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ABSTRACT Fish sex determination (SD) systems are varied, suggesting evolutionary changes including
either multiple evolution origins of genetic SD from nongenetic systems (such as environmental SD) and/or
turnover events replacing one genetic system by another. When genetic SD is found, cytological dif-
ferentiation between the two members of the sex chromosome pair is often minor or undetectable. The
turbot (Scophthalmus maximus), a valuable commercial flatfish, has a ZZ/ZW system and a major SD region
on linkage group 5 (LG5), but there are also other minor genetic and environmental influences. We here
report refined mapping of the turbot SD region, supported by comparative mapping with model fish
species, to identify the turbot master SD gene. Six genes were located to the SD region, two of them
associated with gonad development (sox2 and dnajc19). All showed a high association with sex within
families (P = 0), but not at the population level, so they are probably partially sex-linked genes, but not
SD gene itself. Analysis of crossovers in LG5 using two families confirmed a ZZ/ZW system in turbot and
suggested a revised map position for the master gene. Genetic diversity and differentiation for 25 LG5
genetic markers showed no differences between males and females sampled from a wild population,
suggesting a recent origin of the SD region in turbot. We also analyzed associations with markers of the
most relevant sex-related linkage groups in brill (S. rhombus), a closely related species to turbot; the data
suggest that an ancient XX/XY system in brill changed to a ZZ/ZW mechanism in turbot.
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Gonad differentiation is an excellent example of developmental plasticity
(Siegfried 2010). In vertebrates, two highly differentiated and specialized
gonads, testes and ovaries, develop from a single undifferentiated pri-
mordium by a well-defined pathway. A binary decision at the beginning
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of development often is controlled by specific sex-determining genes
(SDg). A general consensus existed until recently that the genetic
cascade/network underlying this process should be highly conserved
and differences would only occur at its top (Marin and Baker 1998;
Charlesworth and Mank 2010).

The evolutionary origin of heteromorphic sex chromosome pairs is
thought to be due to the evolution of a nonrecombining region that
occurs after a sexually antagonistic gene (with one allele favorable in
one sex but detrimental in the other, often termed “SA”) establishes
a polymorphism in a genome region linked to a new SDg (reviewed
by Mank and Avise 2009; Charlesworth and Mank 2010). This situation
favors suppressed recombination in the region, leading, over time, to the
accumulation of recessive, deleterious mutations and repetitive DNA
on the SDg-bearing chromosome, often termed “genetic degeneration”
(reviewed by Charlesworth and Charlesworth 2000), and ultimately,
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via chromosome rearrangements and deletions, to the heteromorphic
sex chromosomes characteristic of mammals, birds, or Drosophila
(Charlesworth et al. 2005).

Initial data from fish, however, found a different picture (Devlin
and Nagahama 2002; Schartl 2004). Although SA genes are known in
fish species, mostly related to color differences associated with court-
ship (Roberts et al. 2009; Tripathi et al. 2009; Parnell and Streelman
2013), most fish species do not have heteromorphic sex chromosomes
(Penman and Piferrer 2008), and fish genetic SD systems are thought
to involve sex chromosomes in an early evolutionary stage (Piferrer
et al. 2012). This finding suggests a high evolutionary turnover rate of
SDg. Furthermore, genetic differences have been observed not only at
the top but also downstream of the gonad differentiation cascade in
fish (Bohne et al. 2013; Herpin et al. 2013) and, in addition, more than
one sex-related segregating gene and environmental cues have been
documented in several species, suggesting that sex determination (SD)
in fish can behave as a quantitative trait (Vandeputte et al. 2007; Otake
et al. 2008; Ser et al. 2010; Shinomiya et al. 2010; Liew et al. 2012;
Parnell and Streelman 2013).

