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Abstract

We argue that in many circumstances, human observers evaluate sensory evidence simultaneously

under multiple hypotheses regarding the physical process that has generated the sensory

information. In such situations, inference can be optimal if an observer combines the evaluation

results under each hypothesis according to the probability that the associated hypothesis is correct.

However, a number of experimental results reveal suboptimal behavior and may be explained by

assuming that once an observer has committed to a particular hypothesis, subsequent evaluation is

based on that hypothesis alone. That is, observers sacrifice optimality in order to ensure self-

consistency. We formulate this behavior using a conditional Bayesian observer model, and

demonstrate that it can account for psychophysical data from a recently reported perceptual

experiment in which strong biases in perceptual estimates arise as a consequence of a preceding

decision. Not only does the model provide quantitative predictions of subjective responses in

variants of the original experiment, but it also appears to be consistent with human responses to

cognitive dissonance.

1 Motivation

Is the glass half full or half empty? In different situations, the very same perceptual evidence

(e.g. the perceived level of liquid in a glass) can be interpreted very differently. Our

perception is conditioned on the context within which we judge the evidence. Perhaps we

witnessed the process of the glass being filled, and thus would more naturally think of it as

half full. Maybe it is the only glass on the table that has liquid remaining, and thus its

precious content would be regarded as half full. Or maybe we simply like the content so

much that we cannot have enough, in which case we may view it as being half empty.

Contextual influences in low-level human perception are the norm rather than the exception,

and have been widely reported. Perceptual illusions, for example, often exhibit particularly

strong contextual effects, either in terms of perceptual space (e.g. spatial context affects

perceived brightness; see [1] for impressive examples) or time (prolonged exposure to an

adaptor stimulus will affect subsequent perception, see e.g. the motion after-effect [2]). Data

of recent psychophysical experiments suggest that an observer's previous perceptual

decisions provide additional form of context that can substantially influence subsequent

perception [3, 4]. In particular, the outcome of a categorical decision task can strongly bias a

subsequent estimation task that is based on the same stimulus presentation. Contextual
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influences are typically strongest when the sensory evidence is most ambiguous in terms of

its interpretation, as in the example of the half-full (or half-empty) glass.

Bayesian estimators have proven successful in modeling human behavior in a wide variety

of low-level perceptual tasks (for example: cue-integration (see e.g. [5]), color perception

(e.g. [6]), visual motion estimation (e.g. [7, 8])). But they generally do not incorporate

contextual dependencies beyond a prior distribution (reflecting past experience) over the

variable of interest. Contextual dependencies may be incorporated in a Bayesian framework

by assuming that human observers, when performing a perceptual task, test different

hypotheses about the underlying structure of the sensory evidence, and arrive at an estimate

by weighting the estimates under each hypothesis according to the strength of their belief in

that hypothesis. This approach is known as optimal model evaluation [9], or Bayesian model

averaging [10] and has been previously suggested to account for cognitive reasoning [11]. It

further has been suggested that the brain could use different neuro-modulators to keep track

of the probabilities of individual hypotheses [12]. Contextual effects are reflected in the

observer's selection and evaluation of these hypotheses, and thus vary with experimental

conditions. For the particular case of cue-integration, Bayesian model averaging has been

proposed and tested against data [13, 14], suggesting that some of the observed non-

linearities in cue integration are the result of the human perceptual system taking into

account multiple potential contextual dependencies.

In contrast to these studies, however, we propose that model averaging behavior is

abandoned once the observer has committed to a particular hypothesis. Specifically,

subsequent perception is conditioned only on the chosen hypothesis, thus sacrificing

optimality in order to achieve self-consistency. We examine this hypothesis in the context of

a recent experiment in which subjects were asked to estimate the direction of motion of

random dot patterns after being forced to make a categorical decision about whether the

direction of motion fell on one side or the other of a reference mark [4]. Depending on the

different levels of motion coherence, responses on the estimation task were heavily biased

by the categorical decision. We demonstrate that a self-consistent conditional Bayesian

model can account for mean behavior, as well as behavior on individual trials [8]. The

model has essentially no free parameters, and in addition is able to make precise predictions

under a wide variety of alternative experimental arrangements. We provide two such

example predictions.

