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Abstract

We consider the problem of transforming a signal to a representation in which the components are

statistically independent. When the signal is generated as a linear transformation of independent

Gaussian or non-Gaussian sources, the solution may be computed using a linear transformation

(PCA or ICA, respectively). Here, we consider a complementary case, in which the source is non-

Gaussian but elliptically symmetric. Such a source cannot be decomposed into independent

components using a linear transform, but we show that a simple nonlinear transformation, which

we call radial Gaussianization (RG), is able to remove all dependencies. We apply this

methodology to natural signals, demonstrating that the joint distributions of nearby bandpass filter

responses, for both sounds and images, are closer to being elliptically symmetric than linearly

transformed factorial sources. Consistent with this, we demonstrate that the reduction in

dependency achieved by applying RG to either pairs or blocks of bandpass filter responses is

significantly greater than that achieved by PCA or ICA.

1 Introduction

Signals may be manipulated, transmitted or stored more effciently if they are transformed to

a representation in which there is no statistical redundancy between the individual

components. In the context of biological sensory systems, the effcient coding hypothesis [1,

2] proposes that the principle of reducing redundancies in natural signals can be used to

explain various properties of biological perceptual systems. Given a source model, the

problem of deriving an appropriate transformation to remove statistical dependencies, based

on the statistics of observed samples, has been studied for more than a century. The most

well-known example is principal components analysis (PCA), a linear transformation

derived from the second-order signal statistics (i.e., the covariance structure), that can fully

eliminate dependencies for Gaussian sources. Over the past two decades, a more general

method, known as independent component analysis (ICA), has been developed to handle the

case when the signal is sampled from a linearly transformed factorial source. ICA and

related methods have shown success in many applications, especially in deriving optimal

representations for natural signals [3, 4, 5, 6].
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Although PCA and ICA bases may be computed for nearly any source, they are only

guaranteed to eliminate dependencies when the assumed source model is correct. And even

in cases where these methodologies seems to produce an interesting solution, the

components of the resulting representation may be far from independent. A case in point is

that of natural images, for which derived ICA transformations consist of localized oriented

basis functions that appear similar to the receptive field descriptions of neurons in

mammalian visual cortex [3, 5, 4]. Although dependency between the responses of such

linear basis functions is reduced compared to that of the original pixels, this reduction is

only slightly more than that achieved with PCA or other bandpass filters [7, 8]. Furthermore,

the responses of ICA and related filters still exhibit striking higher-order dependencies [9,

10, 11].

Here, we consider the dependency elimination problem for the class of source models

known as elliptically symmetric densities (ESDs) [12]. For ESDs, linear transforms have no

effect on the dependencies beyond second-order, and thus ICA decompositions o er no

advantage over PCA. We introduce an alternative nonlinear procedure, which we call radial

Gaussianization (RG). In RG, the norms of whitened signal vectors are nonlinearly adjusted

to ensure that the resulting output density is a spherical Gaussian, whose components are

statistically independent. We first show that the joint statistics of proximal bandpass filter

responses for natural signals (sounds and images) are better described as an ESD than

linearly transformed factorial sources. Consistent with this, we demonstrate that the

reduction in dependency achieved by applying RG to such data is significantly greater than

that achieved by PCA or ICA. A preliminary version of portions of this work was described

in [13].

2 Elliptically Symmetric Densities

The density of a random vector  with zero mean is elliptically symmetric if it is of

the form:

(1)

where Σ is a positive definite matrix, f (·) is the generating function satisfying f (·) ≥ 0 and

, and the normalizing constant α is chosen so that the density

integrates to one [12]. The definitive characteristic of an ESD is that the level sets of

constant probability are ellipsoids determined by Σ. In the special case when Σ is a multiple

of the identity matrix, the level sets of p(x) are hyper-spheres and the density is known as a

spherically symmetric density (SSD). Assuming x has finite second-order statistics, Σ is a

multiple of the covariance matrix, which implies that any ESD can be transformed into an

SSD by a PCA/whitening operation.