The flatfish group underwent a rapid evolutionary radiation
around 35 million years ago, making relationships among flatfish
families controversial (Pardo et al. 2006). The monophyletic origin of
the group also has been questioned (Campbell et al. 2013). Flatfish
include species highly valuable for fisheries and aquaculture (Cerda
and Manchado 2013). The SD system has so far been studied in 14
flatfish species, and ZZ/ZW and XX/XY systems both exist in similar
proportions (Vinas et al. 2013). Although environmental cues have
been reported in some species (Yamaguchi et al. 2010; Mankiewicz
et al. 2013), genetic factors are likely the main factors underlying SD
in this group (Vifias et al. 2013).

Turbot (Scophthalmus maximus) is a flatfish mostly cultured in
Europe and PR China (Fao 2013). Sexual dimorphism in growth is
among the greatest within fish, making it important to understand the
SD mechanism, as this might allow development of hormone-free
methods to produce monosex populations for turbot culture (Imsland
et al. 1997; Piferrer et al. 2004). A genomic region on linkage group 5
(LG5) segregates as a major ZZ/ZW system, and minor genetic factors
have been detected by quantitative trait loci (QTL) screens on LG6,
LG8, and LG21 (Martinez et al. 2009; Hermida et al. 2013). Minor
environmental effects also have been reported (Haffray et al. 2009).
Martinez et al. (2009) located the turbot master SD gene 2.6 cM from
the LG5 marker with the greatest sex-association (SmaUSC-E30). This
sequence was originally identified from a nonannotated, 389-bp turbot
expressed sequence tag (EST; FE946656) from an enriched immune-
related EST database (Pardo et al. 2008) and proved to be part of the
3" untranslated region of the 1075-bp fragile X mental retardation,
autosomal homolog 1 (fxrI) gene (KJ434937, BLASTn E-value 3°!)
in the updated turbot EST database enriched for the gonad-brain
axis transcriptome (Ribas et al. 2013). Mapping of candidate genes
and mining through comparative genomics yielded sex-related genes
linked to the reported QTL, giving additional support to the genomic
regions in the other LGs (Vifas et al. 2012; Hermida et al. 2013).
Comparative mapping with the brill, a closely related species (S. rhombus),
contributed to understanding of the genetic architecture of growth-
related traits (Hermida et al. 2014) but was not extended to studying
SD. Finally, functional genomics studies have identified genes differ-
entially expressed in male and female turbot (Taboada et al. 2012) and
revealed the gonad-brain axis genes most relevant for gonad differen-
tiation (Ribas et al. 2013). The identity of the SD master gene, and
how it interacts with the minor genetic and environmental factors,
however, remains elusive.
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In this study, we applied the updated version of the turbot map
(Hermida et al. 2013) to refine gene mapping at the main SD region
(Martinez et al. 2009) to identify the SDg and to perform population
genetic analyses to validate the SD region in this species. Our work
included: (i) classical and physical mapping of genes (identified
through comparative genomics with model fish) at the main SD region;
(i) analysis of recombination frequencies (RFs) in LG5 (the main SD
LG) in males and females; and (iii) study of LG5 markers in a sample
from a natural population to identify any chromosome region differ-
entiated between the sexes, and a preliminary association study in brill
(S. rhombus). The results suggest that this region evolved recently.

MATERIALS AND METHODS

Reference families for segregation analysis

and mapping

The reference families used for mapping and segregation analysis were
those used by Bouza et al. (2007, 2012) and Hermida et al. (2013). To
summarize, HF is a family of haploid gynogenetic embryos obtained
at the Instituto Espaiol de Oceanografia (Vigo, Spain) following
Piferrer et al. (2004). DF and QF are F2 families with known linkage
phase obtained from the genetic breeding programs of the Stolt Sea
Farm SA and Insuifia SL companies and originating from genetically
divergent grandparents sampled from wild populations from the
Atlantic area. More details of the haploid (HF) and diploid (DF)
families, and the additional seven families used for QTL screening
(QF1—QF?7), are in Bouza et al. (2007) and Sdnchez-Molano et al.
(2011), respectively.

