 hanging scale (American Weigh Scales) as de-
scribed previously (Shen et al., 2013). Briefly, forelimbs were allowed to
grip a square metal grid that was connected to a hanging scale. With hind
limbs suspended, mice were gently pulled horizontally by tail until grip
was released. Mice body weight was taken using a Mettler Toledo table-
top portable weighing scale.

Western blot analysis. Muscles were dissected from TA muscles and
lysed in modified RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl,
1% NP-40, 2% SDS, 2% DOC, 1 mM PMSF, 1 mM EDTA, 5 mM sodium
fluoride, 2 mM sodium orthovanadate, and protease inhibitors). After
centrifuging at 10,000 rpm at 4°C, supernatant was collected and used as
sample lysates. Lysate protein concentrations were measured using
Pierce BCA kit. Samples (50 �g of protein, unless otherwise indicated)
were resolved by SDS-PAGE and transferred to nitrocellulose mem-
brane. The membrane was first incubated in 5% milk in PBS-0.3%
Tween 20 overnight at 4°C and then incubated with primary antibodies
in 2% milk in TBS-Tween buffer: anti-MuSK (1:1000) (Luo et al., 2008;
Zhu et al., 2008; Wu et al., 2012b); anti-�-tubulin (1:2000, sc-23948,
Santa Cruz Biotechnology); anti-rapsyn (Luo et al., 2008); anti-�-
dystroglycan (1:1000, ab106110, Abcam); anti-agrin clone-R132 (1:1000,
kindly provided by Peter Sonderegger), anti-agrin C-95 (1:500, kindly
provided by Markus Ruegg); and anti-LRP4 against the extracellular
domain (ECD) (1:1000, clone N207/27, UC Davis/NIH NeuroMab Fa-
cility). After washing, the membrane was incubated with TBST buffer

containing HRP-conjugated goat anti-mouse and rabbit IgG from Pierce
(1:5000, PI-31430, anti-mouse; PI-31460, anti-rabbit). Immunoreactive
bands were visualized by using enhanced chemiluminescence (Pierce).
Quantitative densitometric analysis of the captured images was analyzed
with ImageJ (National Institutes of Health), as described previously (Wu
et al., 2012b).

Electron microscopy analysis. Electron microscopy was performed as
described previously (Wu et al., 2012a, b). TA muscles were dissected in
PBS and were lightly stained with R-BTX (1:1000, in ice-cold PBS at 4°C)
to mark the central region where NMJs are enriched. The regions were
dissected with a microscalpel (Harvard Apparatus, #PY2 56-5673) under
a Leica fluorescent dissection scope and fixed (blocks of �4 mm � 4
mm) in 2% glutaraldehyde and 2% PFA in 0.1 M PBS for overnight at 4°C.
Tissues were further fixed in sodium cacodylate-buffered, pH 7.3, 1%
osmium tetroxide for 1 h at 25°C. Fixed tissues were washed three times
with PBS and subjected to dehydration through a series of ethanol: 30%,
50%, 70%, 80%, 90%, and 100%. After three rinses with 100% propylene
oxide, samples were embedded in plastic resin (EM-bed 812, EM-
Sciences). Serial sections (1–2 �m) were stained with 1% Toluidine Blue
to identify motor nerves and were cut into ultrathin sections. Alternate
longitudinal sections were not chosen to avoid duplicity of obtaining
images from same terminals. They were mounted on 200-mesh unsup-
ported copper grids and stained with a solution containing 3% uranyl
acetate, 50% methanol, 2.6% lead nitrate, and 3.5% sodium citrate, pH
12.0. Electron micrographs were taken using a JEOL 100CXII operated at
80 KeV.

Synaptic vesicles were distinguished from other intracellular vesicles
by uniform diameters (�40 nm) and subcellular localization. Active
zones were determined by electron-dense regions on presynaptic mem-
branes, sometimes with fused vesicles. Synaptic cleft width was measured
by calculating the distance between the presynaptic and postsynaptic
membranes. Synaptic vesicle polarization was calculated as the number
of vesicles in the half-terminal facing the muscle divided by the number
in the other half terminal (Patton et al., 2001). Four animals of each
group (treated or untreated imKO) were subjected to EM analysis. Quan-
titative analysis was done with 15 or more electron micrographs by FIJI
(National Institutes of Health).

Electromyography and electrophysiological recording. Recording was
performed as described previously (Wu et al., 2012a, b; Shen et al., 2013).
Briefly, mice were anesthetized with ketamine and xylazine (80 mg/kg
and 20 mg/kg i.p., respectively). For electromyography, the stimulation
electrode was inserted into the left leg thigh close to the path of sciatic
nerves. A reference electrode was inserted near the Achille’s tendon while
the recording needle electrode was inserted into the middle of the gas-
trocnemius. Supramaximal stimulation was applied to the sciatic nerve
with trains of 10 stimuli at 2, 5, 10, 20, and 40 Hz. Compound muscle
action potentials (CMAPs) were collected by the reference and recording
electrodes via axopatch 200B amplifier and Digidata 1322A (Molecular
Devices). Peak-to-peak amplitudes were analyzed in Clampfit 9.2 (Mo-
lecular Devices). During the experiment, mice were maintained at 37°C
on a heating pad.

For the analysis of neuromuscular transmission, mouse left hemi-
diaphragms with ribs and phrenic nerve distal endings were dissected and
pinned on Sylgard gel in oxygenated (95% O2/5% CO2), 26°C–28°C
Ringer’s solution (136.8 mM NaCl, 5 mM KCl, 12 mM NaHCO3, 1 mM

NaH2PO4, 1 mM MgCl2, 2 mM CaCl2 and 11 mM D-glucose, pH 7.3).
Microelectrodes, 20 – 40 MW when filled with 3 M KCl, were pierced into
the center of muscle fibers (Wu et al., 2012a, b; Shen et al., 2013). Resting
membrane potentials (�65 to �75 mV) remained stable during the
experiment. Five or more muscle fibers were recorded from each hemi-
diaphragm over a 3 min period. To record endplate potentials (EPPs)
and pair-pulse facilitations, the phrenic nerve was held with sucking and
stimulated by a platinum electrode. Trigger signals (1 ms duration) were
programmed in Clampex 9.2 (Molecular Devices) and elicited from
Digidata 1322A digital output channel to stimulus isolator (AMPI, ISO-
Flex). The intensity of stimulation was kept ��130% of action potential
threshold. Muscle contraction was blocked by 2.5 mM m-Conotoxin
GIIIB (Bachem Americas) when phrenic nerves were stimulated. Data
were collected with Axopatch 200B amplifier, digitized (10-kHz low-pass
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filtered) with Digidata 1322A, and analyzed in
Clampfit 9.2. Four animals of each group
(treated or untreated imKO) were subjected to
electrophysiological analysis.