When the generating function is an exponential, the resulting ESD is a zero-mean

multivariate Gaussian with covariance matrix Σ. In this case, x can also be regarded as a

linear transformation of a vector s containing independent unit-variance Gaussian

components, as: x = Σ−1/2s. In fact, the Gaussian is the only density that is both elliptically
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symmetric and linearly decomposable into independent components [14]. In other words, the

Gaussian densities correspond to the intersection of the class of ESDs and the class assumed

by the ICA methods. As a special case, a spherical Gaussian is the only spherically

symmetric density that is also factorial (i.e., has independent components). These

relationships are illustrated in a Venn diagram in Fig. 1.

Apart from the special case of Gaussian densities, a linear transformation such as PCA or

ICA cannot completely eliminate dependencies in the ESDs. In particular, PCA and

whitening can transform an ESD variable to a spherically symmetric variable, xwht, but the

resulting density will not be factorial unless it is Gaussian. And ICA would apply an

additional rotation (i.e., an orthogonal matrix) to transform xwht to a new set of coordinates

maximizing a higher-order contrast function (e.g., kurtosis). However, for spherically

symmetric xwht, p(xwht) is invariant to rotation, and thus unaffected by orthogonal

transformations.

3 Radial Gaussianization

Given that linear transforms are ineffective in removing dependencies from a spherically

symmetric variable xwht (and hence the original ESD variable x), we need to consider non-

linear mappings. As described previously, a spherical Gaussian is the only SSD with

independent components. Thus, a natural solution for eliminating the dependencies in a non-

Gaussian spherically symmetric xwht is to transform it to a spherical Gaussian.

Selecting such a non-linear mapping without any further constraint is a highly ill-posed

problem. It is natural to restrict to nonlinear mappings that act radially, preserving the

spherical symmetry. Specifically, one can show that the generating function of p(xwht) is

completely determined by its radial marginal distribution: , where r =

||xwht||, Γ(·) is the standard Gamma function, and β is the normalizing constant that ensures

that the density integrates to one. In the special case of a spherical Gaussian of unit variance,

the radial marginal is a chi-density with d degrees of freedom:

. We define the radial Gaussianization (RG) transformation

as , where nonlinear function g(·) is selected to map the radial

marginal density of xwht to the chi-density. Solving for a monotonic g(·) is a standard one-

dimensional density-mapping problem, and the unique solution is the composition of the

inverse cumulative density function (CDF) of pχ with the CDF of . A

illustration of the procedure is provided in Fig. 2. In practice, we can estimate Fr(r) from a

histogram computed from training data, and use this to construct a numerical approximation

(i.e., a look-up table) of the continuous functionĝ(r). Note that the accuracy of the estimated

RG transformation will depend on the number of data samples, but is independent of the

dimensionality of the data vectors.

In summary, a non-Gaussian ESD signal can be radially Gaussianized by first applying PCA

and whitening operations to remove second-order dependency (yielding an SSD), followed

by a nonlinear transformation that maps the radial marginal to a chi-density.
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4 Application to Natural Signals

An understanding of the statistical behaviors of source signals is beneficial for many

problems in signal processing, and can also provide insights into the design and

functionality of biological sensory systems. Gaussian signal models are widely used,

because they are easily characterized and often lead to clean and e cient solutions. But many

naturally occurring signals exhibit striking non-Gaussian statistics, and much recent

literature focuses on the problem of characterizing and exploiting these behaviors.

Specifically, ICA methodologies have been used to derive linear representations for natural

sound and image signals whose coefficients are maximally sparse or independent [3, 5, 6].

These analyses generally produced basis sets containing bandpass filters resembling those

used to model the early transformations of biological auditory and visual systems.

Despite the success of ICA methods in providing a fundamental motivation for sensory

receptive fields, there are a number of simple observations that indicate inconsistencies in

this interpretation. First, the responses of ICA or other bandpass filters exhibit striking

dependencies, in which the variance of one filter response can be predicted from the

amplitude of another nearby filter response [10, 15]. This suggests that although the

marginal density of the bandpass filter responses are heavy-tailed, their joint density is not

consistent with the linearly transformed factorial source model assumed by ICA.