2 Observer Model

We define perception as a statistical estimation problem in which an observer tries to infer

the value of some environmental variable s based on sensory evidence m (see Fig. 1).

Typically, there are sources of uncertainty associated with m, including both sensor noise

and uncertainty about the relationship between the sensory evidence and the variable s. We

refer to the latter as structural uncertainty which represents the degree of ambiguity in the

observer's interpretation of the physical world. In cases where the structural possibilities are

discrete, we denote them as a set of hypotheses H = {h1, ..., hN}. Perceptual inference

requires two steps. First, the observer computes their belief in each hypothesis for given

sensory evidence m. Using Bayes’ identity, the belief is expressed as the posterior
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(1)

Second, for each hypothesis, a conditional posterior is formulated as p(s|m, H = hi), and the

full (non-conditional) posterior is computed by integrating the evidence over all hypotheses,

weighted by the belief in each hypothesis hi:

(2)

Finally, the observer selects an estimateŝ that minimizes the expected value (under the

posterior) of an appropriate loss function 1.

2.1 Decision leads to conditional estimation

In situations where the observer has already made a decision (either explicit or implicit) to

select one hypothesis as being correct, we postulate that subsequent inference will be based

on that hypothesis alone, rather than averaging over the full set of hypotheses. For example,

suppose the observer selects the maximum a posteriori hypothesis hMAP, the hypothesis that

is most probable given the sensory evidence and the prior distribution. We assume that this

decision then causes the observer to reset the posterior probabilities over the hypotheses to

(3)

That is, the decision making process forces the observer to consider the selected hypothesis

as correct, with all other hypotheses rendered impossible. Changing the beliefs over the

hypotheses will obviously affect the estimateŝ in our model. Applying the new posterior

probabilities Eq. (3) simplifies the inference problem Eq. (2) to

(4)

We argue that this simplification by decision is essential for complex perceptual tasks (see

Discussion). By making a decision, the observer frees resources, eliminating the need to

continuously represent probabilities about other hypotheses, and also simplifies the

inference problem. The price to pay is that the subsequent estimate is typically biased and

sub-optimal.

3 Example: Conditioned Perception of Visual Motion

We tested our observer model by simulating a recently reported psychophysical experiment

[4]. Subjects in this experiment were asked on each trial to decide whether the overall

motion direction of a random dot pattern was to the right or to the left of a reference mark

(as seen from the fixation point). Low levels of motion coherence made the decision task

1For the purpose of this paper, we assume a standard squared error loss function, in which case the observer should choose the mean
of the posterior distribution.
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difficult for motion directions close to the reference mark. In a subset of randomly selected

trials subjects were also asked to estimate the precise angle of motion direction (see Fig. 2).

The decision task was always preceding the estimation task, but at the time of the decision,

subjects were unaware whether they would had to perform the estimation task or not.

3.1 Formulating the observer model

We denote θ as the direction of coherent motion of the random dot pattern, and m the noisy

sensory measurement. Suppose that on a given trial the measurement m indicates a direction

of motion to the right of the reference mark. The observer can consider two hypotheses H =

{h 1, h2} about the actual physical motion of the random dot pattern: Either the true motion

is actually to the right and thus in agreement with the measurement, or it is to the left but

noise has disturbed the measurement such that it indicates motion to the right. The

observer's belief in each of the two hypotheses based on their measurement is given by the

posterior distribution according to Eq. (1), and the likelihood

(5)

The optimal decision is to select the hypothesis hMAP that maximizes the posterior given by

Eq. (1).

3.2 Model observer vs. human observer

The subsequent conditioned estimate of motion direction then follows from Eq. (4) which

can be rewritten as

(6)

The model is completely characterized by three quantities: The likelihood functions p(m|θ,

H), the prior distributions p(θ|H) of the direction of motion given each hypothesis, and the

prior on the hypotheses p(H) itself (shown in Fig. 3). In the given experimental setup, both

prior distributions were uniform but the width parameter of the motion direction α was not

explicitly available to the subjects and had to be individually learned from training trials. In

general, subjects seem to over-estimate this parameter (up to a factor of two), and adjusting

its value in the model accounts for most of the variability between subjects. The likelihood

functions p(m|θ, H) is given by the uncertainty about the motion direction due to the low

motion coherence levels in the stimuli and the sensory noise characteristics of the observer.

