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Abstract

The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is

implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth

of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a

phenomenon known as chemoresistance. Here we report three crystal structures of human SMO

bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution.

The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand

binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct

interactions at D4736.55 elucidated the structural basis for the differential effects of

chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational

rearrangement of the binding pocket residues, which could contribute to SMO activation.

Collectively, these studies reveal the structural basis for the modulation of SMO by small

molecules.

Introduction

The hedgehog (Hh) signal transduction network plays essential roles in the maintenance of

normal embryonic development and postnatal tissue integrity in many eukaryotes ranging

from Drosophila to humans 1,2. Aberrant activation of the Hh signaling pathway apparently
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both promotes carcinogenesis–particularly in basal cell carcinomas and medulloblastomas–

and supports the tumor microenvironment in many other cancers 3. The smoothened receptor

(SMO) belongs to the Class Frizzled (or Class F) receptors, which is part of the G protein-

coupled receptor (GPCR) superfamily. SMO is normally negatively regulated by a catalytic

amount of the 12-transmembrane domain protein Patched 4. In the vertebrate canonical Hh

signaling pathway, the binding of the Hh signaling proteins to Patched can induce the

translocation of SMO to primary cilium, thereby inducing the processing of GLI

transcription factors into their active forms, which subsequently undergo nuclear

translocation and activate GLI targeted genes 2. It has been proposed that Patched acts as a

transporter and controls SMO activity by controlling the availability of small molecule lipid

modulators of SMO 4. Although the identity of the endogenous small molecule modulator of

SMO is unknown, a number of exogenous small molecules that modulate SMO activity have

been discovered 5. Notably, the naturally occurring teratogen cyclopamine, which was the

first selective SMO ligand, inhibits Hh signaling presumably via SMO antagonism by

targeting to its 7-transmembrane (7TM) domain6. Given the importance of inhibiting Hh

signaling pathways in various cancers, small molecules that target SMO are under intensive

development and several lead compounds are currently in clinical trials, including

Vismodegib (GDC-0449, Supplementary Figure 1) which was approved by the U.S. Food

and Drug Administration (FDA) in 2012 for treating basal cell carcinoma 7,8.

Despite the tremendous progress in explicating SMO pharmacology and the recent success

in obtaining the first human SMO structure 9, a molecular understanding of the structural

basis for small molecule recognition of SMO remains elusive. This is not only important for

understanding the structure-activity relationships (SAR) of chemically distinct SMO ligands,

but also for providing a mechanistic understanding of chemoresistant mutations. For

example, the D4736.55H (superscripts indicate residue numbering using the Ballesteros-

Weinstein nomenclature for class F receptors 9,10) mutation in human SMO makes

antagonists such as GDC-0449 unable to inhibit the receptor 11; while several other

compounds are insensitive to this drug resistance mutation 12–14. Delineating the structural

basis for the differential effects of mutations on diverse ligands would provide a rational

platform for the development of drugs to counteract emerging drug resistance effects.

Additionally, the modulation of SMO by small molecules reveals complicated effects on

ligand efficacy. For example, SAG (3-chloro-N-[4-(methylamino)cyclohexyl]-N-[3-

(pyridin-4-yl)benzyl]benzo[b]thiophene-2-carboxamide) 15,16 and derivatives including

SAG1.5 (3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-[[3-(4-

pyridinyl)phenyl]methyl]-1-benzothiophene-2-carboxamide) 16 (Supplementary Figure 1)

act as potent agonists, inducing cilia translocation of SMO and GLI transcription factor

activation. Cyclopamine and SANT1 (N-[(1E)-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-

yl)methylidene]-4-(phenylmethyl)-1-piperazinamine) 15 (Supplementary Figure 1), for

instance, both inhibit GLI transcription factor activation, while SANT1 inhibits and

cyclopamine induces cilia translocation of SMO 17. In addition, molecules such as

cyclopamine and GDC-0449, which were initially discovered as potent antagonists for the

canonical Hh signaling pathway, act as agonists to induce the glucose uptake response and

drive Warburg-like metabolism in fat and muscle cells via a transcription factor independent

Wang et al. Page 2

Nat Commun. Author manuscript; available in PMC 2015 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



pathway 18, perhaps accounting for the unwanted side effects of weight loss and muscle

cramping observed in humans. Clearly, determining the binding modes of different ligands

to SMO represents an essential first step for correlating a ligand’s chemotype with its pattern

of functional modulation, thereby illuminating the pharmacology and biology of SMO.

In this study, we report three crystal structures of the human SMO 7TM domain bound to

SMO small molecule antagonists SANT1, Anta XV (2-(6-(4-(4-benzylphthalazin-1-

yl)piperazin-1-yl)pyridin-3-yl)propan-2-ol) 19 and agonist SAG1.5 (Supplementary Figure

1). Structure-guided mutagenesis and competition binding analysis probed the specific

effects of key amino acid residues in these structures. A further examination of these

structures alongside the structures of the human SMO in complex with LY2940680 9 and

cyclopamine 20 provides a comprehensive framework for understanding the structural basis

of molecular recognition and modulation at SMO by small molecules.