Light microscopic analysis of AChR clusters.
TA muscle fibers were fixed in 4% PFA over-
night and permeabilized for 2 h with 0.5% Tri-
ton X-100 in 3% BSA and 3% goat serum. They
were then incubated with a mixture of
rhodamine-conjugated bungarotoxin (R-BTX,
1:2000, Invitrogen), Alexa488-conjugated Fas-
ciculin II (488-Fasciculin II), and/or antibodies
against neurofilament (NF) (1:1000, ab7795,
Millipore) and synaptophysin (1:500, DAK-
SYNAP, DAKO) at 4°C overnight. After wash-
ing with PBS, three times for 1 h each, muscle
fibers were incubated with goat anti-mouse/
rabbit IgG conjugated with AlexaFluor-488 or
AlexaFluor-633 (1:500, Invitrogen) overnight
at 4°C. Fasciculin II conjugated with the Alexa-
484 dye was generously provided by Dr. Rich-
ard Rotundo (University of Miami). Images
were collected with a Zeiss 510 upright confo-
cal microscope with 40�, 63� oil-immersion
objectives. Three-dimensional reconstruction of
confocal z-stacks and image analysis was con-
ducted using FIJI (National Institutes of
Health).

Statistical analysis. Statistically significant
difference between two groups was determined
by Student’s t test. Unless otherwise indicated,
data were expressed as mean � SEM, and
statistical significance was considered when
p � 0.05.

Results
Reduced muscle strength and body
weight in Dox-treated imKO mice
LRP4 is a receptor of agrin and critical for
NMJ formation (Weatherbee et al., 2006;
Kim et al., 2008; Zhang et al., 2008; Zhang
et al., 2011; Wu et al., 2012b; Zong et al.,
2012; Ahn et al., 2013; Shen et al., 2013).
LRP4 mutant mice die prematurely
(Weatherbee et al., 2006), which prevents
investigating the role of LRP4 in NMJ sta-
bility. To restrict deletion of LPR4 to adult
muscles, we have used a conditional and
inducible tetracycline-controlled expres-
sion system (Tet-On) in which LRP4 can
be deleted in a time- and muscle-specific
manner (Rao and Monks, 2009). Tg(tetO-
Cre; ACTA1-rtTA) mice were bred with LRP4 floxed alleles
(LRP4 f/f), to obtain Tg(tetO-Cre; ACTA1-rtTA; LRP4 f/f), which
we referred to as inducible muscle-specific knockof LRP4 or
imKO for short (Fig. 1A). Unless otherwise stated, imKO mice at
30 d of age (P30) were given Dox ad libitum in drinking water for
3 weeks. To determine whether LRP4 in imKO mice was altered
by Dox treatment, muscles were isolated from Dox-treated imKO
mice and subjected to Western blotting. As control, muscles were
isolated from untreated imKO mice and Dox-treated LRP4 f/f

mice. As shown in Figure 1B, LRP4 levels were similar between
wild-type and imKO, suggesting that expression of the two tet-
regulatory transgenes or Dox treatment alone had no effect on
LRP4 expression. In contrast, LRP4 was reduced in Dox-treated
imKO mice, compared with wild-type (Fig. 1B). This effect re-

quired the two transgenes because Dox had no effect on LRP4
level in LRP4 f/f mice. These results validated successful ablation
of the LRP4 gene and reduction of LRP4 in muscles of imKO
mice. Twenty days after Dox treatment, imKO mice started losing
weight and muscle strength, compared with untreated imKO
mice (Fig. 1C,D). The body weight and muscle strength of LRP4 f/f

mice did not change in response to Dox treatment (Fig. 1C,D). By
30 d after treatment, many Dox-treated imKO mice developed
scoliosis (Fig. 1E). Dox-treated imKO mice began to die �80 d
after Dox administration; and by �130 d, none survived (Fig.
1F). These observations indicate that muscle ablation of LRP4 in
adult mice led to muscle weakness, body weight loss, and even-
tual death, suggesting that LRP4 is required for NMJ mainte-
nance. Unless otherwise indicated, we focused on imKO mice

Figure 1. LRP4 is depleted from NMJs following conditional deletion in adults. A, Genotypes and LRP4 deletion in skeletal
muscle. In ACTA1-rtTA; tetO-cre transgenic mice (Rao and Monks, 2009), cre is expressed under control of the ACTA1 (human actin
�1, skeletal muscle) promoter, whereas cre expression is controlled by tetracycline inducible element (tetO). The bitransgenic mice
do not express Cre until doxycycline is administered. ACTA1-rtTA; tetO-cre mice were bred with LRP4 f/f mice (Wu et al., 2012b) to
generate ACTA1-rtTA; tetO-cre; LRP4 f/f (imKO). Dox-treated imKO mice did not express LRP4. Unless otherwise specified, LRP4 f/f

mice were used as control. B, Reduction of LRP4 in Dox-treated imKO mice. Tibialis anterior muscle was isolated from mice of
indicated genotypes and treatment and blotted for LRP4, MuSK, and �-actin. C, Dox-treated imKO mice progressively lost weight,
compared with imKO or LRP4 f/f�DOX mice; n�3 per genotype (two-way ANOVA). *p�0.05 (Student’s t test). D, Decreased grip
strength in Dox-treated imKO mice; n � 3 per genotype (two-way ANOVA). *p � 0.05 (Student’s t test). E, Dox-treated imKO mice
were considerably smaller in size, compared with imKO mice, and developed scoliosis after 30 d of Dox treatment. F, Kaplan–Meier
survival curves of control and Dox-treated imKO mice. � 2 � 22.67, p � 0.0001 (Log-Rank; Mantel–Cox test).
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that had been treated with Dox for 30 d, which effectively
ablated LRP4 in muscle cells.

