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Psychiatric studies often collect longitudinal 
data to characterize the natural history of disease 
in a cohort or to evaluate the effect of behavioral or 
pharmaceutical interventions. For example, in a recent 
partially randomized study comparing escitalopram 
and nortriptyline in the treatment of depression, 
several depression scales were measured weekly over 
the 3-month course of treatment.[1] While the primary 
outcome measure of such studies may be a binary 
indicator of improvement at the end of treatment, 
analysis of the full longitudinal profile that makes 
optimal use of all available data to model rates of change 
over time may be more informative.  For example, in the 
escitalopram/nortiptyline study, analysis of dichotomous 
outcomes adjusted for time participating in the study 
showed no difference between drugs, while analysis of 
the longitudinal profiles did indicate different patterns 
of improvement in the two groups over time.[2]

1. Mixed effects models

Mixed effects models[3] have become the standard for 
analysis of data from longitudinal studies that assess the 
behavior of a single continuous outcome over time.  In 
general, mixed effects models model the average trend 
in a single variable over time while allowing for subject-
specific deviations from this trend.  As an example, 
consider a 2-arm clinical trial (active drug vs. placebo) 
where treatment for depression reduces depressive 
symptoms as measured by the Hamilton depression 
rating scale (HAMD). Each subject has a certain level of 
symptoms when beginning treatment (the intercept), 
and a rate of change in depressive symptoms over time 
(the slope).  If a treatment is effective, the rate of decline 
for subjects randomized to active treatment will be 
different from (greater than) that of those randomized 
to placebo. The focus of analysis is the comparison of 
the average slope for those on active treatment to 
the average slope for those on placebo.  Mixed effects 
models formalize this idea by specifying a subject-level 
model with subject-level parameters which are then 
related to population-level parameters.  In our example, 

we might specify the subject-level model as	

 yij=β0i+β1itij+eij	 (1.1)

where yij is the HAMD score at time j, β0i and β1i are the 
intercept and slope for subject i, and eij is normally (i.e., 
bell-shaped) distributed random noise. Thus, we assume 
that each subject’s HAMD scores at the different follow-
up times have a linear relationship (i.e., are on a straight 
line) over time.  We relate each subject’s intercept and 
slope to a population average intercept and slope: 

β0 i=γ0+αi 0	 (1.2)
β1i=γ1+γ11Xi+αi1

where Xi=1 for subjects assigned to treatment, Xi=0 for 
subjects assigned to placebo, γ0 is the average intercept, 
γ1 is the average slope for placebo patients,  γ1+γ11 is the 
average slope for treated patients, and αi0 and αi1 are 
normally distributed random variables that allow each 
subject’s intercept and slope to differ from the average. 
The effectiveness of the treatment is determined by 
testing the null hypothesis that γ11=0, in which case 
the rate of decline is the same in placebo and treated 
patients.  

The mixed effects model assumes that subjects’ 
intercepts and slopes are relatively homogeneous with 
variation centered around one central line. However, 
there are cases where this may not be a reasonable 
assumption. In a time when ‘personalized medicine’ is 
the goal, it is becoming increasingly clear that many, 
if not most, diseases are not homogeneous.  Different 
subpopulations may have distinct natural histories and 
may respond to treatment in different ways. Thus, models 
that consider the whole population and average across 
multiple subtypes may miss important differences in the 
effects of treatment. Without a prior knowledge of these 
subtypes it can be difficult to account for them. Models 
incorporating latent class are one way of investigating 
this type of unobserved population stratification or 
clustering. Originally developed for cross-sectional data, 
classical latent class models are a type of finite mixture 
model where the focus is to identify a finite number of 
subgroups based on multiple outcomes.[4,5]
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2.  Growth curve mixture models