Results

Crystallization and structures of SMO-ligand complexes

To investigate the structural basis of activation and inhibition of SMO, we solved the

structure of SMO in complex with ligands of different functional properties including the

antagonists SANT1 and Anta XV, and the potent agonist SAG1.5. Using the previously

reported SMO construct 9 with the N-terminal cysteine-rich domain (CRD, residues 1–189)

replaced by a thermostabilized apocytochrome b562RIL (BRIL), and a truncated C-terminus

at Q555 (BRIL-ΔCRD-SMO-ΔC), we obtained crystals of SMO bound to SANT1, Anta XV

and SAG1.5. The structure of the SMO_SANT1 complex was solved at 2.8 Å resolution in a

C2221 space group (Table 1). However, initial crystals of SMO with Anta XV and SAG1.5

diffracted to only 3.5 Å and 8 Å, respectively. In order to improve the resolution of the Anta

XV and SAG1.5 bound SMO complexes, we applied another fusion strategy by replacing

intracellular loop 3 (ICL3, from P434 to K440) with BRIL (ΔCRD-SMO-BRIL(ICL3)-ΔC).

Using this construct, the structure of the SMO_Anta XV complex was solved in a P212121

space group at 2.6 Å resolution; the structure of the SMO_SAG1.5 complex was solved in a

C2 space group with resolution cut-off at 2.9Å, 2.5 Å and 3.3 Å along a*, b* and c* axes,

respectively, due to the anisotropic nature of the diffraction (Table 1). In addition, we have

solved the SMO_cyclopamine complex structure (PDB id: 4O9R) using a newly developed

technique of serial femtosecond crystallography with LCP grown crystals (LCP-SFX) at an

X-ray free electron laser source. Albeit at a lower resolution, this structure unambiguously

located the binding site of cyclopamine 20. The crystal packing analysis (Supplementary

Figure 2) reveals that the SMO_SANT1, SMO_Anta XV and SMO_cyclopamine complexes

were crystallized as monomers, while the SMO_SAG1.5 complex was crystallized as a

dimer, similar to the previously reported SMO_LY2940680 complex 9 (PDB id: 4JKV),

with a dimer interface involving helices IV and V.

Along with the SMO_LY2940680 and SMO_cyclopamine complex structures, the newly

solved structures show that the long and narrow cavity formed by the extracellular domain

(ECD) linker domain, extracellular loops and the 7TM bundle provides multiple binding

sites for small molecule ligands (Fig. 1 and Supplementary Figure 3). Similar to LY2940680

and cyclopamine, the binding sites of Anta XV and SAG1.5 are formed mostly by residues
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from the ECD linker domain and extracellular loops (Fig. 1d,f). Additionally, Anta XV,

SAG1.5 and LY2940680 form hydrogen bonds with the N219ECD side chain, which

provides an important anchor for ligands that bind close to the entrance of the ligand binding

cavity. In contrast, SANT1 binds at a unique site in the cavity, which extends much deeper

toward the center of the 7TM bundle and is formed mainly by residues from all the

transmembrane α-helices, with the exception of helix IV (Fig. 1b).

The deep binding site of SANT1

The binding site of SANT1 is unusually deep in the 7TM helical bundle, with the ligand

extending at least 9 Å deeper into the cavity compared to LY2940680 (Fig. 2a). The only

extracellular loop that interacts with SANT1 is extracellular loop 2 (ECL2), which is

positioned inside the helical bundle and forms non-polar contacts and a hydrogen bond from

Y394ECL2 to the phenyl ring and the pyrazole ring of SANT1, respectively (Fig. 1b). In the

helical bundle, this binding pocket is very narrow, providing a snug fit for the long and

linear structure of SANT1. The side chain of H4706.52 forms a hydrogen bond to a nitrogen

in the piperazine ring (Fig. 1b). Superposition of the SMO_SANT1 and the SMO_SAG1.5

structures (Fig. 2a) reveals only a minimal overlay between SANT1 and SAG1.5, thereby

providing a structural explanation for previous observations that SANT1 allosterically

modulates the binding of SAG 21, which is a close derivative of SAG1.5 (Supplementary

Figure 1). In the SMO_SANT1 complex, the compound induces a slight expansion in the

deep part of the cavity, as compared to the other ligands that do not reach this sub-pocket

(Fig. 2b,c). This change in the pocket is manifested mainly in a conformational

rearrangement of the side chains, while minimally affecting the protein backbone. The side

chain of L3253.36 protrudes into the central cavity when this deep pocket is not occupied,

but rotates out from the cavity making space for the binding of SANT1 (Fig. 2d).

