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Abstract

Global access to opioid agonist therapy and HIV/HCV treatment is expanding but when used

concurrently, problematic pharmacokinetic and pharmacodynamic interactions may occur. Review

of articles from 1966 into 2012 in Medline using the following keywords: HIV, AIDS, HIV

therapy, HCV, HCV therapy, antiretroviral therapy, HAART, drug interactions, methadone, and

buprenorphine. Additionally, abstracts from national and international meetings and a review of

conference proceedings were conducted; selected reports were reviewed as well. The metabolism

of both opioid and antiretroviral therapies, description of their known interactions, and clinical

implications and management of these interactions are reviewed. Important pharmacokinetic and

pharmacodynamic drug interactions affecting either methadone or HIV medications have been

demonstrated within each class of antiretroviral agents. Drug interactions between methadone,

buprenorphine and HIV medications are known and may have important clinical consequences.

Clinicians must be alert to these interactions and have a basic knowledge regarding their

management.
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Introduction

Opioid dependence, particularly the injection of heroin, and infections with HIV and

hepatitis C (HCV) are explosive, intertwined epidemics that adversely impact tens of

millions of people globally [1–6]. Approximately 5% of the global population, or 230

million people have used drugs[7]. An estimated 15.9 million individuals in 148 countries

inject drugs of abuse; 3 million of these are estimated to be HIV-infected and 9 million

HCV-infected [8]. The link between drug use, particularly drug injection, and HIV/HCV has

been well described since the beginning of the HIV pandemic and the recognition of HCV

[9]. With the advent of medication-assisted treatment (MAT) for opioid dependence, these

inter-related epidemics can now be addressed. Methadone and buprenorphine are effective

for the treatment of opioid dependence, including people who inject drugs (PWID) [10–13].

Similarly, HIV therapy has revolutionized the clinical course of HIV, while recent

developments in HCV treatment promise to bring the possibility of cure to those chronically

infected with HCV [14–16]. Efforts to expand access to and use of both MAT and antiviral

therapies continue to advance, especially in the wake of the HPTN 052 trial validating HIV

treatment as effective HIV prevention [17].

Pharmacological interactions between MAT and antiviral therapies remain a critical issue in

the clinical care and treatment of HIV/HCV infected patients with opioid dependence [18].

We have previously reviewed key interactions between HIV therapeutics and opioid

dependence treatments [19]. The last 6 years, however, have seen the approval of several

new HIV medications, as well as a new class of direct-acting antiviral medications for the

treatment of HCV. These new medications will often be prescribed to individuals who are

receiving opioid pharmacotherapy; therefore, we reviewed the pharmacological data

between methadone/buprenorphine and HIV/HCV therapies with an emphasis on the clinical

implications of these interactions and methods to manage possible interactions. Naltrexone,

due to its primary metabolic pathway of carbonyl reduction and lack of data regarding

interactions with HIV or HCV therapeutics, is not reviewed here.

Methods

We reviewed relevant English language articles identified through Medline, Google Scholar,

and Web of Science since our last review in 2006 through December 2012. Articles were

retrieved using the following keywords: HIV, AIDS, HIV therapy, antiretroviral therapy,

HAART, drug interactions, pharmacokinetics, methadone, buprenorphine, as well as all

currently FDA approved HIV and HCV medications and select compounds that have

advanced to Phase III are included where data is available. Where appropriate, references

from key papers were reviewed as well as were abstracts from selected national and

international meetings 2006 to 2012.

Overview of Drug Disposition

Cytochrome P450 (CYP), through metabolism, and P-glycoprotein (P-gp), through active

cellular transport, perform key roles in drug disposition [20]. To understand the
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pharmacological interactions under review, a basic understanding of these systems is

necessary.

The metabolism of a medication occurs in two phases. In Phase I, medications are altered

chemically, customarily by one or more CYPs. In Phase I, inhibition and induction are of

greatest clinical significance. Specifically, if medication A impedes the CYP enzyme(s)

responsible for the metabolism of medication B, medication A is said to inhibit that CYP(s)

and is an inhibitor of medication B’s metabolism (e.g., ritonavir inhibiting CYP3A4 and

increasing atazanavir plasma levels). Conversely, medication A could stimulate the

synthesis of additional CYP enzyme(s) there by accelerating the metabolism of medication

B. Medication A is then said to be an inducer of the metabolism of mediation B (e.g.,

rifampin at inducing 3A4 and lowering atazanavir plasma levels). Phase II metabolism sees

a medication undergo coupling (e.g., conjugation) with another moiety to typically yield an

inactive metabolite. Inhibition and induction of Phase II enzymes can occur; however, this is

a less common documented mechanism of drug interactions.

Many membrane transporters are now known; however, P-gp remains the most studied

active membrane transporter to-date and impacts medication disposition, including certain

classes of antiviral therapies. Methadone and buprenorphine are not significant substrates of

P-gp; however, norbuprenorphine, an active metabolite of buprenorphine, is a substrate of P-

gp [21–23]. HIV therapeutics which influence P-gp could thereby impact the disposition of

norbuprenorphine and may thereby impact its therapeutic effect [21]. P-gp has been

described as a significant determinant of norbuprenorphine brain exposure and

antinocicpetion [21]. Efflux of norbuprenorphine via P-gp may be important to prevent

respiratory sedation caused by norbuprenorphine [21,24–26]. One recent study has shown

that buprenorphine, due to its higher binding affinity and prolonged receptor occupancy, has

a protective effect on the respiratory depressive effect of norbuprenorphine [26].

Medications that impact norbuprenorphine access to the mu opioid receptor could therefore

potentially impact the degree of respiratory depression experienced.

Although incompletely understood, gender impacts the metabolism of various medications.

Women, for example, have a higher AUC of buprenorphine than men, possibly due to

differences in body composition, as well as potential differences in CYP 3A4 [27].