We assumed it to be Gaussian with a width that varies inversely with the coherence level.

Values were estimated from the data plots in [4].

Figure 4 compares the prediction of the observer model with human data. Trial data of the

model were generated by first sampling a hypothesis h′ according to p(H), then drawing a

stimulus direction from p(θ|H = h′ ). then picking a sensory measurement sample m

according to the conditional probability p(m|θ, H = h′ ), and finally performing inference

according to Eqs. (1) and (6). The model captures the characteristics of human behavior in

both the decision and the subsequent estimation task. Note the strong influence of the
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decision task on the subsequent estimation of the motion direction, effectively pushing the

estimates away from the decision boundary.

We also compared the model with a second version of the experiment, in which the decision

task was to discriminate between motion toward and away from the reference [4]. Coherent

motion of the random dot pattern was uniformly sampled from a range around the reference

and from a range around the direction opposite to the reference, as illustrated by the prior

distributions shown in Fig. 5. Again, note that these distributions are given by the

experiment and thus, assuming the same noise characteristics as in the first experiment, the

model has no free parameters.

3.3 Predictions

The model framework also allows us to make quantitative predictions of human perceptual

behavior under conditions not yet tested. Figure 6 shows the model observer's behavior

under two modifications of the original experiment. The first is identical to the experiment

shown in Fig. 4 but with unequal prior probability on the two hypotheses. The model

predicts that a human subject would respond to this change by more frequently choosing the

more likely hypothesis. However, this hypothesis would also be more likely to be correct,

and thus the estimates under this hypothesis would exhibit less bias than in the original

experiment.

The second modification is to add a second reference and ask the subject to decide between

three different classes of motion direction (e.g. left, central, right). Again, the model predicts

that in such a case, a human subject's estimate in the central direction should be biased away

from both decision boundaries, thus leading to an almost constant direction estimate.

Estimates following a decision in favor of the two outer classes show the same repulsive

bias as seen in the original experiment.

4 Discussion

We have presented a normative model for human perception that captures the conditioning

effects of decisions on an observer's subsequent evaluation of sensory evidence. The model

is based on the premise that observers aim for optimal inference (taking into account all

sensory evidence and prior information), but that they exhibit decision-induced biases

because they also aim to be self-consistent, eliminating alternatives that have been decided

against. We've demonstrated that this model can account for the experimental results of [4].

Although this strategy is suboptimal (in that it does not minimize expected loss), it provides

two fundamental advantages. First, self-consistency would seem an important requirement

for a stable interpretation of the environment, and adhering to it might outweigh the

disadvantages of perceptual misjudgments. Second, framing perception in terms of optimal

statistical estimation implies that the more information an observer evaluates, the more

accurately they should be able to solve a perceptual task. But this assumes that the observer

can construct and retain full probability distributions and perform optimal inference

calculations on these. Presumably, accumulating more probabilistic evidence of more

complex conditional dependencies has a cost, both in terms of storage, and in terms of the
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computational load of performing subsequent inference. Thus, discarding information after

making a decision can help to keep this storage and the computational complexity at a

manageable level, freeing computational resources to perform other tasks.

An interesting avenue for exploration is the implementation of such an algorithm in neural

substrate. Recent studies propose a means by which population of neurons can represent and

multiply probability distributions [15]. It would be worthwhile to consider how the model

presented here could be implemented with such a neural mechanism. In particular, one

might expect that the sudden change in posterior probabilities over the hypotheses

associated with the decision task would be reflected in sudden changes in response pattern in

such populations [16].

Questions remain. For the experiment we have modeled, the hypotheses were specified by

the two alternatives of the decision task, and the subjects were forced to choose one of them.

What happens in more general situations? First, do humans always decompose perceptual

inference tasks into a set of inference problems, each conditioned on a different hypothesis?

Data from other, cue-combination experiments suggest that subjects indeed seem to perform

such probabilistic decomposition [13, 14]. If so, then how do observers generate these

hypotheses? In the absence of explicit instructions, humans may automatically perform

implicit comparisons relative to reference features that are unconsciously selected from the

environment. Second, if humans do consider different hypotheses, do they always select a

single one on which subsequent percepts are conditioned, even if not explicitly asked to do

so? For example, simply displaying the reference mark in the experiment of [4] (without

asking the observer to report any decision) might be sufficient to trigger an implicit decision

that would result in behaviors similar to those shown in the explicit case.