Furthermore, the marginal distributions of a wide variety of bandpass filters (even a “filter”

with randomly selected zero-mean weights) are all highly kurtotic [7]. This would not be

expected for the ICA source model: projecting the local data onto a random direction should

result in a density that becomes more Gaussian as the neighborhood size increases, in

accordance with a generalized version of the central limit theorem [16]. A recent

quantitative study [8] further showed that the oriented bandpass filters obtained through ICA

optimization on images lead to a surprisingly small improvement in reducing dependency

relative to decorrelation methods such as PCA. Taken together, all of these observations

suggest that the filters obtained through ICA optimization represent a “shallow” optimum,

and are perhaps not as uniquely suited for image or sound representation as initially

believed. Consistent with this, recently developed models for local image statistics model

local groups of image bandpass filter responses with non-Gaussian ESDs [e.g., 17, 18, 11,

19, 20]. These all suggest that RG might provide an appropriate means of eliminating

dependencies in natural signals. Below, we test this empirically.

4.1 Dependency Reduction in Natural Sounds

We first apply RG to natural sounds. We used sound clips from commercial CDs, which

have a sampling frequency of 44100 Hz and typical length of 15 – 20 seconds, and contents

including animal vocalization and recordings in natural environments. These sound clips

were filtered with a bandpass gammatone filter, which are commonly used to model the

peripheral auditory system [21]. In our experiments, analysis was based on a filter with

center frequency of 3078 Hz.

Shown in the top row of column (a) in Fig.3 are contour plots of the joint histograms

obtained from pairs of coefficients of a bandpass-filtered natural sound, separated with

different time intervals. Similar to the empirical observations for natural images [17, 11], the
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joint densities are non-Gaussian, and have roughly elliptically symmetric contours for

temporally proximal pairs. Shown in the top row of column (b) in Fig.3 are the conditional

histograms corresponding to the same pair of signals. The “bow-tie” shaped conditional

distribution, which has been also observed in natural images [10, 11, 15], indicates that the

conditional variance of one signal depends on the value of the other. This is a highly non-

Gaussian behavior, since the conditional variances of a jointly Gaussian density are always

constant, independent of the value of the conditioning variable. For pairs that are distant,

both the second-order correlation and the higher-order dependency become weaker. As a

result, the corresponding joint histograms show more resemblance to the factorial product of

two one-dimensional super-Gaussian densities (bottom row of column (a) in Fig.3), and the

shape of the corresponding conditional histograms (column (b)) is more constant, all as

would be expected for two independent random variables .

As described in previous sections, the statistical dependencies in an elliptically symmetric

random variable can be effectively removed by a linear whitening operation followed by a

nonlinear radial Gaussianization, the latter being implemented as histogram transform of the

radial marginal density of the whitened signal. Shown in columns (c) and (d) in Fig.3 are the

joint and conditional histograms of the transformed data. First, note that when the two

signals are nearby, RG is highly effective, as suggested by the roughly Gaussian joint

density (equally spaced circular contours), and by the consistent vertical cross-sections of

the conditional histogram. However, as the temporal separation between the two signals

increases, the effects of RG become weaker (middle row, Fig. 3). When the two signals are

distant (bottom row, Fig.3), they are nearly independent, and applying RG can actually

increase dependency, as suggested by the irregular shape of the conditional densities

(bottom row, column (d)).

To quantify more precisely the dependency reduction achieved by RG, we measure the

statistical dependency of our multivariate sources using the multi-information (MI) [22],

which is defined as the Kulback-Leibler divergence [23] between the joint distribution and

the product of its marginals: ,

where  is the differential entropy of x, and H(xk) denotes the

differential entropy of the kth component of x. As a measure of statistical dependency

among the elements of x, MI is non-negative, and is zero if and only if the components of x
are mutually independent. Furthermore, MI is invariant to any transformation on individual

components of x (e.g., element-wise rescaling).

To compare the effect of different dependency reduction methods, we estimated the MI of

pairs of bandpass filter responses with different temporal separations. This is achieved with

a non-parametric “bin-less” method based on the order statistics [24], which alleviates the

strong bias and variance intrinsic to the more traditional binning (i.e., “plug-in”) estimators.

It is especially effective in this case, where the data dimensionality is two. We computed the

MI for each pair of raw signals, as well as pairs of the PCA, ICA and RG transformed

signals. The ICA transformation was obtained using RADICAL [25], an algorithm that

directly optimizes the MI using a smoothed grid search over a non-parametric estimate of

entropy.
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The results, averaged over all 10 sounds, are plotted in Fig. 4. First, we note that PCA

produces a relatively modest reduction in MI: roughly 20% for small separations, decreasing

gradually as the separation increase. We also see that ICA offers very little additional

reduction over PCA for small separations. In contrast, the nonlinear RG transformation

achieves an impressive reduction (nearly 100%) in MI for pairs separated by less than 0.5

msec. This can be understood by considering the joint and conditional histograms in Fig. 3.