Overview of Metabolism of Methadone

Methadone is an orally administered, rapidly absorbed, full mu-opioid agonist used for the

treatment of opioid dependence [28]. A chiral drug, methadone is administered as a racemic

of R (d) and S (l) enantiomers with R-methadone having the greater potency at the mu-

opioid receptor [29]. This greater mu-opioid activity of R-methadone was first demonstrated

in animal models [29,30] as was the inactivity of methadone’s primary metabolite, 2-

ethylidine-1,5dimethyl-3,3-diphenylpyrrolidine (EDDP), and 2-ethyl-5-methyl-3, 3-

diphenylpyrroline (EMDP) [31]. These findings are supported by in vitro ligand binding

assays [30,32–34]. S-methadone is a more potent inhibitor of the human ether-a-go-go-

related gene (hERG) K+ gated channels that are important for QTc prolongation [35,36].
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Methadone undergoes N-demethylation to inactive metabolites by a variety of cytochromes

(CYP). In vitro CYPs, primarily 2B6, and 3A4, but also 2C19, 2D6, and 2C8 are involved in

the metabolism of methadone with various studies assigning different degrees of activity to

each CYP [37–48]. Metabolism at CYP 2B6 (S>R), 2D6 (S>R) and 2C19 (R>S) are

stereoselective [39,41,42] and this may help illuminate the variable R/S methadone ratios

reported in the interactions that follow. In vivo studies that phenotyped for CYP3A activity

demonstrated an association between the measured CYP3A activity and methadone or

metabolite concentrations [49–51]. The in vivo role for CYP2B6 has been demonstrated with

genotyping for poor metabolizing (PM) alleles 6*6 and 6*11, which are associated with

significantly higher S-methadone concentrations [52–54]. In addition, the CYP2B6 PMs

required lower doses of methadone [55–57]. Higher S-methadone concentrations, via

inhibition of (hERG) K+ gated channels, could also result in QTc prolongation and torsades

de pointes and may help explain a post mortem analysis linking the 2B6*6 allele to

methadone-associated deaths [36,58,59]. Although potentially of clinical importance, a

commercial test for this allele is not currently available. Comparison of PM and extensive

metabolizers (EM) of 2B6 revealed that 2B6*5 was overrepresented in subjects with lower

methadone levels suggesting increased 2B6 activity [54]. Comparison of CYP2C9 and 2C19

EMs and PMs did not reveal involvement of these enzymes, however, the numbers for PMs

were relatively small [53]. Comparison of CYP2D6 EMs and PMs also did not reveal

significant involvement in CYP2D6 ultra-metabolizers; however, increased metabolism was

noted [51,60]. These studies suggest that CYPs that had in vitro methadone metabolizing

activity, but did not appear quantitatively important, may contribute in vivo if they are

induced. This may explain why in vivo methadone metabolism is induced by ritonavir and

nelfinavir when CYP3A activity is significantly inhibited by these protease inhibitors

[61,62], as both induce CYPs 1A2, 2B6 and 2C9 [63].

Plasma concentrations of methadone follow a bi-exponential curve: the transition of

medication from blood to tissue corresponds to the rapid α-phase, while the slower

elimination corresponds to the β-phase [64]. Inactive metabolites and some unmetabolized

methadone are excreted in the bile and urine [64]. Although not normally thought of as an

inhibitor, a recent in vivo study suggests that methadone is associated with inhibition of CYP

2D6 and UDP-glucuronosyl transferase (UGT) 2B4 and 2B7 [65]. The clinical significance

of this inhibition is currently unknown. Methadone is both a substrate and a mechanism-

based inhibitor of CYP 19 (aromatase), which normally converts testosterone to estradiol

[66].

Substantial inter-individual variation exists in methadone’s metabolism as evidence by a

half-life range of 5 to 130 hours. Based on an average half-life of 22 hours, steady state is

achieved after roughly 5 days [20,67]. Changes in plasma concentrations of methadone,

however, do not necessarily predict the pharmacodynamic response. A similar change in

plasma concentrations may produce withdrawal symptoms in one patient and none in

another. Such unpredictability is multi-factorial and may be the result of varying protein

displacement, stereospecific binding, metabolism and transporters (e.g., P-gp or genetic

expression of CYP isoenzymes) [42,68]. The clinical consequences of this variability is that
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patients require ongoing observation once a new medication is started for possible

alterations in the effect of methadone as the predicted effects may or may not occur.

Overview of Metabolism of Buprenorphine

Buprenorphine is extensively metabolized through the N-dealkylation of its N-

cyclopropylmethyl group to norbuprenorphine and both are glucuronidated [69]. The N-

demethylation was first shown to be carried out by CYP3A4 [70,71]. The involvement of

CYP2C8 was subsequently established [72,73]. Hydroxylation of the ring and alkoxy side

chain are also performed by CYP 3A4 and 2C8 [73,74]. While these hydroxyl-metabolites

are responsive to inducers and inhibitors of metabolism [75], they do not appear to be of

quantitative importance to the clearance of buprenorphine [73,74]. The glucuronidation of

buprenorphine is primarily performed by UGT 1A1 and 2B7 with contributions from 1A3

and 2B17; that of norbuprenorphine is performed by 1A1 and 1A3 [76,77]. Buprenorphine

and metabolites are mainly excreted into the bile; here they may undergo enterohepatic

circulation [69]. About 10% of the daily dose of buprenorphine is excreted in the urine, with

high concentrations of the norbuprenorphine glucuronide, lower concentrations of

buprenorphine glucuronide and norbuprenorphine and very low concentrations of

buprenorphine [78]. In vitro data suggest that buprenorphine and norbuprenorphine may

inhibit CYP2D6 and 3A4; however, they are not predicted to cause significant interactions

at therapeutic concentrations [79,80].

In animal models, an intravenous dose of norbuprenorphine had only 1/72nd the effect of

buprenorphine in the rat tail-flick test; equimolar norbuprenorphine was slightly more potent

after intraventricular injection [81]. In mice, intravenous norbuprenorphine was 1/3rd as

potent as buprenorphine in the writhing suppression test, a measure of peripheral activity

[82]. A recent study found both norbuprenorphine and buprenorphine-3-glucuronide (B3G)

were about 1/5th as potent as a 1/3rd lower dose of buprenorphine in the mouse tail-flick

model a measure of central activity; norbuprenorphine-3-glucuronide (N3G) had much less

activity [83]. Buprenorphine and norbuprenorphine displacement of ligands from opioid

receptors were first compared using expressed rat mu, rat delta, human kappa and human

nociception receptors. Norbuprenorphine was equipotent for mu, but approximately one-

tenth as potent with delta and kappa with all IC50s in the (sub)nanomolar range. The IC50 for

nociception ligand displacement was in the micromolar range for both. The IC50 for

downstream 35S-GTP subunit binding was 20-, 180- and 40-fold lower for buprenorphine

with MOP mu-, kappa and nociception-receptors; only norbuprenorphine had activity at the

delta receptor [82]. Displacement by buprenorphine, norbuprenorphine, B3G and N3G were

subsequently compared using expressed human mu, delta, kappa and nociception receptors