Fragmented AChR clusters in Dox-treated imKO mice
In adult mice, AChR clusters are organized in a “pretzel”-like
structure with complex and continuous branches on the muscle
membrane (Fig. 2A). To investigate the mechanisms of muscle
weakness in Dox-treated imKO mice, we stained TA muscles with
R-BTX, which labels AChRs irreversibly. As shown in Figure 2A,
B, the NMJs in Dox-treated imKO mice were not continuous, but
fragmented. Quantitative analysis revealed that total R-BTX-
labeled area per pretzel was reduced from 373 � 34.2 �m 2 in
imKO mice to 245 � 54.3 �m 2 in Dox-treated imKO mice (p �
0.01, n � 10) (Fig. 2A,B). The numbers of AChR cluster frag-
ments were increased from 3.21 � 0.8 to 9.11 � 1.7 (p � 0.01,
n � 10) (Fig. 2A,B). The area of each cluster or fragment was also
reduced from 143 � 21.5 �m 2 in imKO mice to 90 � 46.7 �m 2

in Dox-treated imKO mice (p � 0.01, n � 10) (Fig. 2A,B). The

fluorescent intensity of the clusters, measured by mean pixel
value, was reduced to 52.03 � 19.48 in Dox-treated imKO mice,
compared with 85.4 � 8.9 in imKO mice (p � 0.01, n � 10). No
difference was observed between wild-type, imKO, or Dox-
treated LRP4 floxed mice (Fig. 2A; data not shown). AChR clus-
ters in Dox-treated LRP4 f/fmice appeared similar to those in
wild-type and untreated imKO mice (Fig. 2A,B), in agreement
with the observations that these mice exhibit normal muscle
strength and body weight. Together, these experiments demon-
strate that NMJs became fragmented when LRP4 was ablated in
adult mice.

Dox treatment reduced CMAPs and impaired neuromuscular
transmission in imKO mice
To determine whether neuromuscular transmission is altered in
Dox-treated imKO mice, we measured the CMAPs in gastrocne-
mius muscle in response to needle electrode stimulation (Shen et
al., 2013). In control imKO mice, CMAPs did not significantly
differ over 10 consecutive stimuli delivered at 40 Hz (Fig. 3A–C).
In contrast, there was a significant reduction in CMAPs over 10
consecutive stimuli in Dox-treated imKO mice (Fig. 3C). The
reduction was significant even after the second stimulation, and
the 10th CMAP was reduced by 40%, compared with the first
CMAP (Fig. 3C). The reduction of CMAPs was frequency-
dependent (Fig. 3D), suggesting that there was a progressive loss
of successful neuromuscular transmission after repeated stimu-
lations. Together, these observations indicate that NMJ transmis-
sion was impaired in mice whose LRP4 was ablated in adulthood.

To investigate whether CMAP deficits result from presynaptic
and/or postsynaptic impairment, we measured miniature EPPs
(mEPPs), muscle membrane potentials due to spontaneous ACh
release (Meier et al., 1996; Wu et al., 2012a, b; Shen et al., 2013).
Whereas changes in frequency are suggestive of presynaptic de-
fects, alteration in amplitude is suggestive of postsynaptic defects.
As shown (Fig. 4A,B), mEPP amplitude was reduced by 30% in
Dox-treated imKO mice (0.78 � 0.04 mV, compared with 0.51 �
0.03 mV in imKO mice; p � 0.05, n � 11). The reduction in
amplitude suggests that the density of AChR clusters on the post-
synaptic side was reduced in the mutants. Similarly, mEPP fre-
quency was also decreased (by 90%) in Dox-treated imKO mice
compared with controls (imKO, 1.18 � 0.05 Hz; Dox-treated
imKO, 0.17 � 0.01; p � 0.05, n � 11) (Fig. 4A,C). This was
suggestive of a presynaptic defect most likely stemming from a
reduction in spontaneous ACh release from motor nerve termi-
nals. Together, these results suggest that loss of LRP4 in muscles
of adult mice affected both presynaptic and postsynaptic compo-
nents of the NMJ.

Moreover, LRP4 loss also caused reduction in end plate po-
tentials (EPPs), which are an indicator of neurotransmission elic-
ited by motor nerve stimulation. The quantal content, the ratio of
EPP amplitude/mEPP amplitude, is a measure of the number of
synaptic vesicles released. Dox treatment reduced the quantal
content in imKO mice, suggesting that evoked release is impaired
in mutants (Fig. 4D). Intriguingly, the half-width and the rising
time of the EPP in Dox-treated imKO mice were higher than the
imKO mice, indicating synaptic vesicle release deficits at the mo-
toneuron terminals (Fig. 4E,F). Further, we examined paired-
pulse facilitation (PPF) at different interstimulus intervals. When
presynaptic neurons are stimulated by two consecutive stimuli at
rapid succession, the second endplate potential is usually larger
than the first one due to increased intracellular calcium. At 10 ms
interval, PPF was significantly higher at the NMJs of Dox-treated
imKO mice, compared with controls (Fig. 4G), indicating dimin-

Figure 2. Fragmented NMJs with reduced AChR in Dox-treated imKO mice. A, TA muscles
were stained whole mount with R-BTX to label AChR (red). In Dox-treated imKO mice, the
endplates were smaller in size, fragmented, and displayed reduced R-BTX fluorescent intensity,
compared with controls. Scale bar, 10 �m. B, Quantitative analysis revealed more fragmented
AChR clusters, AChR-rich endplate area per synapse (area/NMJ), area per fragment, and AChR
intensity in clusters (measured by mean pixel value). **p � 0.01 (Student’s t test). n � 10. ns,
Not significant. Scale bar, 10 �m.
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ished readily releasable pools and/or
reduced probability of release. The differ-
ence in PPF between groups reduced with
an increase in the duration of interpulse
interval; and at 100 ms interval, there was
no significant difference between the
groups. This suggests normal ability of en-
doplasmic reticulum to buffer calcium in
motoneurons of Dox-treated imKO mice,
although calcium-dependent vesicle release
may be impaired. The results described
above indicate that loss of muscle LRP4 in
adulthood is sufficient to cause both pre-
synaptic and postsynaptic neuromuscular
defects and suggest that LRP4 is critical for
maintaining functional NMJs. These re-
sults provide pathophysiological mecha-
nisms of LRP4 mutations in CMS patients
and LRP4 antibodies in MG patients.