In the past two decades, many researchers have 
focused on extending latent class models to consider 
grouping subjects based on trajectories or growth 
curves rather than only on cross-sectional data. Growth 
curve mixture models (GCMMs[6]) are a type of latent 
variable model that extend the latent class model to the 
longitudinal setting where subjects are grouped based 
on the observed longitudinal trend over time. (For a 
brief review of latent variable modeling, see Cai[7]). This 
approach assumes that each subject belongs to a certain 
unobserved group (the latent class) and subjects in that 
class have a particular mean trajectory. In essence, each 
latent class has its own mixed effects model. If Ci=k 
indicates that subject i belongs to class k, then we have

                         β0i|(Ci=k)=γ0k+α0i	                              
(1.3)

                         β1i=|(Ci=k)=γ1k+γ11kXi+α1i

where β0i|(Ci=k) and β1i=|(Ci=k) denote the intercept and 
slope for subject i given that the latent class membership 
for subject i is group k. Estimates are obtained for growth 
curve parameters (e.g., intercepts, slopes, etc.) for each 
latent class.  

It is important to note that although the model 
assumes that subjects belong to one of the classes, 
the class membership is unknown and the results of 
the analysis can only assign subjects to a given class 
with a certain probability. To do this, after the model is 
estimated, each subject’s observed data are compared 
with the resulting class-specific curves. The closer the 
subject’s data resemble the class-specific curve, the 
higher the probability of belonging to that class. Based 
on this probability, subjects can be assigned to their most 
likely class and factors associated with class membership 
can be investigated.

GCMMs can be used in many ways.  At their most basic, 
they can be used to identify subgroups whose observed 
trajectories look similar to each other but different from 
the other subgroups. For example, investigators in the 
aforementioned drug trial categorized subjects based 
on their pattern of depressive symptoms during a 12-
week treatment period[2] and identified two classes – 
gradual improvers and rapid improvers. Once patterns 
are discovered, the association of other factors with 
these patterns may provide insight into risk factors for 
an outcome or predictors of improvement. In the drug 
trial, one of the treatments was more prevalent among 
the rapid improvers than the other.  

In randomized trials, the type of interventions 
administered can also be taken into consideration when 
creating the classes. When adding this factor to the 
longitudinal model, the identified classes may differ not 
only with respect to the shape of the average trajectory, 

but also with respect to the magnitude of the treatment 
effect. In conditions that are very heterogeneous, 
the results of this analysis may be able to identify the 
distinct subgroups in which the intervention of interest 
is effective.[8]

Originally developed for single continuous outcomes, 
extensions to the GCMM methodology allow for the 
analysis of categorical outcomes[9] and of multiple 
outcomes.[10,11] GCMMs can also be used to jointly model 
longitudinal processes and distal outcomes, and can be 
an effective way of modeling the relationship between 
biomarkers and event times.[12]

3.  Practical considerations for growth curve mixture 
modeling

Jung and Wickrama[13] provide a good review of 
GCMMs and their implementation. GCMMs require 
specification of the number of latent classes prior to 
fitting the model. The choice of this number is not easy. 
Standard likelihood ratio tests for choosing between 
models cannot be used, but adjustments to the standard 
test that can help in the decision about the number of 
latent classes to be used in the model are available in 
some software packages. Information criteria (e.g., 
Akaike information criteria, or Bayesian information 
criteria) can also be used to compare models to choose 
the number of classes with the best fit. GCMM analysis 
is usually exploratory; the models can become complex 
fairly quickly, so to avoid spurious results or generating 
models with more parameters than the data can 
support, clinical and scientific knowledge should guide 
the modeling.

Software for fitting GCMMs is fairly specialized and 
generally unavailable in standard statistical packages. 
Recently, the R-package LCMM has been developed 
to fit some types of GCMMs including joint models 
for longitudinal and time-to-event data (http://cran.r-
project.org/web/packages/lcmm/). The most widely 
used software is Mplus[14] which provides modeling 
capabilities for an extensive array of GCMMs in addition 
to other latent variable methods such as factor analysis 
and structural equation modeling.  