[83]. The relationship between buprenorphine and norbuprenorphine was generally similar

to the previous findings [82]. B3G also caused displacement with a reported mu-receptor Ki

close to buprenorphine’s. The B3G displacement curve, however, was biphasic so the

Cheng-Prusoff correction used was not appropriate [83]. The in vitro and in vivo differences

between buprenorphine and metabolites suggest access to the CNS may play an important

role in buprenorphine metabolite activity. The role that P-gp may play in CNS mediated

effects, such as respiratory depression, was discussed earlier.
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Interaction of Antiviral Medications with Drug Metabolizing Enzymes

Before considering specific interactions with opioids, it is necessary to first understand the

metabolism of specific HIV therapies and their interactions with drug metabolizing

enzymes. Because of similarities within groups, the following discussion is grouped

according to the class of medication discussed.

1. Nucleoside Reverse Transcriptase Inhibitors (NRTI)

The antiviral effectiveness of this class is associated with the intracellular concentration of

the activated form of the medication (e.g., zidovudine-TP). The measurement of intracellular

concentrations is costly and most studies prefer to calculate the area under the curve (AUC)

of the parent compound which correlates satisfactorily with intracellular concentrations [84].

Current data suggests that NRTIs are not inducers or inhibitors of hepatic cytochromes [85].

While zidovudine and abacavir are hepatically metabolized, didanosine, lamivudine,

stavudine, tenofovir, and zalcitabine are primarily excreted renally [86–88]. Zidovudine and

lamivudine are both substrates of P-gp [89] and abacavir and tenofovir are both inhibitors of

P-gp, but to a lesser extent than the NNRTIs and PIs [90].

2. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI)

The antiviral effectiveness of this class is associated with intracellular concentrations that

are in equilibrium with their plasma concentration (e.g., Cmin). Nevirapine induces

metabolism of substrates at CYP 3A4 and 2B6, [91,92] is metabolized by these same CYPs

and, to a far lesser degree, by 2D6 [93,94]. Similarly, efavirenz induces CYP 3A4 [95] and

2B6, [96] and in vitro undergoes metabolism by 3A4 and 2B6. [97] Although inhibition is

rapid, induction is slower because it requires the synthesis of new enzymes and is influenced

by the potency of the inducer and its half-life [98]. Unlike nevirapine, however, under in

vitro conditions efavirenz inhibits 3A4 [99]. Although infrequently used, delavirdine

requires mention because it is a significant inhibitor of 3A4 [100]. Etravirine is metabolized

by CYP 3A4, 2C9 and 2C19 followed by glucuronidation. In vitro, etravirine is an inhibitor

of CYP 2C9 and P-gp while in vivo it is an inducer of CYP 3A4 and an inhibitor of the CYP

2C subfamily, including CYP 2C9 [101–103]. Rilpivirine is a substrate and inducer of CYP

34A in vitro; however, based on in vivo data mild induction of CYP 3A was reported at 300

mg once daily and a clinically relevant affect on CYP 3A is not considered likely at the

chosen doses of 25mg and 75mg once daily [104]. Lersivirine is predominantly cleared via

glucuronidation by UGT 2B7 with oxidation by CYP 3A4 being of additional importance

[105]. Lersivirine is a modest inducer of CYP 3A4 in vivo though it is considered unlikely to

induce metabolism of other substrates cleared by CYP 3A4 at clinical doses [106].

The NNRTIs inhibit P-gp, in order of decreasing intensity as follows: delavirdine >

efavirenz > nevirapine [90]. The clinical significance of this inhibition, which could affect

methadone is doubtful since both efavirenz and nevirapine typically result in opioid

withdrawal with methadone [107,108] suggesting P-gp inhibition was not clinically

meaningful. Similarly, efavirenz decreases [109] and nevirapine has no effect [110] on

norbuprenorphine concentrations, suggesting that P-gp inhibition by efavirenz and

nevirapine is not clinically significant.
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3. Protease Inhibitors (PI)

The effectiveness of this class correlates with their minimum plasma concentration (i.e.,

Cmin) [111]. Most medications in this class are principally metabolized by CYP 3A4 [112].

Interestingly, they inhibit 3A4 to varying degrees and are listed, in order of decreasing

intensity as follows: ritonavir > indinavir = nelfinavir = amprenavir > saquinavir [113].

Darunavir, like ritonavir, is a substrate and inhibitor of CYP 3A4; a clinical study of

darunavir combined with ritonavir observed induction of CYP 2C9 and CYP 2C19 and

inhibition of CYP 2D6; this was potentially attributable to ritonavir [114]. Tipranavir

predominately induces CYP 3A4 [115]. Although CYP 3A4 is a common site of interactions

in this class, many of these medications interact at other sites. Ritonavir is a good example

as it both inhibits CYP 2D6 and induces CYP 1A2. These additional interactions further

complicate predictions of drug-drug interactions [116].

The following PIs inhibit P-gp: nelfinavir, ritonavir, tipranavir, saquinavir, amprenavir,

atazanavir, and lopinavir [90,117]. Each of these inhibit P-gp to a greater extent than

efavirenz and nevirapine. Recent in vitro work suggests that darunavir may induce P-gp

synthesis that could further influence drug disposition [118].

4. Integrase Inhibitors (INIs)

Although it is unlikely that raltegravir will influence the pharmacokinetics of other

therapeutics given its unique metabolic pathway, drug–drug interactions are expected to

occur with co-administration of medications that modulate the UGT1A1-mediated

metabolism of raltegravir [119]. Atazanavir, for example, inhibits UTG1A1 and increases

raltegravir plasma concentrations [120]. The major route of elvitegravir metabolism is

CYP3A4/5, allowing for boosting with ritonavir or cobicistat, with UGT1A1/3 being a

minor route of metabolism [121].

5. CCR5 Antagonists

Maraviroc is an inhibitor of the chemokine receptor, CCR5, and is primarily metabolized

through CYP3A4 and is a substrate of P-gp [122]. It does not inhibit the metabolism of

midazolam, a 3A4 probe, when co-administered suggesting that it is not an inhibitor of 3A4

[123]. Rifampin, a known inducer of 3A4, however, reduces the AUC of maraviroc by 70%

[124]. Potent inhibitors of 3A4, such as ritonavir, increase maraviroc plasma concentrations

and half-dosing of maraviroc to 100 mg bid may be necessary [125].