Additionally, the side chain of M5257.45 moves towards SANT1 to make contact with the

piperazine moiety of the ligand. To further investigate the binding pocket for SANT1, we

introduced bulky side chain mutations, L3253.36F, V3293.40F, I4085.47F and T4666.48Q, in

the bottom part of the pocket (Fig. 2d), aiming to block this binding site without disturbing

the overall receptor conformation. While the binding of the radioligand 3H-cyclopamine

remains unchanged in agreement with the SMO_cyclopamine structure, competition

radioligand binding experiments reveals that three of these bulky mutations, V3293.40F,

I4085.47F and T4666.48Q, substantially reduce the binding of SANT1 (Fig. 2e and

Supplementary Table 1). Interestingly, the L3253.36F mutation has no effect on SANT1

binding, consistent with the modeling of the L3253.36F mutation which shows that the

SMO_SANT1 complex can easily accommodate a phenyl side chain in the rotamer state

observed for L3253.36 in the SANT1 bound structure (Fig. 2d). Binding of the other tested

ligands was not substantially affected by any of these bulky side chain mutations (Fig. 2e),

corroborating the unique nature of the deep binding site for SANT1 among the other SMO

ligands studied.

The binding mode of cyclopamine and KAAD-cyclopamine

The naturally occurring steroidal jerveratrum alkaloid cyclopamine was the first small

molecule found to bind to and inhibit Hh signaling via SMO. Cyclopamine binds close to

the extracellular entrance, and the secondary amine of its 3-methyl-piperidine group points

Wang et al. Page 4

Nat Commun. Author manuscript; available in PMC 2015 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



outside of the pocket, while the 3,β-hydroxyl is buried deep in the pocket (Supplementary

Figure 4a) 20. This binding pose is consistent with previous SAR studies of cyclopamine

derivatives, which showed that adducts to the 3,β-hydroxyl dramatically reduced activity,

while the secondary amine permits addition of bulky groups via long aliphatic linkers 22.

One such molecule is KAAD-cyclopamine (3-keto-N-(aminoethyl-aminocaproyl-

dihydrocinnamoyl)cyclopamine) (Supplementary Figure 1), derived by attaching a long

chain substitution to the secondary amine of cyclopamine. Our data shows that the binding

of KAAD-cyclopamine to SMO is not impacted by mutations blocking the deep binding

pocket (Fig. 2e), consistent with a predicted binding mode where the long chain substitution

extends out of the 7TM cavity through the extracellular ligand entrance (Supplementary

Figure 4b). The long aliphatic linker protruding out of the pocket has also been shown to

enable attachments as large as a fluorescent BODIPY moiety to cyclopamine 6.

Differential binding modes of Anta XV and LY2940680

Although Anta XV and LY2940680 share a phthalazine ring core and a similar overall

shape, different substitutions on the phthalazine ring result in distinct binding modes of

these ligands. In the previously solved SMO_LY2940680 structure 9, the 4-fluoro-2-

trifluoromethylphenyl moiety of LY2940680 forms extensive interactions with residues

from ECL3, including Q477, W480, E481 and F484, which stacks to the phenyl ring of

LY2940680 through a π-π interaction (Fig. 3a). In contrast, Anta XV does not have contacts

with ECL3, and the side chain residue conformations of ECL3 in the SMO_Anta XV

structure are more similar to those in the structure of SMO_SANT1, which also lacks ECL3

contacts (Supplementary Figure 5). The differential interaction of LY2940680 with ECL3

apparently results in an overall shift of the α-helical portion of the ECL3 (Fig. 3b,c).

Together with the extensive interactions between the 4-fluoro-2-trifluoromethylphenyl

group of LY2940680 and ECL3, the hydrogen bond between N219 and the carbonyl group

of LY2940680 potentially defines the orientation of piperidine ring substituent on the

phthalazine core, which is distinct from the orientation of the piperazine of Anta XV (Fig.

3d). In this orientation, the phthalazine core of LY2940680 adopts an axial position in the

chair conformation of the six-membered piperidine ring, which was estimated to be slightly

(ΔE~0.72 kcal/mol) 23 suboptimal compared to the equatorial position. In contrast, on the

piperazine ring of Anta XV, the phthalazine core sits in the equatorial position; this

difference in ring conformation is accompanied by a 1 Å shift of the phthalazine ring

between the two ligands (Fig. 3d). The shift is also associated with a shift at the guanidinium

group of R4005.39, which forms hydrogen bond to the phthalazine core of Anta XV and

LY2940680, as well as the extracellular end of helix V where R4005.39 locates (Fig. 3e–g).

This difference in the positions of the phthalazine core in Anta XV and LY2940680 may

explain their distinctive interactions with D4736.55, a key residue in a polar interaction

cluster within the ligand binding cavity (Figs. 3c,i). Firstly, the side chain of D4736.55 makes

a direct interaction with Anta XV (3.3 Å) whereas its interaction with LY2940680 is much

weaker as revealed by a longer distance (4.0 Å in molecule A, 4.3 Å in molecule B).