Since the joint density of nearby pairs is approximately elliptically symmetric, ICA cannot

provide much improvement beyond what is obtained with PCA, while RG is expected to

perform well. On the other hand, the joint densities of more distant pairs (beyond 2.5 msec)

are roughly factorial, as seen in the bottom row of Fig. 3. In this case, neither PCA nor ICA

is effective in further reducing dependency, as is seen in the plots of Fig. 4, but RG makes

the pairs more dependent, as indicated by an increase in MI above that of the original pairs

for separation over 2.5 msec. This is a direct result of the fact that the data do not adhere to

the elliptically symmetric source model assumptions underlying the RG procedure. For

intermediate separations (0.2 to 2 msec), there is a transition of the joint densities from

elliptically symmetric to factorial (second row in Fig. 3), and ICA is seen to offer a modest

improvement over PCA. We found qualitatively similar behaviors (right column in Fig. 4)

when analyzing pairs of bandpass filter responses of natural images using the data sets

described in the next section.

4.2 Dependency Reduction in Natural Images

We have also examined the ability of RG to reduce dependencies of image pixel blocks with

local mean removed. We examined eight images of natural woodland scenes from the van

Hateren database [26]. We extracted the central 1024 × 1024 region from each, computed

the log of the intensity values, and then subtracted the local mean [8] by convolving with an

isotropic bandpass filter that captures an annulus of frequencies in the Fourier domain

ranging from π/4 to π radians/pixel. We denote blocks taken from these bandpass filtered

images as xraw. These blocks were then transformed with PCA (denoted xpca), ICA (denoted

xica) and RG (denoted xrg). These block data are of significantly higher dimension than the

filter response pairs examined in the previous section. For this reason, we switched our ICA

computations from RADICAL to the more e cient FastICA algorithm [27], with a contrast

function g(u) = 1 − exp(–u2) and using the symmetric approach for optimization.

We would like to compare the dependency reduction performance of each of these methods

using multi-information. However, direct estimation of MI becomes di cult and less accurate

with higher data dimensionality. Instead, as in [8], we can avoid direct estimation of MI by

evaluating and comparing the di erences in MI of the various transformed blocks relative to

xraw. Specifically, we use ΔIpca = I(xraw) – I(xpca) as a reference value, and compare this

with ΔIica = I(xraw) – I(xica) and ΔIrg = I(xraw) – I(xrg). Full details of this computation are

described in [13].

Shown in Fig.5 are scatter plots of ΔIpca versus ΔIica (red circles) and ΔIrg (blue pluses) for

various block sizes. Each point corresponds to MI computation over blocks from one of

eight bandpass-filtered test images. As the figure shows, RG achieves significant reduction

in MI for most images, and this holds over a range of block sizes, whereas ICA shows only a
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very small improvement relative to PCA1. We again conclude that ICA does not offer much

advantage over second-order decorrelation algorithms such as PCA, while RG offers

significant improvements. These results may be attributed to the fact that the joint density

for local pixel blocks tend to be close to be elliptically symmetric [17, 11].

5 Conclusion

We have introduced a new signal transformation known as radial Gaussianization (RG),

which can eliminate dependencies of sources with elliptically symmetric densities.

Empirically, we have shown that RG transform is highly effective at removing dependencies

between pairs of samples in bandpass filtered sounds and images, and within local blocks of

bandpass filtered images.

One important issue underlying our development of this methodology is the intimate relation

between source models and dependency reduction methods. The class of elliptically

symmetric densities represents a generalization of the Gaussian family that is

complementary to the class of linearly transformed factorial densities (see Fig. 1). The three

dependency reduction methods we have discussed (PCA, ICA and RG) are each associated

with one of these classes, and are each guaranteed to produce independent responses when

applied to signals drawn from a density belonging to the corresponding class. But applying

one of these methods to a signal with an incompatible source model may not achieve the

expected reduction in dependency (e.g., applying ICA to an ESD), and in some cases can

even increase dependencies (e.g., applying RG to a factorial density).