6. Pharmacoenhancers

Both ritonavir and cobicistat function as pharmacoenhancers; that is, they are both potent

inhibitors of drug metabolism thereby increasing plasma concentrations of other medications

of interest. Ritonavir, an HIV protease inhibitor, is a potent inhibitor of CYP3A4 [126].

Cobicistat, a structural analogue of ritonavir, is a potent mechanism-based inhibitor of

CYP3A4/5 without activity against HIV [127]. Cobicistat is a moderate inhibitor of

CYP2D6 and recent data also suggest a lack of inductive effects of cobicistat on CYP2C19

and CYP2B6 [128]. Although cobicistat is currently only co-formulated with elvitegravir,

emtricitabine and tenofovir, there are ongoing studies examining co-formulation with
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atazanavir and darunavir. Most protease inhibitors are now dosed with a pharmacoenhancer,

chiefly by ritonavir, as these boosted PIs have greater efficacy and, typically, simpler dosing

than when non-boosted. As a result of their frequent use, these CYP3A4 inhibitors often

complicate the metabolism of other medications.

Interaction of Antiviral Medications with Opioid Agonist Therapies

There are currently six FDA-approved classes of medications for the treatment of HIV with

other classes under development, and one FDA-approved class of antiviral agents targeting

HCV viral replication (i.e., HCV protease inhibitors). Interactions with opioid agonist

therapies have been studied and documented in four ARV classes: NRTIs, NNRTIs, PIs, and

INIs. In addition, the HCV protease inhibitors and pegylated interferon alfa 2a and 2b have

been examined with opioid agonists.

Interactions between Methadone and Specific Antiretroviral Medications

(Table 1)

1. Nucleoside Reverse Transcriptase Inhibitors (NRTIs)

Detailed pharmacokinetic studies of the interaction between methadone and zidovudine

alone [129–131] or zidovudine in combination with lamivudine [132] have been performed

in human subjects. Despite patient complaints of opioid withdrawal, zidovudine did not

affect methadone concentrations; however, methadone increased zidovudine AUC by

roughly 40%. The authors speculated that methadone impacted zidovudine glucuronidation

and, to a lesser extent, decreased renal excretion of zidovudine. Although the clinical

significance of this remains uncertain, healthcare providers should observe patients for

zidovudine-associated effects (e.g., headache, and anemia), especially those that patients

may mistake for opioid withdrawal (e.g., abdominal pain and irritability).

The fixed dose co-formulation of lamivudine/zidovudine (Combivir®) was assessed in 16

subjects and it did not appreciably alter the AUC of methadone [132]. Although not

specifically examined, methadone is unlikely to impact lamivudine metabolism since 70%

of lamivudine is excreted unchanged in the urine.

Both stavudine and didanosine have been examined with methadone; however, both

compounds are minimally prescribed due to their propensity for adverse events. In

summary, neither significantly altered methadone concentrations or resulted in opioid

withdrawal [133]. Although methadone lowered stavudine concentrations, this reduction is

not believed to be clinically relevant. While the buffered formulation of didanosine is

contraindicated with methadone due to a significant reduction in didanosine concentrations

(see Table 1 for details), the capsule lacks a significant interaction [134].

Unlike other NRTIs, abacavir is principally metabolized by alcohol dehydrogenase and

glucuronidation [135,136]. No significant changes in pharmacokinetic parameters were

reported and no dose adjustments are required when co-administered with methadone [137].
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Tenofovir did not significantly impact the pharmacokinetics of methadone in 13 patients on

methadone for a minimum of 2 weeks [138]. Because tenofovir is not a CYP substrate and is

predominately excreted in the urine, it was speculated that methadone would have little

impact upon tenofovir concentrations and tenofovir concentrations were therefore not

obtained [139].

2. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

Several clinical reports have demonstrated that nevirapine can precipitate opioid withdrawal

in methadone patients [140–144]. To investigate these clinical reports, 8 HIV infected

methadone patients were formally studied upon the initiation of nevirapine based HIV

therapy (NRTIs used included stavudine, didanosine, zidovudine, lamivudine and abacavir).

Patients were dosed with 200 mg of nevirapine for the first two weeks of HIV therapy as

recommended by guidelines, and pharmacokinetic assessments were repeated at day 14

before the dose was increased to 400 mg. Between days 8–10, 6 patients experienced opioid

withdrawal and required a mean increase in methadone of 16% while methadone AUC

decreased by 47% [108]. Stocker and colleagues provided similar pharmacokinetic data for

the induction of methadone metabolism whether it was administered as the racemic mixture

or R-enantiomer [145].

About the same time period, methadone patients started on efavirenz also began to report

withdrawal symptoms [107,146,147]. To investigate these clinical reports, 11 HIV infected

methadone patients were formally studied upon the initiation of efavirenz based HIV

therapy (NRTIs used were not reported). Between days 8–10, 9 patients experienced opioid

withdrawal and required a mean increase in methadone of 22% while methadone AUC

decreased by 43% [107]. Recent work to elucidate the mechanism of this interaction pointed

to efavirenz induction of hepatic CYP 2B6. This study also found that efavirenz induced

hepatic CYP 3A4, gastrointestinal 3A4/5 and efflux transporters [46]. Not surprisingly, the

development of opioid withdrawal can prompt methadone patients to resume heroin use and

possibly discontinue HIV therapy [148]. Recognizing and addressing such interactions is a

clear safety concern.

Delavirdine co-administration with methadone for 7 days resulted in a 19% increase in

methadone AUC without clinical consequences, possibly due inhibition of CYP3A4.

Methadone has a long half-life and it is unclear if prolonged co-administration of delavirdine

and methadone would result in larger increases in AUC and the development of clinical

symptoms; therefore, the co-administration of these medications should be undertaken

judiciously and with close oversight [149]. A separate study demonstrated that methadone

does not significantly effect delavirdine’s pharmacokinetics [150].

Etravirine was studied at a lower dose (100 mg BID) than the currently approved dosing

(200 mg BID) in an effort to prevent the development of severe opioid withdrawal

symptoms caused by the anticipated induction of CYP3A4. Surprisingly, the authors

observed an 8% increase in the AUC of the pharmacologically active R-methadone isomer.