Natural populations of turbot (S. maximus) and brill
(S. rhombus)
The Stolt Sea Farm SA (SSF) broodstock, representative of a wild
Atlantic population of turbot (Martinez et al. 2009; Vera et al. 2011),
was used to test for associations of markers with sex (gender) and to
estimate population genetic parameters for genes in the main SD LG.
For this, 96 individuals (48 males and 48 females) were used.
Statistical association with sex also was tested in a wild population
of brill, a closely related species to turbot (Hermida et al. 2014), using
the brill broodstock of Agua del Pino experimental aquaculture station
(IFAPA), which was founded with wild individuals from Bahia de
Cédiz (SW Spain).

Comparative mapping and gene mining

The turbot main SD region was previously localized at the proximal
end of LG5, very close to SmaUSC-E30, between Sma-USC270 and
Sma-USC65 (Martinez et al. 2009) (see Figure 1). New mapping
data with additional LG5 markers enabled us to narrow down the
SD region to between SmaUSC-E30 and SmaSNP_31 (separated by
5.3 cM; Bouza et al. 2012) according to the estimated mapping
position of SDg (2.6 ¢cM from SmaUSC-E30; Martinez et al.
2009). Previous comparative mapping between turbot and model
fish species showed the greatest proportion of homologous sequences
and syntenic markers with stickleback (Gasterosteus aculeatus; Bouza
et al. 2012) in accordance with recent phylogenetic data (Zou et al.
2012), so its genome was used for gene mining to discover other genes
in this region of turbot. Three other Acanthopterygii, medaka (Oryzias
latipes), fugu (Fugu rubripes), and its close relative Tetraodon
(Tetraodon negroviridis), also were used to study gene order in
the turbot SD region. Sequences of LG5 markers were compared
against model fish genomes with the use of the National Center for
Biotechnology Information Basic Local Alignment Search Tool

= G3-Genes | Genomes | Genetics



LGO5_F LG05_CS LGO05_M
Sma-E79 0.0 Sma-E79
0.0 Sma-E79 Sma-Usc270 7.8 Sma-USC270

12.0 Sma-USC270 Sbg 12.6 SmaUSC-E30

15.8 SDg dnaj19 - G127 Sma-USC288

17.5 dnaj19 SmaUSC-E30 13.3 dnaj19

18.6 SmaUSC-E30 Sma-uUSC288f @ .144 sox2

19.1 atp11b Jr atp11b 15.8 SmaSNP_31

19.6 sox2 sox2 16.6 dig1

20.2 fkbp2 fkbp2 T 186 Sma-USC254

21.0 dig1 ncbp2 27.8 Sma-USCé5

21.4/ nchp2 SmaSNP_31 R~ 402 Sma-USC191

23.87//\! Sma-USC254 g’91 USCa54 40.3 Sma-USC247(1)

31.5 Sma-USCes ma-USC6 41.0 YSKr50 Figure 1 Female (F), male (M), and consensus (SC)

38.6 ] [ Sma-Usc225 Sma-USC65 413 YSKr54 7 ) -

51.4 Sma-USC191 Sma1-152INRA 432 Sma-USC198 turbot (S. maximus) LG5 maps. The vertical bar in

52.1 Sma-USC247 Sma-USC191 447 Sma-USC12 th indicates th . determi-

528 Sma1-152INRA Sma-UsC247 458 dmrtaz e consensus map indicates the main sex determi

53.6 YSKr54 N 48.8 Sma-Usc10 nation region according to Martinez et al. (2009; thin
YSKr54 497 Sma-USC88

55.0 YSKr50 . . ; .

6227\ sma-usc1es dmrta2 525 Sma-USC278 line) and Hermida et al. (2013; thick line).

/ Sma-USC12 Sma-USC198 55.4 YSKr178
64.5 dmeta2 Sma-USC12
Sma-USC265 YSKr178

69.6 o Sma-USC278

714 Sma-USC202 g::gggg:s

77 Sma-USC88 Sma-usc22s

75.6 Sma-USC278 Sma

91.5 Sma-USC10 amh s
Sma-USC265

109.0 — ScmM1 \ Sma-UsSC10
ScmM1

121.3 —J— SmaSNP_46 SmaSNP_46

(i.e., NCBI-BLAST). The list of genes at the region of stickleback
LGVIII between homologous sequences of SmaUSC-E30 and
SmaSNP_31 was obtained with the BioMart data mining tool
(www.ensembl.org). Their transcripts were compared by BLASTn
against the turbot transcriptome database (Ribas et al. 2013) for
further gene marker development and mapping. Those transcripts
that exhibited high homology (E-value <1073°) were selected for

mapping.