Finally, although we have only tested it on data of a particular psychophysical experiment,

we believe that our model may have implications beyond low-level sensory perception. For

instance, a well-studied human attribute is known as cognitive dissonance [17], which

causes people to ad-just their opinions and beliefs to be consistent with their previous

statements or behaviors. 2 Thus, self-consistency may be a principle that governs

computations throughout the brain.
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Figure 1. Perception as conditioned inference problem
Based on noisy sensory measurements m the observer generates different hypotheses for the

generative structure that relates m to the stimulus variable s. Perception is a two-fold

inference problem: Given the measurement and prior knowledge, the observer generates and

evaluates different structural hypotheses hi. Conditioned on this evaluation, they then infer

an estimateŝ(m) from the measurement m.
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Figure 2. Decision-estimation experiment
(a) Jazayeri and Movshon presented moving random dot patterns to subjects and asked them

to decide if the overall motion direction was either to the right or the left of a reference mark

[4]. Random dot patterns could exhibit three different levels of motion coherence (3, 6, and

12%) and the single coherent motion direction was randomly selected from a uniform

distribution over a symmetric range of angles [−α, α] around the reference mark. (b) In

randomly selected 30% of trials, subjects were also asked, after making the directional

decision, to estimate the exact angle of motion direction by adjusting an arrow to point in the

direction of perceived motion. In a second version of the experiment, motion was either

toward the direction of the reference mark or in the opposite direction.
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Figure 3. Ingredients of the conditional observer model
The sensory signal is assumed to be corrupted by additive Gaussian noise, with variance that

varies inversely with the level of motion coherence. Actual variances were approximated

from those reported in [4]. The prior distribution over the hypotheses p(H) is uniform. The

two prior distributions over motion direction given each hypothesis, p(θ|H = h1,2), are again

determined by the experimental setup, and are uniform over the range [0, ±α].
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Figure 4. Comparison of model predictions with data for a single subject
Upper left: The two panels show the percentage of observed motion to the right as a function

of the true pattern direction, for the three coherence levels tested. The model accurately

predicts the subject's behavior, which exhibits a decrease in the number of false decisions

with decreasing noise levels and increasing distance to the reference. Lower left: Mean

estimates of the direction of motion after performing the decision task. Clearly, the decision

has a substantial impact on the subsequent estimate, producing a strong bias away from the

reference. The model response exhibits biases similar to those of the human subjects, with

lower coherence levels producing stronger repulsive effects. Right: Grayscale images show

distributions of estimates across trials for both the human subject and the model observer,

for all three coherence levels. All trials are included (correct and incorrect). White dashed

lines represent veridical estimates. Model observer performed 40 trials at each motion

direction (in 1.5 degrees increments). Human data are replotted from [4].
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Figure 5. Comparison of model predictions with data for second experiment
Left: Prior distributions for second experiment in [4]. Right: Grayscale images show the trial

distributions of the human subject and the model observer for all three coherence levels.

White dashed lines represent veridical estimates. Note that the human subject does not show

any significant bias in their estimate. The trial variance appears to increase with decreasing

levels of coherence. Both characteristics are well predicted by the model. Human data

replotted from [4] (supplementary material).
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Figure 6. Model predictions for two modifications of the original experiment
A: We change the prior probability p(H) to be asymmetric (0.8 vs. 0.2). However, we keep

the prior distribution of motion directions given a particular side p(θ|H) constant within the

range [0, ±α]. The model makes two predictions (trials shown for an intermediate coherence

level): First, although tested with an equal number of trials for each motion direction, there

is a strong bias induced by the asymmetric prior. And second, the direction estimates on the

left are more veridical than on the right. B: We present two reference marks instead of one,

asking the subjects to make a choice between three equally likely regions of motion

direction. Again, we assume uniform prior distributions of motion directions within each

area. The model predicts bilateral repulsion of the estimates in the central area, leading to a

strong bias that is almost independent of coherence level.
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