Reduced synaptic vesicles and
junctional folds in Dox-treated
imKO mice
Under the electron microscope, muscle
membrane at mature NMJ is invaginated
with deep folds at regularly spaced inter-
vals (Porter and Barnard, 1976). AChRs
are concentrated at the crests of junctional
folds (Fertuck and Salpeter, 1976), whereas
active zones of motoneuron terminals are
opposed to the troughs of junctional folds
(Matthews-Bellinger and Salpeter, 1983).
In imKO mice, postjunctional folds were
evident at the NMJ (Fig. 5A, arrowheads).
They appeared to be electron dense, pre-
sumably reflecting high concentration of
AChRs (Fig. 5A) (Fertuck and Salpeter,
1976; Marques et al., 2000). However, the
NMJs of Dox-treated imKO mice were al-
most devoid of junctional folds, with the
number of junctional folds per terminal
reduced to 1 � 0.44 (compared with 6 �
0.27 in imKO; p � 0.01; n � 15) (Fig. 5A,
bottom, stars). Because of the diminished
folds, it was difficult to identify typical
junctional membranes. We identified
them as the ones closely opposed to the
active zones. As shown in Figure 5A, the
electron density of the junctional mem-
brane was reduced in Dox-treated imKO
mice. The synaptic cleft width did not
change by LRP4 loss (Fig. 5A,B). However,
the electron density of synaptic basal lamina
in the synaptic cleft was reduced. These ob-
servations suggest that muscle LRP4 is criti-
cal for maintenance of synaptic basal
lamina, junctional folds as well as postjunc-
tional density.

Our electrophysiological studies suggested that the number of
ACh-laden synaptic vesicles could be reduced in mutants. To test
this hypothesis, we examined the presynaptic structure in mu-
tants. In control or imKO mice, axon terminals were filled with
synaptic vesicles; some of them were docked at active zones (Fig.

5A; inset, arrows, active zones) (Shen et al., 2013). However,
electron micrographs of Dox-treated imKO NMJs revealed sig-
nificant reduction in synaptic vesicles (from imKO, 5 � 0.32 to
3 � 0.33 vesicles per 0.04 �m 2 in control and treated imKO mice,
respectively; p � 0.01; n � 17) and in active zones per terminal

Figure 3. CMAP reduction in Dox-treated imKO mice. CMAPs were recorded in gastrocnemius in response to a train of 10
submaximal stimuli at different frequencies. The first stimulus response in control mice was assigned as 100%. A, Representative
CMAP traces in response to the first, second, and 10th stimuli. B, All 10 CMAP traces, shown stacked in succession for better
comparison. C, Reduced CMAP amplitudes at 40 Hz. D, CMAP amplitudes of the 10th stimulation at different stimulation frequen-
cies. n � 4 mice per group. *p � 0.05 (Student’s t test).

Figure 4. Impaired neuromuscular transmission in Dox-treated imKO mice. A, Representative mEPP traces. Underlined regions
in the top were enlarged in the bottom. B, C, Reduced mEPP amplitudes (B) and frequencies (C); n � 6 in each group. D, Reduced
EPP amplitude and representative traces; n � 5 in each group. E, F, Increased EPP rising time (E) and half-width (F ); n � 5 NMJs
in each group. G, Increased pair-pulse facilitation; n � 7 NMJs in each group. *p � 0.05 (Student’s t test). **p � 0.01 (Student’s
t test).
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(from 4 � 0.41 �m to 3 � 0.33 �m in control and treated imKO
mice, respectively; p � 0.05; n � 13) (Fig. 5A,B). In control mice,
synaptic vesicle distribution is polarized: being more in regions
close to active zones, compared with regions facing away from the
muscle (Patton et al., 2001; Shen et al., 2013). Interestingly, the
ratios of vesicles in the synaptic half (i.e., area close to active
zones) over those in distal half (i.e., area facing away from the
muscle) was 1.3 � 0.17 in imKO mice and 2.2 � 0.09 in Dox-
treated imKO mice (p � 0.01, n � 10) (Fig. 5A,B). This suggests
that the loss of synaptic vesicles in LRP4 mutant mice was not the
same between the two regions; rather, the loss was greater in the
synaptic region than in nonsynaptic region. This also suggests

that the reduction in overall vesicle num-
ber in the mutants is not because of im-
paired production of vesicles.

Mitochondria at axon terminals gener-
ate ATP and sequester calcium to main-
tain cytosolic calcium concentration that
is conducive for normal neurotransmis-
sion (Thayer and Miller, 1990; García-
Chacón et al., 2006). The number of
mitochondria per terminal was similar
between control (6.6 � 0.72) and Dox-
treated imKO mice (7.2 � 0.81) (p �
0.05, n � 10) (Fig. 5A,B), in agreement
with electrophysiological data that cal-
cium buffering was normal in Dox-
treated imKO NMJ (Fig. 4E). Schwann
cells covered both Dox-treated imKO
mice NMJs as wells as control (Fig. 5A).
We did not notice any Schwann cell pro-
cesses in the synaptic cleft separating the
nerve terminal and muscles. In summary,
LRP4 deletion in skeletal muscles during
adulthood alone is sufficient to cause a
loss of synaptic vesicles from the MN termi-
nals, reduction of active zones, and retrac-
tion of synaptic folds. These ultrastructural
defects are commensurate with the electro-
physiological deficits as well as changes ob-
served by light microscopy.