A special case of GCMMs is latent class growth 
analysis (LCGA)[15,16] which does not allow for departure 
from the average trajectory within each latent class 
(by setting α0i and α1i equal to zero in equation 1.3). 
Thus, in contrast to mixed effects models where each 
subject’s intercept and slope are drawn from a normal 
distribution or GCMMs where they are drawn from a 
mixture of normal distributions, LCGAs allow only for a 
limited set of discrete options (one possibility for each 
class). LCGA can be implemented using the specialized 
SAS procedure Proc Traj.[17] 
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4.  An example

The following simulated example demonstrates the 
uses of GCMMs in the analysis of longitudinal data from 
a clinical trial. The simulated data set contains weekly 
HAMD scores for 100 patients randomized to placebo 
or active treatment for 10 weeks. A standard analysis 
of this data would apply the mixed effects model 
outlined above. The subject-specific trajectories of 
HAMD scores and the estimated population curves for 
placebo and treated patients resulting from this analysis 
are given in Figure 1. On average, placebo patients’ 
HAMD scores decreased by 0.33 points per week, while 
the active treatment groups’ scores declined by 0.54 
points per week.  The difference in rates of decline 
was not statistically significant (p=0.053). While strict 
interpretation of the results would conclude that the 
treatment was not effective, a visual examination of 
the plots shows a substantial number of patients in the 
active treatment arm that had much greater decline 
than average. This suggests that there may be a subset 
of patients for whom the treatment was effective.

A GCMM analysis that allows for differing effects of 
treatment within each class was fit using Mplus.  A model 
with two classes fit best, and subjects were assigned 
to their most likely class with 67 subjects assigned to 
class 1 and 33 assigned to class 2.  Results are displayed 
graphically in Figure 2. Class 1 was categorized by similar 
minimal rates of decline in treated and placebo subjects 
(slopes of -0.105 and -0.087, respectively, p=0.53). In 
Class 2, both treated and placebo subjects declined more 
than in Class 1, but treated subjects improved about 
two-fold more quickly than placebo subjects (slopes 
of -1.545 and -0.754, respectively, p<0.001). Further 
investigation would be warranted to identify baseline 
characteristics that differed between the two latent 
classes; these characteristics would help identify the 
type of patients for whom the drug would be beneficial.  

An alternative GCMM analysis could ignore 
treatment in forming the classes based on the HAMD 
trajectories. Again, a 2-class model fits best, as depicted 
in Figure 3. In this analysis, the model identifies a small 
class of subjects (n=16) whose HAMD scores decline by 
1.49 points per week. A cross-tabulation with treatment 
assignment reveals a significant association between 
class and treatment assignment (p<0.001) with all 16 
improvers being assigned to active treatment. Again, 
post-hoc comparisons of subjects who did and did 
not improve with treatment would help identify the 
demographic and clinical characteristics of patients who 
are most likely to improve.

Figure 1. 
Simulated observed HAMD scores by subject and 
model-estimated curves from the mixed effects model

PLACEBO ACTIVE

CLASS 1:PLACEBO CLASS 1:ACTIVE

CLASS 2:PLACEBO CLASS 2:ACTIVE

LATENT CLASS 1 LATENT CLASS 2

Figure 2. 
Results of a GCMM applied to the same data. Treated
subjects in class 2 have  greater  decline than placebo 
subjects

Figure 3. 
Results of a GCMM ignoring treatment assignment
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5.  Conclusion

Growth curve mixture modeling can be a useful 
analysis tool when it is desirable to identify subgroups 
of patients who differ with respect to the trajectory of 
a longitudinal measurement. GCMMs extend commonly 
used mixed effects methods to allow for multiple classes, 
each with its own mixed effects model. These models 
are useful in observational and experimental studies, 
and they provide a method for identifying subgroups 
of patients who respond differently to interventions in 
randomized trials.
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