At this modified etravirine dose, no methadone or etravirine dose adjustments were

necessary [151].
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Rilpivirine resulted in a 22% reduction in R-methadone AUC when studied in 13 HIV

negative subjects receiving methadone maintenance. Although no withdrawal symptoms

were seen in this small cohort, the authors caution that patients should be monitored for

opioid withdrawal as some patients may require dose adjustments [152].

Lersivirine was studied in 13 HIV-negative subjects receiving methadone maintenance. No

clinically relevant change in R/S-methadone exposure resulted from co-administration. No

opioid withdrawal symptoms were observed when lersivirine was co-administered with

methadone [153].

3. Protease Inhibitors (PIs)

Most PIs do not appear to have clinically meaningful effects upon methadone levels.

Ritonavir [154], indinavir [45,155], nelfinavir [156], amprenavir [157], atazanavir [158],

fosamprenavir [159], and the combination of saquinavir/ritonavir (400/400 mg b.i.d.) [160]

and (1600 mg/100 mg) [161] have been studied and changes in dosing of methadone do not

appear to be needed with any of these agents. A case report of nelfinavir resulting in opioid

withdrawal, however, is an important example that the short duration of these studies and

very select patient population does not rule out the possibility that opioid-related effects

might develop over time or in other populations [162].

Lopinavir/ritonavir requires a more detailed examination due to varying reports in the

literature. Clarke and colleagues enrolled 8 HIV/hepatitis C co-infected methadone patients

who were starting lopinavir/ritonavir based HIV therapy (NRTIs used included stavudine,

didanosine, zidovudine, and lamivudine). Despite a significant reduction in methadone AUC

and Cmax of 36% and 44%, respectively, none of the patients experienced opioid withdrawal

during the study and during the six week follow-up period [163]. Stevens and colleagues

prospectively followed 18 HIV-infected methadone patients upon initiation of lopinavir/

ritonavir as part of HIV therapy and found that none of these individuals experienced opioid

withdrawal [164]. McCance-Katz and colleagues, however, examined lopinavir/ritonavir

and ritonavir alone in 15 HIV-negative methadone patients. Reductions in AUC and Cmax

were reported at 26% and 28%, respectively. Despite lower reductions than Clarke and

colleagues, 4 patients (27%) experienced symptoms consistent with opioid withdrawal on

the Objective Opioid Withdrawal Scale (OOWS). Interestingly, all 4 had sub-therapeutic

methadone troughs (less than 200 μg/L). To delineate the etiology of the reduction in

methadone levels, patients underwent a second examination with ritonavir alone at 100 mg

twice daily (the dose used in the lopinavir study). No significant reductions in methadone

AUC occurred with ritonavir alone leading the authors to conclude that lopinavir was

responsible for the reductions and the symptoms of withdrawal reported in the lopinavir/

ritonavir study [154]. Importantly, the side effects of lopinavir/ritonavir are similar to opioid

withdrawal (e.g., abdominal cramping, diarrhea, nausea, and body aches) [165]. The two

studies that did not reveal opioid withdrawal were populated with HIV infected subjects

with prior experiences taking HIV therapy. It is possible that differences in the assessments

of opioid withdrawal symptoms and/or differences in how they were perceived by subjects

(e.g., differential attribution of symptoms to HIV therapy versus methadone) between the

studies may have contributed to the differences in symptoms reported. Ongoing clinical
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studies have supported the lack of withdrawal symptoms in methadone patients who receive

lopinavir/ritonavir [166]. It is important to note, however, that in the McCance-Katz and

colleagues study, the subjects that experienced withdrawal did have lower methadone

troughs suggesting that their symptoms may indeed be due to opioid withdrawal. Clinicians

must listen carefully to patients who report symptoms consistent with opioid withdrawal and

strive to define the etiology and frequency, and work with the patient to appropriately

manage them.

A formal drug-drug interaction study between tipranavir boosted with ritonavir and

methadone has not been published. The package insert, however, reports that 500 mg of

tipranavir boosted with 200 mg of ritonavir can result in a 50% decrease in methadone

plasma concentrations and, as a result, methadone dose adjustments may be required [167].

Reductions of 20% or less are unlikely to result in clinically relevant interactions. It is

important to note that this study occurred in opioid-naïve volunteers who were initially

started on tipranavir with ritonavir until steady state and were then given a single 5 mg dose

of methadone [168]. The generalizability of this study for methadone maintenance patients

remains unclear and until more experience is obtained with methadone patients taking

tipranavir, healthcare providers should closely monitor these patients for opioid withdrawal.

Darunavir and methadone were co-administered in 16 subjects where a reduction in Cmin,

Cmax, and AUC were observed by 15%, 24%, and 16%, respectively. Although methadone

doses were not increased in subjects, the authors suggest that these reductions could

potentially lead to symptoms of opioid withdrawal and patients should be observed

accordingly [169].

4. Integrase Inhibitors (INIs)

Raltegravir has been studied in methadone-maintained patients and had no significant effect

on the pharmacokinetic parameters of methadone [170]. Raltegravir’s absorption is

diminished by an acidic stomach environment [171]. Despite prior reports showing that

methadone’s slowing of GI transit time could affect acid labile medications, as classically

demonstrated with buffered didanosine [133], methadone did not have any significant effect

on the pharmacokinetic parameters of raltegravir.

Elvitegravir boosted with cobicistat was studied in 11 methadone maintained subjects and

no significant differences were found in the AUC, Cmax, and Cmin of both R- and S-

methadone. Methadone did not have any significant effect on the pharmacokinetic

parameters of elvitegravir boosted with cobicistat. No dosage adjustments are required when

elvitegravir/cobicsistat is co-administered with methadone [128].

5. CCR5 Antagonists

Maraviroc has not been studied with methadone. Maraviroc is primarily metabolized by

CYP3A4 and does not inhibit or induce 3A4 [123]. As a result, significant pharmacological

interactions were felt to be improbable and to-date there have not been any case reports in

the literature to suggested otherwise. No dosage adjustments are suggested when maraviroc

is co-administered with methadone.
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Interactions between Buprenorphine and Specific Antiretroviral

Medications

Buprenorphine, unlike the full agonist methadone, is a partial μ-opioid receptor agonist that

appropriately credentialed physicians may prescibe for opioid dependence in primary care

settings. This has allowed for the integration of buprenorphine within HIV clinical settings

[15,172,173] and the need for a broader understanding of pharmacological interactions

between buprenorphine and HIV medications.