Nerve terminal retraction and
sprouting with Schwann cell extension
at Dox-treated imKO NMJs
Having observed fragmented AChR clus-
ters in imKO mice, we investigated
whether nerve terminals and Schwann
cells were altered subsequent to post-
synaptic deficits. To this end, TA mus-
cles were stained whole mount with
antibodies against neurofilament/synap-
tophysin (NF/Syn) for motor nerve termi-
nals, S100� for differentiated Schwann
cells, and R-BTX for AChR clusters. In
control adult NMJs, motor neuron termi-
nals were in perfect registry with AChR
clusters under light microscope (Fig. 6A).
Moreover, terminal Schwann cell pro-
cesses covered the synapse, and sprouting
or denervation was negligible (Fig. 6A,B).
In Dox-treated imKO mice (at P60),
AChR clusters were fragmented (Figs. 2

and 6A). Some R-BTX-labeled AChR clusters were interestingly
not covered by motor nerve terminals but Schwann cell processes
(Fig. 6A, bottom, pink arrows). This suggests the fragmented
AChR clusters may have lost innervation. There were areas where
Schwann cell processes were present, but not nerve terminals or
AChR clusters (Fig. 6B, bottom, yellow arrows). This could sug-
gest that during NMJ disintegration, Schwann cell processes may
be more stable than AChR clusters or nerve terminals as observed
in NMJ elimination, and thus remain at the site where the NMJ
used to be (Culican et al., 1998). Alternatively, Schwann cells may
sprout as a prelude to nerve terminal sprouting as compensatory

Figure 5. Abnormal NMJ ultrastructure in Dox-treated imKO mice. A, Representative EM NMJ images of control and Dox-treated
imKO mice. NMJs in control mice displayed typical NMJ structures, where the nerve terminals were covered by terminal Schwann
cells (SC) and enriched with synaptic vesicles (SV). Occasionally, fused SVs were present at the active zones (inset, arrows).
Postsynaptic membranes invaginated to form junctional folds (JF), whose crests were electron dense and contained AChR-rich
regions (arrows). In Dox-treated imKO mice, the numbers of SVs, JFs (asterisks), and active zones were reduced. B, Quantification
of various synaptic attributes (n � 18, for each genotype), *p � 0.05 (Student’s t test). **p � 0.01 (Student’s t test). ns, Not
significant. Scale bar, 500 nm.
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mechanism for reduced NMJ transmission. Schwann cell sprout-
ing has been shown to be critical for reinnervation after injury
(Son and Thompson, 1995a, b). As shown in Figure 6A (bottom,
stars), Schwann cell sprouting was observed in NMJs in Dox-
treated imKO mice, with (bottom, star) or without (top, star)
nerve terminals. Quantitatively, the percentage of NMJs with
nerve retraction (including those with Schwann cell processes)
was 45.4 � 2.37% in Dox-treated imKO mice and 1.76 � 0.43%
in control mice (n � 36, p � 0.01). Nerve terminal sprouts were
observed in 36.5 � 3.17% of NMJs in Dox-treated imKO mice
and only in 5.47 � 1.12% of NMJs in control mice (Fig. 6B) (n �
36, p � 0.01).

Reduction of synaptophysin in Dox-treated imKO mice
To identify how loss of LRP4 from adult muscle could lead to
synaptic disruption, we sought to understand which components
were changed at the NMJ. To this end, TA muscles were stained
whole mount with antibodies against synaptophysin (syn), a pro-
tein expressed in synaptic vesicles; �-dystroglycan, a protein en-
riched in SBL; or Fasciculin II, which binds to AChE irreversibly
(Sugiyama et al., 1994; Peng et al., 1999; Li et al., 2008; Rotundo et
al., 2008). Muscle sections were stained for the following antibod-
ies because they do not work in whole-mount samples: antibodies
against MuSK; rapsyn, an adaptor protein that interacts with
AChR (Luo et al., 2008); and utrophin, a cytoskeletal protein is
also known to colocalize with AChRs at the junctional folds
(Blake et al., 1994; Weatherbee et al., 2006; Friese et al., 2007).

We analyzed the distribution of three postsynaptic proteins,
including MuSK, rapsyn, and utrophin (Fig. 7E–I). The fluores-
cence intensities of MuSK, rapsyn, and utrophin were not altered
in Dox-treated imKO mice at P60. Additionally, AChR clusters
were reduced in number and became fragmented in Dox-treated

imKO mice; there appeared to be a good registry between R-BTX
staining and that of these proteins (Fig. 7E–I). These results sug-
gest that NMJ disruption in the absence of adult LRP4 was not
due to alteration of MuSK, rapsyn, or utrophin; rather, their loss
in Dox-treated imKO mice may be secondary to NMJ disruption.

SBL is composed of extracellular matrix proteins secreted by
motoneurons, muscles, and Schwann cells and is enriched in
factors critical for formation and maintenance of presynaptic
and postsynaptic structures at the NMJ. �-Dystroglycan is a
glycoprotein that is abundantly expressed at the NMJ. It can
bind agrin and has been implicated in aggregation and stabi-
lization of AChR clusters (Sugiyama et al., 1994; Côté et al.,
1999). Loss of �-dystroglycan in mice results in defective NMJ
(Côté et al., 1999; Samuel et al., 2012). As shown in Fig. 7C, H,
the intensity of �-dystroglycan staining was not altered in
Dox-treated imKO mice, compared with controls. On the con-
trary, the area of �-dystroglycan staining appeared to be
higher in Dox-treated imKO mice, compared with that in con-
trols. This increase was most likely due to reduced areas of
AChR clusters in Dox-treated imKO mice. These results indi-
cate that, despite reduced fragmented AChR clusters and re-
duced R-BTX staining intensity, the SBL scaffold remained
intact at P60. This notion was supported by the observations
that no change occurred in staining intensity of Alexa488-
conjugated Fasciculin II that labeled AChE, another SBL com-
ponent. These suggest that fragmentation and instability of
AChR clusters may not be due to changes of �-dystroglycan or
AChE in the SBL (Fig. 7B–D, H, I ).