Secondly, the interaction between D4736.55 and Anta XV is accompanied by an inward shift

of the extracellular tip of helix VI, as compared to SMO_SANT1 and SMO_LY2940680
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structures where their respective ligands do not interact with D4736.55 (Fig. 3e–g). The

difference in this interaction is also reflected in different rotamer states of the carboxylate

group of D4736.55 (Fig. 3h). All these structural data point to a more important role for

D4736.55 in Anta XV recognition compared to LY2940680.

Mutation of D4736.55 into histidine has been identified as a cause of chemoresistance for

GDC-0449, while LY2940680 has been reported to be unaffected by this mutation 24. To

investigate the role of D4736.55 in the binding of different ligands, we performed 3H-

cyclopamine competition binding assays on a D4736.55A mutant, as well as an E5187.38A

mutant that could impact the conformation of D4736.55. The natural drug-resistance

mutation D4736.55H and other mutations that could impact the conformation of D4736.55,

such as R4005.39A, H4706.52A, and N5217.41A (Fig. 3h), unfortunately could not be

assessed in the radioligand competition assay, as they abolished the binding of

radioligand 3H-cyclopamine. Among the mutations that retained binding of the radioligand,

the D4736.55A and E5187.38A mutations impaired the binding of GDC-0449 and Anta XV,

with D4736.55A responsible for a more than 100 fold affinity drop for both ligands. In

contrast, the effect of D4736.55A mutation on LY2940680 was modest (<7 fold), consistent

with the lack of such a direct interaction in the SMO_LY2940680 structure (Fig. 3j and

Supplementary Table 2). Moreover, these mutations have no effect on the binding of

SANT1, consistent with the fact that in the SMO_SANT1 structure D4736.55 plays little role

in ligand binding. These results thus provide a direct structural explanation for the

differential effect of ligand binding pocket mutations on ligands with distinct binding poses.

Remodeling of the SMO binding pocket by agonist SAG1.5

When bound to SMO, the two aromatic rings of SAG1.5 pack against each other, forming a

bulky system that fits tightly into the pocket surrounded by the ECD linker domain and

extracellular loops close to the extracellular entrance (Fig. 1f). This clamping of the bulky

aromatic groups of SAG1.5 by the extracellular loop structures points the cyclohexane

deeper into the 7TM bundle, aligning the positively charged methyl amino group in the

vicinity of polar residue cluster, R4005.39, D4736.55 and E5187.38 (Figs. 1f and 4), which are

the only residues from the seven helixes that interact with the agonist. In the antagonist

bound structures, the D4736.55 and E5187.38 side chains point towards each other and

interact directly, or in the case of the SMO_LY2940680 structure, through water mediated

interactions. In the agonist bound structure, the positively charged amino group of SAG1.5

forms an ionic interaction with D4736.55, while the carboxyl group of E5187.38 moves away

and no longer interacts with D4736.55 (Fig. 4a). In the antagonist bound structures, R4005.39

is anchored by polar interactions with D4736.55, H4706.52 and/or the ligands. In the agonist

bound structure, the guanidine group of R4005.39 moves up to form a hydrogen bond with

the side chain of Q477ECL3 (Fig. 4b). This remodeling at the residues R4005.39, D4736.55

and E5187.38 (Fig. 4c) is the most pronounced change in the ligand binding pocket,

differentiating the SMO_SAG1.5 structure from the antagonist-bound structures. In

addition, subtle modifications at the amino group of the SAG scaffold have been shown to

change the functional property of the ligand, i.e. from agonist to antagonist 25, indicating

that this amino group plays a critical role in the SMO modulation by SAG1.5. While

previous studies showed that oxysterol binding at the N terminus of SMO can induce
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activation 26–28, the SAG1.5 bound SMO structure reveals an alternative site at the 7TM

domain that is responsible for the small molecule induced activation of the receptor (Fig. 5).

On the intracellular side, the most pronounced difference between agonist and antagonist

bound structures is observed at Y262ICL1, H3614.46 and W3654.50 that are conserved among

class F receptors 9. In all the antagonist bound structures, we observed a hydrogen bonding

network among these residues. In the agonist bound structure, the hydrogen bond between

Y262ICL1 and H3614.46 is broken, which is associated with an inward movement of

P263ICL1, which is also conserved among class F receptors 9, to make contact with

W5357.55 (Supplementary Figure 6). Mutation of W5357.55 into leucine has been shown to

make the SMO receptor constitutively active leading to carcinogenesis 29. In addition,

W5357.55 is located at the intracellular end of helix VII, immediately adjacent to helix VIII

(Supplementary Figure 6), which packs against helix I, parallel to the membrane layer and

plays an important role during the activation of SMO since mutation at the residues W545

and R546 located in helix VIII impairs cilia translocation 30. These conformational changes

observed at Y262ICL1, H3614.46, W3654.50 and P263ICL1 could impact W5357.55, and are

conceivably important for SMO activation. We note however that the change of the

hydrogen bond state could result from the slightly lower pH in the crystallization condition

of the agonist bound receptor. Thus, the involvement of this conformational change during

SMO activation needs to be investigated in future studies. With the exception of this local

conformational change, the agonist SAG1.5 bound SMO structure does not show any large

scale movements in helices VI and VII, which are the hallmark of class A GPCR

activation 31. This may be due to the stark differences in signaling mechanisms between the

two GPCR classes, or the possibility that in the absence of downstream effectors SAG1.5

induces only part of the activation-related conformational changes in SMO or other factors

(Discussion).