Marker development for mapping

The selected transcripts in the turbot transcriptome database were
aligned with the corresponding stickleback sequences (www.ensembl.
org) by CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/index.
html) to estimate the intron positions. Primers to amplify introns were
then designed using sequences in the adjacent exons, or in untranslated
regions, using Primer3 (http://primer3.ut.ee/). Several amplicons were
selected for polymerase chain reaction (PCR) and sequencing in a sample
of five males and five females to search for polymorphisms suitable for
mapping these genes.

Genomic DNA was extracted from muscle tissue from all individu-
als to be genotyped, using standard phenol-chloroform procedures
(Sambrook et al. 1989). PCRs were carried out in a volume of 50 p.L,
75 ng of genomic DNA, 20 pmol of each primer, 0.2 mM of each dNTP,
Ix PCR buffer, and 2.5 U of GreenTaq DNA polymerase (GenScript).
PCR was performed in a MyCycler Thermal cycler (Bio-Rad) following
an initial denaturation step at 94° for 3 min; 30 amplification cycles
including denaturation at 94° for 30 sec, primer annealing at 60° for 60
sec, and an extension step depending on amplicon size (about 1 kb/min)
at 72°% and a final extension step at 72° for 7 min. The PCR products
were analyzed on agarose gels stained with SYBR Gold (Invitrogen) and
purified with DNA Clean & Concentrator kit (Zymo Research)
following the manufacturer’s protocol.

Amplicons were sequenced following the ABI Prism BigDye Ter-
minator v3.1 Cycle Sequencing Kit protocol on an ABI 3730xl Genetic
Analyzer (Applied Biosystems). Sequences were aligned and analyzed
with SeqScape v2.5 (Applied Biosystems) to identify polymorphisms.
Several single-nucleotide polymorphisms (SNPs) were identified in
each gene, and variants were selected for mapping based on the allele
frequencies and sequencing quality. Primers for SNP genotyping were
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designed with Primer3. Genotyping reactions were performed in
a multiplex PCR following the protocol of Vera et al. (2011).

Mapping

Previous genotyping data from Hermida et al. (2013) and the new
genotypes obtained here for markers in the main SD region were used
for mapping. Informativeness of the new markers was checked by
genotyping parents and grandparents of the mapping family panel.
Family DF was mapped for many markers (Hermida ef al. 2013), and
thus, it was the main family for our map analyses. QF families were
used only when markers were noninformative in DF. We did not
genotype the HF family, but we used previous mapping information
to obtain the male, female, and consensus maps. In the DF, between
85 and 96 offspring were genotyped for mapping, using an ABI 3730xl
DNA sequencer and GENEMAPPER 4.0 (Applied Biosystems). Segrega-
tion at each locus was tested for Mendelian proportions using x? tests,
with Bonferroni correction for multiple tests (e = 0.05). Linkage anal-
ysis was performed as described by Bouza et al. (2012) and Hermida
et al. (2013) using Joinmap 3.0. Graphics were generated with Map-
chart 2.2 (Voorrips 2002).

Physical mapping of candidate genes was performed using fluores-
cence in situ hybridization (FISH) with bacterial artificial chromosome
(BAC) probes. The turbot BAC library was generated at the Clemson
University Genomics Institute under sponsorship from ReGABA
(Galician Net of Biotechnology in Aquaculture; see Taboada et al.
2014). To isolate BAC clones carrying putative genes at the main SD
region to be used as probes for BAC-FISH, the library was screened
with the primers generated for mapping candidate genes via the use of
3-dimensional pooling PCR.