As shown in Figure 7A, staining with anti-syn antibody alone
exhibited reduced fluorescence intensity in Dox-treated imKO
mice, compared with that in controls (Fig. 7A,H). Moreover, in
control mice, syn staining covered almost 100% AChR cluster

Figure 6. Partial denervation and extensive sprouting at Dox-treated imKO NMJs. In control NMJs, AChR clusters were completely innervated by nerve terminals labeled by neurofilament (NF) and
synaptophysin (syn) (green). The NMJs were covered almost entirely by terminal Schwann cells and their processes (labeled by S100� in cyan). None or negligible sprouting was observed for nerve
terminals and Schwann cell processes (A, B). In Dox-treated imKO mice, NMJs became fragmented and lost innervation (pink arrow); yellow represents lost innervation and AChR clusters. Stars
indicate sprouting of nerve terminals and Schwann cells; n � 30 for each genotype. **p � 0.01 (Student’s t test). Scale bar, 10 �m.
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area, but only 73 � 0.03% of AChR cluster area was covered by
syn (n � 11; p � 0.01) in Dox-treated imKO mice. These results
are indicative of reduction in number of synaptic vesicles at nerve
terminals in the absence of muscle LRP4, in agreement with re-
sults of EM analysis (Fig. 5).

Agrin reduction in Dox-treated imKO mice
Knowing that LRP4 serves as a receptor of agrin, we determined
whether loss of muscle LRP4 in adulthood changes the amount of
agrin. To this end, muscles were stained with a well-characterized
anti-agrin antibody (R132). This antibody was generated against
the C-terminal fragment of agrin (Reif et al., 2007). Agrin stain-
ing was present in AChR clusters, but also in extrasynaptic areas
in the pretzel-like structure in control mice (Fig. 7D). Intriguingly,
agrin staining intensity in Dox-treated imKO mice was significantly
reduced, compared with that in control mice (Fig. 7D,H,I) (43 �
1.35 and 119 � 3.02, respectively) (n � 10, p � 0.05). Moreover,
70% of AChR cluster area lacked agrin (1.2 � 0.03 in control and
0.3 � 0.49 in Dox-treated imKO mice; n � 10, p � 0.01). These
results suggest that ablation of LRP4 in adult muscle reduces
agrin that is critical for NMJ formation.

Next, we determined the time course of agrin reduction in
Dox-treated imKO mice. To exclude the possibility that agrin
reduction was due to or secondary of AChR cluster disruption,
we normalized agrin signals by two denominators, including

AChR clusters, whose level was reduced, and AChE, whose level
did not change, in Dox-treated imKO mice at P60 (Fig.
8A,B,G,H). As shown in Figure 8C–H, the ratio of agrin/AChR
was reduced from P30 to P60, which indicates that agrin reduc-
tion occurred ahead of AChR reduction. However, the ratio of
Syn/AChR remained similar during the same period, suggesting
that syn reduction was in parallel to that of AChR in Dox-treated
imKO mice. Further, the ratio of agrin/Fasciculin II staining
showed a leftward shift of the time course, indicating that agrin
reduction was independent of SBL scaffold (Fig. 8H). Similar
reduction time was observed in syn/Fasciculin II ratio (Fig. 8H).
These results suggest that loss of agrin preceded the loss of AChR
or synaptophysin.

Finally, we determined whether reduced agrin signal in stain-
ing was due to agrin loss or dispersion from the NMJ; we per-
formed Western blot analysis of entire TA muscles at different
times after Dox treatment of imKO mice. Blotting for LRP4 ex-
hibited time-dependent reduction of LRP4, which became barely
detectable at P60 (Fig. 9A,B). Blotting with antibodies against
�-dystroglycan, MuSK, and rapsyn did not reveal a reduction in
total protein level (Fig. 9A,B), although immunostaining signal
of each protein was reduced, suggesting that the reduction in
staining signal was due to dispersal of these proteins into nonsyn-
aptic areas. The agrin gene encodes a protein of 2000 amino acids
with predicted molecular weight of 225 kDa but can display as

Figure 7. Loss of agrin and synaptophysin from Dox-treated imKO NMJs. A–G, Muscles were stained whole mount with antibodies against syn, �-dystroglycan or agrin, or with Alexa488-
conjugated Fasciculin II. Muscle sections were stained with antibodies against MuSK, rapsyn, or utrophin. Dox-treated imKO NMJs showed reduced syn or agrin, but no change in Fasciculin II,
�-dystroglycan, MuSK, rapsyn, or utrophin. H, Quantification of fluorescent intensity; n � 15. *p � 0.05 (Student’s t test). **p � 0.01 (Student’s t test). I, R-BTX area covered by individual synaptic
proteins in in Dox-treated imKO NMJs; n � 15. *p � 0.05 (Student’s t test). **p � 0.01 (Student’s t test). ns., Not significant. Scale bar, 10 �m.
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600 kDa protein due to extensive N-terminal glycosylation (Beza-
kova and Ruegg, 2003). Full-length agrin (220 kDa) is cleaved in
the C-terminal region by a serine-protease to yield a 95 kDa frag-
ment. This fragment contains the domain that binds to LRP4 and
a sequence for �-dystroglycan (Ruegg et al., 1992; Fallon and
Hall, 1994; Neumann et al., 2001; Bezakova and Ruegg, 2003;
Bolliger et al., 2010). Interestingly, this 95 kDa fragment revealed
by the R132 antibody, was reduced progressively after Dox treat-
ment in imKO mice. Similar reduction of the 95 kDa fragment
was observed when blotted with the C95 antibody that was inde-
pendently generated and recognized agrin (Eusebio et al., 2003).
Full-length agrin ranging from 200 to 600 kDa remained un-
changed. These observations suggest that the reduction of agrin
was 95 kDa-specific. Because reduction of agrin was observed in
both immunostaining and Western blot analysis, we interpret
these results as evidence for a role of muscle LRP4 in controlling
the stability of agrin.