Discussion

The newly solved structures of SMO bound to SANT1, Anta XV, SAG1.5, along with the

LY2940680 and cyclopamine bound structures, reveal a variety of distinctive poses for

structurally diverse small molecule ligands in the long and narrow cavity defined by the

7TM helices, ECD and extracellular loops of SMO (Fig. 5). The antagonist SANT1, for

instance, binds very deep in the pocket, whereas the other ligands studied remain closer to

the extracellular entrance, demonstrating that the entire long and narrow pocket can be

targeted by small molecule ligands. Meanwhile, the extracellular entrance can provide a path

for accommodating the attachment of reporter moieties or other bulky groups to the ligands

through a long chain flexible linker such as that of KAAD-cyclopamine.

Even when the binding sites largely overlap, as for instance with LY2940680 and Anta XV,

minor differences in recognition modes result in a discrete response to binding pocket

mutations. LY2940680, for example, has been reported to bind the D4736.55H mutant that

provides chemoresistance to the approved cancer drug GDC-0449 24. This biological

phenomenon accords nicely with our structural analysis, which shows that LY2940680

forms weak interactions with D4736.55. In contrast, the binding of Anta XV requires a more

substantial involvement of D4736.55, as revealed by the structural and mutagenesis data,
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despite its similar scaffold with LY2940680. The most striking difference between the

binding mode of LY2940680 and Anta XV is a strong interaction between LY2940680 and

ECL3. We hypothesize that this interaction restrains the orientation of LY2940680, which

leads to a shift of the phthalazine core of LY2940680 away from D4736.55 compared to Anta

XV, weakening the role of D4736.55 in ligand binding. This reduced involvement of

D4736.55 in binding might also underlie the effect of chemical modifications on existing

compounds which could overcome the drug resistant mutation D4736.55H as shown in

studies with derivatives of GDC-0449 12 and Anta XV 14. The long and continuous cavity

straddling the ECL region and 7TM domain of SMO provides a variety of binding sub-sites

suitable for ligand interaction. Taken together, this structural information should facilitate

the development of compounds, which bypass this chemoresistant mutation or have a larger

contacting surface so that disruption of a local structure, as chemoresistance mutations do,

could not abolish the ligand binding.

We observed remodeling of the polar interaction network between R4005.39, D4736.55 and

E5187.38 in the binding pocket induced by SAG1.5; such remodeling could conceivably

serve as an activation trigger. However, due to the lack of knowledge regarding the

immediate biochemical events downstream of SMO 7TM domain activation, a mechanistic

connection between the ligand-triggered activation at the extracellular side and the

intracellular coupling with downstream proteins remains to be established. SMO has shown

in some studies an ability to activate G proteins 32 which presumably requires an opening of

the intracellular crevice for G protein binding 33 as has been established in class A GPCRs.

Some conformationally selective ligands are capable of converting class A GPCRs into a

partially activated state where the change in the ligand binding pocket propagates into the

intracellular side of the receptors 34–38. In other cases, e.g. in β-adrenergic receptors, agonist

binding alone is insufficient for stabilization of an active state, and therefore in the structures

of these receptors obtained in the absence of G-proteins or their mimetics the intracellular

side maintains the inactive conformation 39,40. In the SAG1.5 bound SMO structure, we did

not observe the remodeling of the intracellular side which has been demonstrated in the

active state class A GPCR structures. This could be due to the following reasons: (i)

although SAG1.5 is a potent agonist for the canonical Hh signaling pathway, it is not an

effective agonist for G protein activation; (ii) the insertion of BRIL at ICL3 prevented

intracellular helical movement; and (iii) conformational changes at the intracellular part of

the receptor require binding of G proteins as observed for β-adrenergic receptors. Due to the

divergence of the canonical Hh signaling pathway from the traditional G protein pathway, it

is possible that the activated SMO couples to as yet unidentified intracellular effector(s),

which could eventually elicit conformational changes responsible for an active state.

Alternatively, activation by agonist might induce only small conformational changes in the

7TM domain, which modify oligomerization states or lead to differential association with

membrane compartments and intracellular trafficking machineries.

This long and narrow cavity responsible for the binding of small molecule ligands

investigated in this study is not the only modulation site for SMO. Lipid molecules have

been shown to be able to modulate SMO; for example, cholesterol depletion severely

impairs SMO activation 26. It has been suggested that the endogenous modulation

mechanism of SMO by Patched might also be mediated through a lipidic molecule 4.
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Oxysterols, for instance, have been shown to activate SMO and had been suspected to be

native ligands for SMO. However, recent studies showed that oxysterols bind to the N

terminal CRD domain (Fig. 5), the structure of which has been solved by crystallography27

and NMR41 methods, and that the CRD domain is important, but not essential, for the Hh-

induced activation of SMO as well as for cholesterol dependence of Hh signaling26–28.