1. Nucleoside Reverse Transcriptase Inhibitors (NRTIs)

Fewer NRTIs have been studied with buprenorphine. Didanosine, lamivudine and tenofovir

have no significant effect on the pharmacokinetics and pharmacodynamics of

buprenorphine, and buprenorphine does not effect their pharmacokinetics [174].

Buprenorphine does not significantly alter the pharmacokinetics and pharmacodynamics of

zidovudine, and none of the patients reported symptoms consistent with opioid withdrawal

[131]. Of note, buprenorphine plasma concentrations were not obtained in the zidovudine

study.

2. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

Nevirapine did not have a significant effect on the pharmacokinetics and pharmacodynamics

of buprenorphine [110]. Efavirenz, however, significantly reduced the AUC of

buprenorphine by approximately 50% without precipitating symptoms of opioid withdrawal

[109]. The higher binding affinity of buprenorphine at the mu-opioid receptor may be the

etiology of this pharmacodynamic response. Methadone, which has a lower binding affinity,

saw a similar reduction in AUC with efavirenz, but 80% of patients had precipitated

withdrawal (see earlier discussion above). Buprenorphine may have remained bound to

opioid receptors despite a reduction in buprenorphine plasma levels due to its higher binding

affinity, thereby preventing opioid withdrawal [175]. This data from the efavirenz

interaction is encouraging and suggests buprenorphine may be more ‘forgiving’ with

reductions in plasma concentrations and have fewer occurrences of opioid withdrawal than

methadone. In contrast, delavirdine, increased buprenorphine AUC by 400%. This increased

exposure to buprenorphine was not, however, associated with any adverse effects; however,

the authors caution on the co-administration of buprenorphine and delavirdine as effects

beyond the 7 days of the study are unknown [109].

3. Protease Inhibitors (PIs)

Buprenorphine appears to have a potential interaction with atazanavir that can lead to

oversedation in some individuals [176,177]. Buprenorphine can be used with atazanavir,

however slower upward titration of dosing is advised with monitoring. In a recent study,

however, a lack of oversedation was seen in a prospective cohort of HIV-infected opioid

dependent patients on buprenorphine [178]. This study, however, occurred after the previous

publications cautioning providers on the rate of build-up and it is unclear if the lack of

oversedation was the result of a slower upward titration or a lack of effect [179]. The

package insert for atazanavir states that buprenorphine should not be co-administered with
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unboosted atazanavir due to concerns that buprenorphine may decrease atazanavir plasma

concentrations [180]. The only published examination of buprenorphine and unboosted

atazanavir, however, did not reveal a statistically significant difference between atazanavir

concentrations before and after the addition of buprenorphine [177].

The protease inhibitors darunavir/ritonavir [169,181], fos-amprenavir/ritonavir [181],

lopinavir/ritonavir [182,183], and nelfinavir [183] have been studied with buprenorphine

and found to be without clinically meaningful pharmacokinetic and pharmacodynamic

interactions. Ritonavir by itself caused a 1.57-fold increase in buprenorphine AUC, but this

was without any significant pharmacodynamic changes [183]. Buprenorphine reduced

tipranavir AUC by 19% when compared to historical controls; however, the clinical

significance of this is unknown. Tipranavir significantly altered the disposition of

norbuprenorphine without producing a pharmacodynamic effect [184]. This reduction in

norbuprenorphine concentrations is suggestive of a combined inhibition of the UGT 1A

family and CYP 3A4 that spares UGT 2B7 leading to a shunting of buprenorphine away

from the production of norbuprenorphine and towards buprenorphine-3-glucuronide [185].

4. Integrase Inhibitors (INIs)

The interaction of buprenorphine with raltegravir was studied in 12 individuals who had

been on a stable buprenorphine dose for at least 3 weeks. Patients were administered

raltegravir 400 mg twice daily for a minimum of 4 days and then underwent

pharmacokinetic and pharmacodynamic assessment. Raltegravir did not significantly change

the AUC, Cmin and Cmax of buprenorphine or norbuprenorphine, and buprenorphine did not

significantly impact upon the pharmacokinetic parameters of raltegravir. No dosage

modifications are required for buprenorphine or raltegravir when co-administered [186].

Elvitegravir with cobicistat was studied in 17 individuals on chronic buprenorphine/

naloxone treatment. The AUCs of buprenorphine and norbuprenorphine increased by 35%

and 42%, respectively. This increase in AUC was not clinically meaningful and patients did

not have evidence of opioid withdrawal or excess [128].

5. CCR5 Antagonists

Maraviroc has not been studied with buprenorphine. Maraviroc is primarily metabolized by

CYP3A4 and does not inhibit or induce 3A4 [123]. As a result, significant pharmacological

interactions were felt to be improbable as buprenorphine is also primarily metabolized by

3A4 and to-date there has not been any case reports in the literature to suggested otherwise.

No dosage adjustments are suggested when maraviroc is co-administered with

buprenorphine.

Interactions between Hepatitis C Antivirals and Methadone or

Buprenorphine (Table 2)

Until recently, the treatment for HCV consisted of the combination of ribavirin and

pegylated interferon alpha. Due to reports of the symptoms of opioid withdrawal during

interferon therapy, three studies were conducted to examine a possible interaction between
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methadone and interferon. These studies revealed that both pegylated interferon alpha 2a

and 2b had an increase in methadone plasma AUC by 10 to 15%. The symptoms that were

misinterpreted by the patient as opioid withdrawal were attributed to the interferon itself

[187–189]. A pharmacokinetic interaction study between buprenorphine and interferon

alpha has not been conducted. Ribavirin co-administered with either methadone or

buprenorphine has not undergone formal pharmacokinetic and pharmacodynamic

examination.

Telaprevir and boceprevir are PIs used for the treatment of HCV. Telaprevir is strongly

inhibited by ritonavir likely through inhibition at CYP3A4 [190]. Boceprevir is

predominantly metabolized by aldo-keto reductases to an inactive, ketone-reduced

metabolite; however, boceprevir is a strong reversible inhibitor of CYP3A4 and may interact

with substances that use CYP3A4 as their predominant metabolic pathway [191].