Chromosomal preparations for FISH were obtained from anterior
kidney cells following Bouza et al. (1994) using turbot fry (90 g)
supplied by Cluster de Acuicultura de Galicia (CETGA). The two
positive BAC clones (Sma51Cl11 and Sma58H5) including candidate
genes were labeled with digoxigenin-11-dUTP and biotin-16-dUTP
(Roche Applied Sciences), respectively, using whole-genome amplifi-
cation kits, WGA2 and WGA3 (Sigma-Aldrich), according to the
supplier’s protocol. FISH was carried out using single and double
fluorescence labeling according to Taboada et al. (2014). Images were
captured with an Olympus BX51 microscope, equipped with an
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Olympus DP71 color digital camera, and processed with Adobe
Photoshop 3.0.

RF and crossing-over in SD LGs

To increase the precision of RF for LG5, and especially for the main SD
region, compared with previous estimates (Bouza et al. 2012; Hermida
et al. 2013), we genotyped all parents of the eight available diploid mapping
families (DF, QF1-QF?7) for the 12 markers located between Sma-USC270
and Sma-USC65 by Martinez et al. (2009), the region that showed the
greatest statistical associations with gender within families. Informative
markers segregating in the male or female parent in at least one family
were selected for further offspring genotyping and RF analysis of
marker intervals along LG5 that are common to the different families.

Two mapping families (DF and QF6) with sexed progenies were
used for detailed analysis of crossing-over events on LG5, using only
framework mapped markers.

We also were interested in evaluating differences in RF between
males and females in two candidate LGs related to SD in brill. Because
no families were available in this species, we comparatively analyzed
linkage disequilibrium in males and females from the IFAPA brood-
stock using probability tests under the default parameters of GENEPOP
4.2 (http://kimura.univ-montp2.fr/~rousset/Genepop.htm). This ap-
proach would permit to detect RF differences between sexes in the
putative SD LG if crossing-over were blocked over a chromosome
stretch in one of both sexes.

Population genetics of the major SD-bearing LG (LG5)
Genetic diversity and divergence between males and females was
performed with the use of 28 homogeneously distributed genetic
markers along LG5 in the SSF turbot broodstock representative of
a natural population of Atlantic origin. Genotyping information from
Martinez et al. (2009; three loci) was combined with data on 25 new
LG5 loci genotyped in a sample of 48 males and 48 females of the SSF
broodstock. Departures from Hardy—Weinberg genotype proportions
were checked by exact tests and the deviations at each locus were
quantified by Fig statistics. Genetic differentiation between male and
female subsamples was estimated by using Fsr and tested using exact
probability homogeneity tests.

To estimate genetic diversity, expected heterozygosity (He) and mean
number of alleles per locus (A) were computed for all markers and for
the microsatellites (most of our markers), because their mutation process
differs from that for SNPs. These analyses were implemented using the
default options of GENEPOP 4.2 either in the whole sample to compare
differences across genomic regions, or in the male and female subsam-
ples to check for allele or genotype frequency differences between sexes.

Sex association at family and population levels
Contingency x2 tests were conducted to search for genotypic and
allelic association between markers and sex within the turbot families,
DF and QF6, and in the SSF population sample. Markers from the most
suggestive sex-associated LGs of turbot (LG5 and LG21; Hermida et al.
2013) also were tested in the brill IFAPA broodstock population, as well as
Fqr tests for genetic differentiation between males and females. Bonferroni
corrections were used for all analyses with multiple tests.