Thus, there could be additional sites in the 7TM domain that serve as the binding sites of

native modulators or lipidic molecules. A previous study showed that mutations within the

ligand binding site that disrupt binding of synthetic ligands, such as cyclopamine, fail to

impair the normal basal and Hh-induced activity, as well as the cholesterol dependence of

Hh signaling 26, indicating an alternative site might be used to modulate SMO activity by

Patched or lipidic molecules. W3654.50 has been shown to be a conserved lipid binding site

at class A GPCRs 42–44, which locates at the interface between the 7TM domain and

membrane environment, and is thus accessible to lipidic molecules. In the agonist bound

structure, we observed conformational changes in a hydrogen bond network involving

W3654.50 (Supplementary Figure 6), which occur in the vicinity of W5357.55, a critical

residue for SMO activation. Further studies will be needed to fully investigate the role of

this region in the modulation of SMO by lipidic molecules.

In summary, we provide new insights into the conformational plasticity of SMO-ligand

interactions by crystallographic and biochemical characterization of several SMO complexes

with diverse ligand chemotypes. Importantly, these ligands target distinct sites in the

elongated cavity, have different interactions with known resistance mutants and include both

antagonists and agonists of Hh signaling. The details of these interactions and ligand-

dependent conformational changes, correlated with specific functional features of the

ligands will help to design new clinical candidates targeting SMO with attenuated side

effects and chemoresistance.

Methods

Generation of BRIL-SMO fusion constructs

The BRIL-ΔCRD-SMO-ΔC construct has been reported previously 14. For ΔCRD-SMO-

BRIL(ICL3)-ΔC, BRIL was fused to the human SMO receptor 7TM domain (S190-Q555)

by replacing ICL3 residues P434 to K440 using overlapping PCR. The resulting receptor

chimera sequence was subcloned into a modified pFastBac1 vector (Invitrogen), designated

as pFastBac1-833100, which contained an expression cassette with a haemagglutinin (HA)

signal sequence followed by a Flag tag, a 10× His tag, and a TEV protease recognition site

at the N terminus before the receptor sequence. Subcloning into the pFastBac1-833100 was

achieved using PCR with primer pairs encoding restriction sites KpnI at the 5′ and HindIII at

the 3′ termini with subsequent ligation into the corresponding restriction sites in the vector.

Expression and purification of SMO constructs

The SMO constructs were expressed in Spodoptera frugiperda (Sf9) insect cells using the

Bac-to-Bac Baculovirus Expression System (Invitrogen). Sf9 cells at cell density of 2–3 ×

106 cells/ml were infected with baculovirus at 27 °C. Cells were harvested by centrifugation

at 48 hr post infection and stored at −80 °C until use.
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Insect cell membranes were lysed by thawing frozen cell pellets in a hypotonic buffer

containing 10 mM HEPES, pH 7.5, 10 mM MgCl2, 20 mM KCl and EDTA-free complete

protease inhibitor cocktail tablets (Roche). Extensive washing of the raw membranes was

performed by repeated centrifugation two-three times in a high osmotic buffer comprised of

1.0 M NaCl in the hypotonic buffer described above.

The washed membranes were resuspended into buffer containing 30 µM ligand, 2 mg/ml

iodoacetamide (Sigma), and EDTA-free complete protease inhibitor cocktail tablets, and

incubated at 4 °C for 1 hr prior to solubilization. The membranes were then solubilized in

buffer containing 50 mM HEPES, pH 7.5, 200 mM NaCl, 1% (w/v) n-dodecyl-β-D-

maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholesteryl hemisuccinate (CHS, Sigma), 15

µM ligand, for 3–4 hours at 4 °C. The supernatant containing solubilized SMO protein was

isolated from the cell debris by high-speed centrifugation, and subsequently incubated with

TALON IMAC resin (Clontech) overnight at 4 °C in the presence of 20 mM imidazole and

1 M NaCl. After binding, the resin was washed with 10 column volumes of Wash I Buffer

comprised of 50 mM HEPES, pH 7.5, 800 mM NaCl, 10% (v/v) glycerol, 0.1% (w/v) DDM,

0.02% (w/v) CHS, 8 mM ATP, 20 mM imidazole, 10 mM MgCl2 and 15 µM ligand,

followed by 6 column volumes of Wash II Buffer comprised of 50 mM HEPES, pH 7.5, 500

mM NaCl, 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, 50 mM imidazole and

20 µM ligand. The protein was then eluted by 3 column volumes of Elution Buffer

containing 50 mM HEPES, pH 7.5, 300 mM NaCl, 10% (v/v) glycerol, 0.03% (w/v) DDM,

0.006% (w/v) CHS, 250 mM imidazole and 50 µM ligand. PD MiniTrap G-25 column (GE

Healthcare) was used to remove imidazole. The protein was then treated overnight with

TEV protease (His-tagged) to cleave the N-terminal His-tag and FLAG-tag. TEV protease

and cleaved N-terminal fragment were removed by TALON IMAC resin incubation at 4 °C

for 2 hr. The tag-less protein was collected as the TALON IMAC column flow-through. The

protein was then concentrated to 50–60 mg/ml with a 100 kDa cut-off Vivaspin

concentrator. Protein monodispersity was tested by analytical size-exclusion

chromatography (aSEC). Typically, the aSEC profile showed a monodisperse peak.