Discussion
This study provides evidence that loss of LRP4 in adult muscles
results in severe structural and functional defects of both presyn-
aptic and postsynaptic components (Figs. 1, 2, 3, 4, and 5). First,
Dox treatment of imKO reduced LRP4 levels to undetectable 30 d
after treatment. The mice displayed weight loss, muscle weak-

ness, scoliosis, and premature death, which resemble myasthenic
symptoms of CMS and MG patients. Second, morphological
analysis revealed that NMJs lost characteristic “pretzel”-like mor-
phology and reduced AChR intensity in fragmented AChR clus-
ters. The clusters were partially innervated, and the numbers of
active zones and synaptic vesicles were reduced in motoneuron
terminals. Third, functionally, CMAPs were reduced, indicative
of reduced excitability of postsynaptic muscle. The amplitude
and frequency of mEPPs were diminished, suggesting impair-
ment of both presynaptic and postsynaptic compartments. These
observations demonstrate that LRP4 is essential for maintaining
the structural and functional integrity of the NMJ and that loss of
muscle LRP4 in adulthood alone is sufficient to cause myasthenic
symptoms.

LRP4 belongs to the LDL receptor family, which consists of
many evolutionarily conserved, transmembrane proteins (Nyk-
jaer and Willnow, 2002). Members of this family are known to
serve as coreceptor of various ligands, including ApoE and Wnts
(Pinson et al., 2000; Tamai et al., 2000; Wehrli et al., 2000). The
ECD of LRP4 has 8 LDLa (LDL Class A) repeats at the N termi-
nus, followed by four homologous YWTD motif-containing
�-propeller domains that are separated by EGF-like modules.
Several extracellular binding partners have been identified for

Figure 8. Time course depletion of synaptic agrin and synaptophysin from the NMJs in Dox-treated imKO mice. Whole-mount staining was performed as in Figure 7. A–F, Confocal images of NMJs
at indicated times. A gradual reduction of agrin and syn was observed in Dox-treated imKO NMJs. Fasciculin II levels remained unchanged. G, Quantitative analysis of loss of agrin and Syn, relative
to R-BTX (n � 6). H, Quantitative analysis of loss of Agrin and Syn, relative to Fasciculin II (n � 6). Scale bar, 10 �m.
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LRP4, including ApoE (that binds to LDLa), agrin (that binds to
the first �-propeller domain), MuSK and Wnt modulators
(SOST and Dkk) (that bind to the third �-propeller domain),
BMP signaling regulators (Wise and GREM1), and APP (whose
interacting motif in LRP4 was unclear) (Kim et al., 2008; Zhang et
al., 2008, 2012a; Choi et al., 2009; Zhang et al., 2011; Zong et al.,
2012; Ahn et al., 2013; Choi et al., 2013; Barik et al., 2014). Mu-
tations in the LRP4 ECD were observed in patients with various
diseases, including Cenani–Lenz syndrome, Potocki–Shaffer syn-
drome, and bone disorders, including osteoporosis, Richter syn-
drome, and Cenani–Lenz syndactyly syndrome (Wakui et al.,
2005; Li et al., 2010; Rasi et al., 2011; Boudin et al., 2013; Oh-
kawara et al., 2014). Which signaling pathway(s) is altered by
these mutations remains to be unclear, although Wnt signaling is
thought to be a strong suspect for bone-related deficits (Johnson
et al., 2005; Choi et al., 2009; Li et al., 2010; Ohazama et al., 2010).

Neither is it clear how LRP4 regulate NMJ maintenance. We
offer the following hypotheses. First, neuromuscular disorders,
such as CMS and MG often involve structural defects, including
fewer synaptic vesicles, reduced AChR density, diminished junc-
tional folds, and abnormal NMJ transmission, such as reduced
CMAPs. In CMS patients, mutations have been identified in NMJ
structural and functional proteins, such as ChAT, collagen Q,
laminin, AChR, sodium channels. In addition, proteins in agrin
signaling are often mutated, including agrin, LRP4, MuSK,
rapsyn, and Dok7 (Maselli et al., 2010, 2012; Ben Ammar et al.,
2013; Ohkawara et al., 2014). In mice, a missense mutation of
MuSK that reduces its kinase activity causes pronounced myas-
thenic deficits (Chevessier et al., 2008). Agrin deletion in a subset
of motoneurons (by Thy1-CreER T2 or SLICK-creER T2) in adult
mice results in AChR loss and loss of other components in the

postjunctional membrane and synaptic cleft. However, mutant
mice survived because agrin was still expressed in majority of
motoneurons (Samuel et al., 2012). Similarly, neonatal, mosaic
mutation of MuSK by muscle creatine kinase (MCK)-Cre leads to
loss of AChRs and disassembly of postjunctional organization
(Hesser et al., 2006). On the other hand, MG is caused by auto-
antibodies against AChR as well as agrin signaling proteins, in-
cluding agrin, LRP4, and MuSK (Culican et al., 1998; Kraner et
al., 2003; Sanders et al., 2003; Reif et al., 2007; Rotundo et al.,
2008; Zhang et al., 2012b, 2014; Zisimopoulou et al., 2014). An-
tibodies against agrin, LRP4, and MuSK may act by disrupting
agrin signaling (Hoch et al., 2001; Shigemoto et al., 2006, 2008;
Zhang et al., 2012b, 2014; Shen et al., 2013). These observations
suggest a role of the agrin signaling pathway in NMJ mainte-
nance. At present, two heteroallelic mutations in LRP4 have
been identified in CMS patients: p.Glu1233Lys (c.3697G	A)
and p.Arg1277His (c.3830G	A). They are located at the border
region of the third �-propeller domain (Ohkawara et al., 2014), a
domain that interacts with MuSK (Zhang et al., 2011). These
mutations were shown to diminish agrin signaling, but not Wnt
signaling (Ohkawara et al., 2014). Therefore, diminished agrin
signaling may be a pathophysiological mechanism underlying
LRP4 loss in adult mice.