Methadone interactions with telaprevir dosed at 750 mg every 8 hours were studied in 16

subjects. After 7 days of co-administration a 29% reduction in R-methadone AUC was

observed; however, no opioid withdrawal was observed in this group. The authors

speculated that the lack of withdrawal was evidence that the fraction of unbound R-

methadone did not change significantly [192]. A similarly designed study in 13 patients over

7 days was conducted to examine interactions with buprenorphine. No significant

differences in the AUC of buprenorphine or norbuprenorphine were observed, and opioid

withdrawal did not occur. Based on this data, telaprevir can be safely dosed in patients on

methadone or buprenorphine [193].

Boceprevir is a potent inhibitor of CYP3A4/5. Boceprevir dosed 800 mg every 8 hours was

studied in 10 methadone patients and demonstrated a reduction in the AUC of both R- and

S-methadone of 15% and 22%, respectively, without clinical evidence of opioid withdrawal.

The slight reduction in methadone cannot be explained based on the inhibition of 3A4/5 by

boceprevir. Boceprevir was studied in 11 buprenorphine/naloxone patients and demonstrated

an increase in the AUC of buprenorphine and naloxone of 19% and 33%, respectively,

which was not statistically significant. Norbuprenorphine was significantly reduced by 65%

with the addition of boceprevir [194]. The increase in buprenorphine and the reduction in

norbuprenorphine are reminiscent of the tipranavir/ritonavir inhibition of 3A4 and the

shunting of buprenorphine metabolism away from norbuprenorphine. [185]. Based on this

data, boceprevir can be safely dosed in patients on methadone or buprenorphine.

Sofosbuvir (GS-7977) is an oral uridine nucleotide analog polymerase inhibitor of HCV

viral replication. Fourteen subjects on methadone were studied with sofosbuvir 400 mg once

daily for 7 days [195]. There were no significant changes in the AUC of both S-methadone

and R-methadone. Methadone did not significantly impact the AUC of sofosbuvir and the

two can be safely co-administered based on this data. No published data examines this

investigational compound with buprenorphine.

TMC435 is an inhibitor of the NS3/4A proteases of HCV. Twelve subjects (11 of which had

all time points available) on methadone maintenance were studied with TMC435 once daily

for 7 days [196]. No significant differences in methadone plasma concentrations occurred.
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Interestingly, a reduction in the AUC of TMC435 was noted compared to historical controls,

but did not reach statistical significance. Given the small sample size of the study it is not

known if additional subjects would have made the difference reach statistical significance.

Methadone and TMC435 can be safely co-administered based on this data. No published

data examines this investigational compound with buprenorphine.

HIV/HCV co-infection is a particular challenge for potential drug-drug interactions in

patients on methadone or buprenorphine. Studies are lacking on multi-drug interactions such

as with HIV and HCV medications in patients on methadone or buprenorphine maintenance

therapy. As therapies continue to grow for the treatment of both infections, ongoing

pharmacological studies will be important to ascertain possible interactions among multiple

medications and the risk of serious adverse events such as QTc prolongation (discussed

below).

Clinical Management of Opioid Withdrawal or Excess

Understanding the clinical significance of drug-drug interactions between HIV/HCV

medications and pharmacological therapies for opioid dependence, healthcare providers

should be able to identify and provide assistance to individuals in opioid withdrawal or

excess (Table 3 summarizes symptoms). Several open access questionnaires are available to

assist healthcare providers in quantifying symptoms, including the Clinical Opioid

Withdrawal Scale (COWS) and the Subjective Opioid Withdrawal Scale (SOWS) [197].

It is first of all important to understand that some changes in plasma concentrations do not

incur any clinical symptoms. Indeed, dose changes of methadone up to 20% may result in no

clinical symptoms and this may help explain why, though an interaction was predicted to

occur, this buffer resulted in a lack of clinical symptoms. Typically changes in plasma

concentrations of 25% or more are required for clinical symptoms.

As with all adverse reactions, however, healthcare providers must examine all possible

etiologies before assuming causation is related to a change in opioids. Once other etiologies

are excluded, however, an adjustment in opioid dose may be required. Although this review

has summarized existing data, it must be stressed that these studies have limitations. First,

these studies have small numbers of patients and may not be generalizable to all populations.

Second, these studies focus on single drug-drug interactions; however, the patient is

frequently taking several medications that have not been studied when ingested

simultaneously. This is particularly an issue for patients on methadone/buprenorphine given

the high prevalence of psychiatric co-morbidity and possible interactions between

psychotropic medications and methadone/buprenorphine [14,198]. Third, these studies

typically exclude patients with many of the common abnormalities that HIV/HCV patients

experience such as hepatic and renal impairments. Finally, healthcare providers must be

attentive to patients who may experience an adverse event related to a change in opioid

pharmacology that has yet to be described.

Most HIV/HCV care is provided outside of addiction treatment settings; therefore,

coordination between the addiction treatment program and the HIV/HCV clinical team will

be necessary to address opioid interactions that may occur. Prior to initiating a new
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medication, the HIV/HCV clinical providers should be in contact with the addiction

treatment program to alert the latter of a possible medication interaction and the kind of

interaction to expect (e.g., withdrawal or excess) upon the initiation of a new antiviral

medication. The timing of symptom development is variable and depends upon a wide

assortment of factors including the strength of the medication’s induction or inhibition

properties. Inhibition of an enzymatic reaction is rapid; beginning once the inhibitor (e.g.,

ritonavir) is started. Symptoms resulting from inhibition (typically opioid excess), therefore,

appear typically on the day of medication initiation. Fluconazole [199] is a classic example

of inhibition and opioid excess in patients on methadone. In addition to the classic

symptoms of respiratory depression, inhibitors will impact other dose dependent effects that

may be clinically significant, such as prolongation of QTc.

Induction, however, requires the synthesis of new enzymes and will therefore take several

days (depending on the strength of the inducer) [20]. The precise timing and quantity of

dose adjustments is unknown; however, the following recommendations are consistent with

expert opinion. First, the inter-individual pharmacology of opioids, especially methadone, is

quite diverse and the need for adjustments and the quantity of those adjustments may vary

widely between patients. Second, when interactions are likely to occur (e.g., efavirenz),

patients should be assessed clinically on a daily basis. The utilization of an aforementioned

scale to assess for withdrawal (e.g., SOWS or COWS) by nursing staff may be an efficient

way to accomplish this. Alternatively, healthcare providers can examine patients for signs of

withdrawal that are summarized in Table 3). Third, in addition to alerting clinical staff, the

patient should be educated on the possibility that the medications may interact and cause

withdrawal. Fourth, if symptoms of withdrawal develop and a dose adjustment is required,

methadone can be safely increased by 10 mg every 3 days until symptoms subside.