SANT1 ligand was purchased from Tocris Biosciences (purity > 99%); Anta XV (originally

named Hh Signaling Antagonist XV) ligand was purchased from Calbiochem (purity

98.94%); and SAG1.5 ligand was purchased from Xcess Biosciences Inc. (purity > 98%).

Lipidic cubic phase crystallization

Protein samples of SMO in a complex with certain ligand were reconstituted into lipidic

cubic phase (LCP) by mixing with molten lipid (monoolein and cholesterol mixture in a

ratio of 9:1 (w/w)) in a mechanical syringe mixer 45. LCP crystallization trials were

performed using an NT8-LCP crystallization robot (Formulatrix) as previously described 46.

96-well glass sandwich plates (Marienfeld) were incubated and imaged at 20 °C using an

automated incubator/imager (RockImager 1000, Formulatrix). Crystals of SMO_SANT1

complex were grown in the condition: 150 mM NH4F, 100 mM HEPES pH 6.9, 27% PEG

400, 2.5% Jeffamine; crystals of SMO_Anta XV complex were grown in the condition:

100–115 mM NH4Cl, 100 mM HEPES pH 7.2, 36% PEG 400; and crystals of

SMO_SAG1.5 complex were grown in the condition: 100 mM MgSO4, 100 mM MES pH
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6.0, 30% PEG 400, 2%–3% Polypropylene glycol P 400. Crystals were harvested using

MiTeGen micromounts and flash frozen in liquid nitrogen for data collection.

Crystallographic data collection and processing

X-ray data were collected at the 23ID-D beamline (GM/CA CAT) at the Advanced Photon

Source, Argonne, IL using a 20 μm minibeam at a wavelength of 1.0330 Å and a MarMosaic

300 CCD detector. Crystals were aligned and data were collected using strategy similar to

other GPCR structures 47. Typically 20 frames at 1° oscillation and 1 s exposure with non-

attenuated beam followed by a translation of the crystal to a non-exposed position or

changing the crystal to minimize the effect of radiation damage. A complete data set was

obtained by indexing, integrating, scaling, and merging data using HKL2000 48. The

SMO_SAG1.5 data set was highly anisotropic. The merged data were submitted to the

UCLA anisotropy server (http://services.mbi.ucla.edu/anisoscale) and anisotropically

truncated at 2.9 Å, 2.5 Å and 3.3 Å along a*, b* and c* axes, respectively.

Structure determination and Refinement

Initial phase information was obtained by molecular replacement with the program

PHASER49 using two independent search models of SMO 7TM domain and BRIL from

SMO_LY2940680 complex structure (PDB id: 4JKV). All refinements were performed with

REFMAC550 and autoBUSTER51 followed by manual examination and rebuilding of the

refined coordinates in the program COOT52 using both |2FO|-|FC| and |FO|-|FC| maps, as well

as omit maps calculated using the Bhat’s procedure53,54. The structures have been deposited

in the PDB with the accession codes: 4N4W for SMO_SANT1 complex; 4QIM for

SMO_AntaXV complex; and 4QIN for SMO_SAG1.5 complex.

Radioligand competition
3H-Cyclopamine binding to WT and mutant SMO was done as previously described 9.

Molecular modeling and KAAD-cyclopamine docking

Conformational modeling and evaluation of the mutation effects in SMO complexes with

different ligands was performed using an all-atom global energy optimization algorithm in

ICM-Pro 3.7 (MolSoft LLC) molecular modeling package 55. Point mutations of interest

(L3253.36F, V3293.40F, I4085.47F, T4666.48Q) in each of the co-crystal structures were

introduced by modifying the residue side chain, followed by energy optimization that

included the ligand and side chains within 6 Å distance of the mutated residue. Other side

chains and the backbone of the protein were kept as in the crystal structure. The effect of the

mutation was evaluated by comparing conformational energy of the ligand before and after

mutation. Docking of KAAD-cyclopamine was performed with all atom energy-based

docking procedure with side chain flexibility in the binding pocket 56 using the

SMO_cyclopamine crystal structure. An initial conformation of KAAD-cyclopamine was

generated by Cartesian optimization of the ligand model in Merck Molecular Force Field.