Several recently published methods are related to RG. An iterative Gaussianization scheme

transforms any source model to a spherical Gaussian by alternating between linear ICA

transformations and nonlinear histogram matching to map marginal densities to Gaussians

[28]. However, in general, the overall transformation of iterative Gaussianization is an

alternating concatenation of many linear/nonlinear transformations, and results in a

substantial distortion of the original source space. For the special case of ESDs, RG provides

a simple one-step procedure with minimal distortion. Another nonlinear transform that has

also been shown to be able to reduce higher-order dependencies in natural signals is divisive

normalization [15]. In the extended version of this paper [13], we show that there is no ESD

source model for whose dependencies can be completely eliminated by divisive

normalization. On the other hand, divisive normalization provides a rough approximation to

RG, which suggests that RG might provide a more principled justification for normalization-

like nonlinear behaviors seen in biological sensory systems.

There are a number of extensions of RG that are worth considering in the context of signal

representation. First, we are interested in specific sub-families of ESD for which the

nonlinear mapping of signal amplitudes in RG may be expressed in closed form. Second, the

RG methodology provides a solution to the e cient coding problem for ESD signals in the

noise-free case, and it is worthwhile to consider how the solution would be affected by the

1Similar results for the comparison of ICA to PCA were obtained with a slightly different method of removing the mean values of
each block [8].
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presence of sensor and/or channel noise. Third, we have shown that RG substantially

reduces dependency for nearby samples of bandpass filtered image/sound, but that

performance worsens as the coefficients become more separated, where their joint densities

are closer to factorial. Recent models of natural images [29, 30] have used Markov random

fields based on local elliptically symmetric models, and these are seen to provide a natural

transition of pairwise joint densities from elliptically symmetric to factorial. We are

currently exploring extensions of the RG methodology to such global models. And finally,

we are currently examining the statistics of signals after local RG transformations, with the

expectation that remaining statistical regularities (e.g., orientation and phase dependencies in

images) can be studied, modeled and removed with additional transformations.
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Fig. 1.
Venn diagram of the relationship between density models. The two circles represent the

linearly transformed factorial densities as assumed by the ICA methods, and elliptically

symmetric densities (ESDs). The intersection of these two classes is the set of all Gaussian

densities. The factorial densities form a subset of the linearly transformed factorial densities

and the spherically symmetric densities form a subset of the ESDs.
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Fig. 2.
Radial Gaussianization procedure for 2D data. (a,e): 2D joint densities of a spherical

Gaussian and a non-Gaussian SSD, respectively. The plots are arranged such that a spherical

Gaussian has equal-spaced contours. (b,f): radial marginal densities of the spherical

Gaussian in (a) and the SSD in (e), respectively. Shaded regions correspond to shaded annuli

in (a) and (e). (c): the nonlinear mapping that transforms the radii of the source to those of

the spherical Gaussian. (d): log marginal densities of the Gaussian in (a) and the SSD in (e),

as red dashed line and green solid line, respectively.
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Fig. 3.
Radial Gaussianization of natural sounds. (a): Contour plots of joint histograms of pairs of

band-pass filter responses of a natural sound clip. Each row corresponds to pairs with

different temporal separation, and levels are chosen so that a spherical Gaussian density will

have equally spaced contours. (c) Joint histograms after whitening and RG transformation.

(b,d): Conditional histograms of the same data shown in (a,c), computed by independently

normalizing each column of the joint histogram. Histogram intensities are proportional to

probability, except that each column of pixels is independently rescaled so that the largest

probability value is displayed as white.
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Fig. 4.
Left: Multi-information (in bits/coe cient) for pairs of bandpass filter responses of natural

audio signals, as a function of temporal separation. Shown are the MI of the raw filter

response pairs, as well as the MI of the pairs transformed with PCA, ICA, and RG. Results

are averaged over 10 natural sound signals. Right: Same analysis for pairs of bandpass filter

responses averaged over 8 natural images.
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Fig. 5.
Reduction of MI (bits/pixel) achieved with ICA and RG transforms, compared to that

achieved with PCA, for pixel blocks of various sizes. The x-axis corresponds to ΔIpca.

Pluses denotes ΔIrg, and circles denotes ΔIica. Each plotted symbol corresponds to the result

from one image in our test set.
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