The time-dependent loss of synaptic agrin and the 90 kDa
fragments, which occurred ahead of other prejunctional and
postjunctional components, after LRP4 ablation in adult mouse
muscles, suggests that LRP4 may regulate the stability of synaptic
agrin, in addition to transducing agrin signaling. Agrin is ex-
pressed in transmembrane and secreted isoforms (Burgess et al.,
2000; Neumann et al., 2001). The secreted isoforms contain a
signal peptide and an N-terminal fragment that binds to laminin

Figure 9. Loss of the 95 kDa agrin fragment in Dox-treated imKO muscle. A, Time course of alteration of various synaptic proteins. Muscle homogenates of indicated mice were subjected to
Western blotting with respective antibodies. B, Quantitative analysis of data in A.
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(SS-NtA-agrin), whereas the transmembrane (TM)-agrin has a
TM domain instead of the SS-Nt fragment (Burgess et al., 1999,
2000; Bezakova and Ruegg, 2003). TM-agrin is expressed in the
brain and may be involved in dendrite development and synap-
togenesis (Annies et al., 2006; Ramseger et al., 2009). SS-NtA-
agrin is enriched at the NMJ (Denzer et al., 1997; Burgess et al.,
1999, 2000). Agrin undergoes various post-translational modifi-
cations, including glycosylation and proteolytic cleavage (Ruegg
et al., 1992; Gesemann et al., 1995, 1996; Burgess et al., 1999,
2000; Bezakova and Ruegg, 2003; Bolliger et al., 2010; Bogdanik
and Burgess, 2011). How these processes are regulated was not
well understood. Mutation of the glycosylation site in agrin re-
duces agrin secretion and causes CMS-like phenotypes in mutant
mice (Bogdanik and Burgess, 2011). Loss of agrin from the SBL
following LRP4 ablation would reduce local agrin signaling
strength and consequently reduced AChR expression, membrane
insertion, and anchoring (Herczeg et al., 1995; Jones et al., 1997;
Bezakova et al., 2001; Moransard et al., 2003; Lin et al., 2008;
Brenner and Akaaboune, 2014). In support of this hypothesis was
the finding that overexpression of muscle agrin was able to rescue
dystrophic phenotypes in laminin�2 mutant mice (Moll et al.,
2001).

Second, LRP4 may regulate proteins that interact with agrin.
For example, APP is enriched at the NMJ and can bind to both
agrin and LRP4 (Akaaboune et al., 2000; Choi et al., 2013). APP–
LRP4 interaction is enhanced by agrin and is thought to be in-
volved in NMJ formation (Akaaboune et al., 2000; Choi et al.,
2013). �1 integrin binds to various basal lamina components,
including agrin, and muscle-specific �1 integrin mutant mouse
displays NMJ defects similar to those in agrin mutants (Gautam
et al., 1996; Martin and Sanes, 1997; Schwander et al., 2004). Of
particular interest is agrin interaction with �-dystroglycan, a cen-
tral component of the dystrophin– glycoprotein complex (in-
cluding utrophin, dystrophin, dystrobrevin, and syntrophin)
(Bowe et al., 1994; Campanelli et al., 1994; Gee et al., 1994;
Sugiyama et al., 1994; Côté et al., 1999). Together with dystro-
phin, dystroglycan levels are significantly reduced in the sarco-
lemma of duchenne muscular dystrophy patients and dystrophic
mdx mice (Ervasti et al., 1990; Ohlendieck and Campbell, 1991;
Ibraghimov-Beskrovnaya et al., 1992; Durbeej et al., 1998). This
complex is thought to link AChRs to the SBL and the intracellular
cytoskeleton (Banks et al., 2003; Shi et al., 2012). Mutations of
�-dystrobrevin and �-syntrophin led to postjunctional destruc-
tion and AChR cluster fragmentation (Grady et al., 2003;
Martinez-Pena y Valenzuela et al., 2011). In zebrafish, dystrogly-
can was shown to cooperate with MuSK in determining the pat-
tern innervation of AChR clusters (Lefebvre et al., 2007).
Whether LRP4 interacts with the dystrophin– glycoprotein com-
plex remains unclear. When LRP4 is ablated in muscles, levels of
�-dystroglycan were not changed in Dox-treated imKO mice.
Therefore, myasthenic deficit here is caused by a dystroglycan-
independent mechanism.

In addition to agrin signaling, reduced levels of LRP4 may
impair Wnt signaling. In vitro studies showed that Wnts could
stimulate AChR clusters in cultured muscle cells in the absence of
agrin, although some Wnts may inhibit agrin-induced clustering
(Barik, 2012; Strochlic et al., 2012; Zhang et al., 2012a; Barik et al.,
2014). Wnt4 mutant mice showed NMJ deficits (Strochlic et al.,
2012). Wnt signaling proteins, such as dishevelled (dvl) and
�-catenin, interact with MuSK and rapsyn, respectively, and are
thought to regulate AChR clustering (Luo et al., 2002; Zhang et
al., 2007). APC, a protein critical for controlling �-catenin stabil-
ity, interacts with AChR (Wang et al., 2003). Disruption of Dvl

function alters AChR clustering in zebrafish and in mice (Hen-
riquez et al., 2008; Jing et al., 2009; Jing et al., 2010; Gordon et al.,
2012). Finally, muscle �-catenin, a critical effector of Wnt signal-
ing in regulating transcription, may direct a retrograde signal for
presynaptic differentiation (Li et al., 2008, Li et al., 2012; Wu et
al., 2012a). These observations support the notion that Wnt sig-
naling may contribute to NMJ formation. As described above,
LRP4 could associate with Wnt signaling modulators (such as
DKK and SOST) (Choi et al., 2009). It could also interact, at least
indirectly, with Wnt (Zhang et al., 2012a). It would be interesting
to know whether Wnt signaling is necessary for NMJ mainte-
nance, and if so, what the underlying mechanism is. An answer to
these questions would require future studies to identify LRP4
domains necessary for agrin, agrin-binding partners, Wnt, and
Wnt signaling modulators. Interestingly, the mutations identi-
fied in patients with the Cenani–Lenz syndactyly syndrome are
located in the center of the third �-propeller domain (Li et al.,
2010), the region that interacts with MuSK. However, these mu-
tations had no effect on agrin-MuSK signaling but rather were
thought to alter Wnt signaling (Ohkawara et al., 2014).
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