All calculations were repeated at least in 3 independent runs, performed on a 12-core Intel

Xeon 2.67 GHz Linux workstation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall structures of SMO receptor bound to different ligands and the ligand binding
pockets
(a), (c) and (e) Overall structures of SMO receptor in complex with SANT1, Anta XV and

SAG1.5, respectively. The lipid bilayer is shown in dashed lines. The ligand binding cavity

is shown in surface presentation. SMO_SANT1 structure (yellow); SMO_Anta XV structure

(green); SMO_SAG1.5 structure (light blue) are shown in ribbon presentation. (b), (d) and

(f) The structures of the ligand binding pockets for SANT1 (orange carbon), Anta XV (green

carbon) and SAG1.5 (light blue carbon) are shown. Polar interactions between the receptor

and the ligands are shown as dashed lines and interacting residues are labeled.
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Figure 2. The deep binding pocket of SANT1
(a) Localization of different ligands in the binding pocket: SANT1 (orange), Anta XV

(green), SAG1.5 (light blue), LY2940680 (magenta), and cyclopamine (cyan). (b) and (c)

The shapes of the deep binding pockets in the structures of SMO_Anta XV (green) and

SMO_SANT1 (yellow), respectively. (d) Superposition of the deep binding pockets in the

structures of SMO_Anta XV and SMO_SANT1. The side chain movements induced by

SANT1 binding are shown by arrows. (e) ΔpKi values (pKi wild type – pKi mutants) of the

designed mutants for different SMO ligands in 3H-cyclopamine competition experiments.

Shown in the graph are mean ± SEM of 3–4 independent experiments, see also

Supplementary Table 1.
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Figure 3. D4736.55 plays different roles in the recognition of Anta XV and LY2940680
(a)–(i) The receptor structures in SMO_Anta XV, SMO_SANT1 and SMO_LY2940680

(PDB id: 4JKV, molecule A) complexes are shown in green, yellow and salmon,

respectively. Ligand structures of Anta XV, SANT1 and LY2940680 are shown in green,

orange and magenta carbons, respectively. (a) Superposition of SMO_LY2940680 and

SMO_Anta XV structures near ECL3. The conformational change of F484ECL3 induced by

LY2940680 binding is shown by an arrow. See also Supplementary Figure 4 for comparison

with SMO_SANT1 structure. (b) Superposition of the SMO_SANT1, SMO_Anta XV and
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SMO_LY2940680 structures reveals a different conformation of ECL3 in LY2940680

bound structure (shown by arrow). (c) Localization of ECL3 (green) and polar residue

cluster (R4005.39, D4736.55 and E5187.38, red) in SMO. (d) Superposition of the binding

poses of LY2940680 and Anta XV reveals distinct orientations (dashed lines parallel to the

equatorial bonds of the six-membered chair conformation rings) of the six membered rings

connected to the phthalazine ring. The shift of the phthalazine of LY2940680 compared to

that of Anta XV is shown by arrow. (e) Superposition of SMO_Anta XV and SMO_SANT1

structures. (f) Superposition of SMO_LY2940680 and SMO_SANT1 structures. (g)

Superposition of SMO_LY2940680 and SMO_Anta XV structures. Ligand induced shifts of

helices are shown by arrows. (h) Superposition of the ligand binding pocket residues of

SMO_SANT1, SMO_Anta XV and SMO_LY2940680 structures. Ligand interaction

induced conformation change at D4736.55 is indicated by arrow. (i) Polar residue cluster in

the ligand binding pocket of the SMO_Anta XV structure. Polar interactions are shown as

dashed lines. (j) ΔpKi values (pKi wild type– pKi mutants) of the D4736.55A and E5187.38A

mutants for different SMO receptor ligands in 3H-cyclopamine competition experiments.

Shown in the graph are mean ± SEM of 3–4 independent experiments, see also

Supplementary Table 2.
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Figure 4. Agonist SAG1.5 induced conformational changes in the ligand binding pocket
(a) Superposition of the ligand binding pocket residues of different structures of SMO. The

receptor structure and side chain carbons are shown for SMO_Anta XV (green),

SMO_SANT1 (yellow), SMO_LY2940680 (salmon; PDB id: 4JKV, molecule A), and

SMO_SAG1.5 (light blue) structures. The ligand SAG1.5 is shown as light blue carbons.

The hydrogen bond interactions between side chains are show as dashed lines in the

corresponding color of each structure. (b) A different view of the superposition of the ligand

binding pocket residues. H4706.52 which interacts with R4005.39 in antagonist bound

structures is shown. Red arrows (in (a) and (b)) are shown to indicate the conformational

changes of E5187.38 and R4005.39 induced by SAG1.5 binding. (c) Schematic presentation

of agonist induced conformation change: green is antagonist bound state, while blue is

agonist bound state.
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Figure 5. Map of the structural basis for the modulation of SMO by small molecules
The N terminal CRD domain is shown using the CRD of zebrafish SMO (PDB id: 4C79).

The boundaries of the membrane bilayer are shown as dashed lines.
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