Obviously symptoms of opioid withdrawal in a methadone or buprenorphine patient may

result in strong urges to relapse to drug use. Healthcare providers and patients must be alert

to this possibility and may need to consider alternative medications in certain patients. Fifth,

if the medication causing induction of opioid metabolism is removed, enzymatic activity

will slowly return to baseline levels and this will require a gradual tapering of the

methadone/buprenorphine dose back to pre-treatment levels over several weeks.

Expert Commentary

Opioid dependence, HIV and HCV are volatile, intertwined epidemics that impact tens of

millions of people globally [1–6]. Efforts are underway throughout the world to increase

access to and retention on treatment for opioid dependence with methadone or

buprenorphine. As a result, many patients find themselves on HIV and/or HCV treatment

while also on methadone or buprenorphine.

New data has emerged on the metabolism of methadone and buprenorphine that is of clinical

importance. CYP2B6 is one of several CYPs involved in the metabolism of methadone with

different alleles (2B6*6 and 6*11) being associated with poor methadone metabolism and

higher levels of S-methadone that could increase QTc prolongation and risk of arrhythmia.

There is substantial inter-individual variation in the metabolism of methadone and
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discoveries such as these allelic variations and others yet to be discovered may help

elucidate the etiology of these differences.

Respiratory depression remains a serious concern where opioid treatment is utilized.

Norbuprenorphine clearly causes respiratory depression when administered alone; however,

buprenorphine blocks norbuprenorphine’s access to the receptor and thereby prevents

respiratory depression. Although buprenorphine is not a significant substrate of P-gp,

norbuprenorphine is a substrate and medications that impact norbuprenorphine efflux via P-

gp may impact on its efficacy. In a setting where norbuprenorphine levels increased while

buprenorphine levels declined, patients would be theoretically at greater risk of respiratory

depression.

It is critical to recall that the studies described here have small numbers of patients and may

not be generalizable to all populations, especially as many of the studies excluded patients

with HIV and/or HCV and patients taking multiple medications for various medical

problems. As a result, the medical provider must weigh the known evidence in the literature

among one population (e.g., the effect of lopinavir/ritonavir among HIV negative patients on

methadone) and extrapolate that to a different population (e.g., HIV-infected patients on

lopinavir/ritonavir, tenofovir, emtricitabine, methadone, anti-hypertensives, etc.). It is of

paramount importance for the medical provider to remain alert to the possibility of a drug-

drug interaction even when current existing data may not support such an interaction. A case

report of nelfinavir leading to the dramatic increase of methadone in a patient serves as a

lesson that all drug-drug interactions cannot be predicted in all patients [162]. The medical

provider should therefore listen, observe, communicate, and consider the possibility of drug

interactions whenever the clinical signs are suggestive that an interaction is occurring.

The Five-Year View

Ongoing pharmacological studies between therapies for opioid dependence and HIV/HCV

remain critical and should continue over the next five years. HIV clinical pharmacology

continues to see the development of new classes of medications (e.g., maturation and

attachment inhibitors). The development of new compounds to treat HCV infection is a fast

growing area of clinical pharmacology with multiple new agents in different classes (e.g.,

NS5a, NS5b, nucleotide, polymerase, and protease inhibitors) under investigation. As these

medications move forward in development, they will all need to be examined for possible

pharmacological interactions with methadone and buprenorphine. As zidovudine instructed

us years ago, interactions can occur in the most unlikely circumstances, and formal study is

required for each compound [129]. Such studies remain critical as impacting a patient’s

methadone or buprenorphine plasma concentration runs the risk of nonadherence to antiviral

treatments and ultimately clinical failure [140].

Although opioid withdrawal may be paramount in the mind of the patient, other clinical

parameters may be of equal or greater concern and should be included in formal studies.

QTc prolongation, for example, is a growing concern with overlapping medications that

increase methadone plasma levels and prolong QTc [200]. The combination of medications

with overlapping QTc toxicities requires careful attention. This is a particular problem in
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HIV/HCV patients given the high psychiatric co-morbidity in this population and the

multiple psychiatric medications that impact QTc [198]. Because S-methadone is an

inhibitor hERG K+ gated channels, future clinical pharmacology studies must include both

QTc specific data as well as determinations of both R- and S-methadone plasma

concentrations [35,36].

Beyond single drug interaction studies, however, multiple drug-drug interaction studies are

required in the age of poly-pharmacy. Many HIV/HCV infected patients on methadone, for

example, will take many different medications and a clearer understanding of the clinical

pharmacology in the setting of multiple ingested medications on the disposition of

methadone and buprenorphine is needed. Although these clinical studies are useful to

clinicians and patients, they are often not undertaken. It will remain critical for NIH and

other research institutions to continue to support drug-drug interaction studies and fill this

needed gap in clinical pharmacology over the next five years and beyond.

Key Issues

• Methadone increases zidovudine plasma concentrations and, as a result, increases

zidovudine side effects. Dose reduction of zidovudine may be required.

• Efavirenz and nevirapine frequently result in opioid withdrawal among patients

maintained on methadone and dose increases in methadone are frequently required.

• Atazanavir co-administration in patients on buprenorphine may result in sedation in

some patients.

• The medical provider should listen, observe, communicate, and consider the

possibility of drug interactions whenever the clinical signs are suggestive that an

interaction occurred.

• Typically changes in plasma concentrations of 25% or more are required for

clinical symptoms.

Conclusions

This review has summarized the known pharmacological interactions between the opioid

treatment medications methadone and buprenorphine, with HIV and HCV medications.

Healthcare providers must familiarize themselves with the common interactions and be

ready to manage possible interactions in this population. Current studies have many

limitations and additional pharmacological studies that examine different racial/ethnic

groups, patients on multiple medications, and patients with common co-morbidities that

could impact drug disposition (e.g., hepatic impairment). A basic understanding of this

clinical pharmacology will improve the delivery of clinical services to HIV/HCV infected

patients with opioid dependence, thereby helping them to succeed in treatment.
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