RESULTS

Identification and mapping of candidate genes in the
major SD region

In the homologous syntenic region of the threespine stickleback
LGVIII to the main SD region of turbot (between SmaUSC-E30 and
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SmaSNP_31; Hermida et al. 2013), we found 19 genes, 13 of them
functionally annotated (see Supporting Information, Table S1). Thir-
teen of these genes showed homology (BLASTn E-value < 10~°) with
sequences in the turbot EST database, including several annotated
genes (dnajcl9, atpll1b, fkbp2, ncbp2, sox2; Ribas et al. 2013) and
one anonymous (Ensembl: ENSGACG00000006216) annotated by
BLASTn as Disks large homolog 1 (dlgI) (E-value < 10~3%). To map
these six genes, PCR primers were designed, and at least one SNP
could be consistently genotyped in the amplicons of each gene (see
Table 1 and Table S2). These markers were informative in at least
one family and were used to construct our new consensus LG5 map
(Figure 1). The six genes were located in the proximal region of this
map, in a narrow region of 3.2 cM mostly between SmaUSC-E30
and SmaSNP_31, in a similar order to that of the stickleback LGVIII
(see Table S1).

Male and female maps also were constructed using segregation
data from the mother and the father of the mapping panel family.
Most markers were collinear in all three turbot maps, except for
Sma-USC225 (Figure 1). With the added markers, the male map was
roughly half the length of the female map, as previously reported
(Bouza et al. 2012).

The physical position of these genes was studied by BAC-FISH,
including double fluorescence labeling. Two BAC clones (Sma51C11
and Sma58H5, around 100 kb each) were identified, one containing
the fkbp2 and digl genes (Sma51Cl11), and the other with ncbp2
(Sma58H5). Both probes cohybridized in the proximal region of a chro-
mosome whose size and morphology correspond to LG5 (Taboada et al.
2014), supporting the genetic mapping (Figure 2).

RFs on LG5

We combined segregation data for adjacent markers in LG5 from
previous reports (Hermida et al. 2013) and our new work for the nine
mapping families (HF, DF, and QF1—QF?7). Information for a given
interval generally was available from only a single family, but data for
14 markers identified consistent differences along LG5 (Figure 3). The
RF over common intervals in females was greater than in males (f/m
ratio 1.8:1, slightly greater than the 1.6:1 observed for the whole turbot
map; Bouza et al. 2012). A major difference, however, was observed
between the proximal (36.2 cM) and distal (23.4 cM) regions (Figure
3). In the proximal region, the average RF for all marker pairs,
weighted by the map lengths, was identical in the two sexes, but in
the distal region it was nearly four times greater in females (3.6:1).
Within the proximal region, differences between males and females,
and between different families, were observed within the main SD
region (Figure 1 and Figure 3), whereas the remaining intervals
recombined at similar rates in both sexes. In the distal region, a first
subregion (between YSKr50 and Sma-USC198) showed no recombi-
nation in males, whereas in females recombinants were found for all
marker pairs, and, in the terminal subregion, the RF was much greater
in females than in males. These differences between sexes may be due
to chromosome rearrangements as suggested previously (Martinez
et al. 2009), but the information is not yet sufficient to be conclusive.

Crossing-over evaluation on the turbot LG5 using

sexed families

The fine analysis of crossing-over events in LG5 using framework
markers from the sexed DF and QF6 families provided valuable
information to narrow the position of the SDg (see Figure S1). Our
three generation pedigrees allowed us to infer the genotypes of markers
on the Z and W chromosomes in the mothers. The marker order
was mostly congruent with the previously mapping information
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Table 1 Candidate genes and SNP markers at the major sex determining region of turbot (through comparative mapping against the

stickleback LGVIII chromosome

Stickleback
CEnemE Accession Amplicon Marker
Gene Position, bp No. External Primers Internal Primer Size, pb Position
dnaj19 6068380 - 6070562 KJ434933 F: GCCGTGAAGCAGATGGAG F: CCACCGGTGATAGTTGTGG 392 Third intron
R: GGGAAACAATCAATGGATCA
sox2 6157588 - 6158556 KJ434936 F: AGGAAAGTCTCCTGGAAGGAA R: GTCCCTTTTTCTTTCCAATGTG 662 3" UTR
R: CAGATGAAAAGTGGGAGACG
atp11b 6308502 - 6339588 KJ434932 F: AGACTCATTTCTGGACGTGGA  F: GTGGACATGCAGTAGAATAACTGG 370 30th intron
R: CACCACGTCGGGAAAGAG
dig1 6549844 - 6552127 KJ434935 F: CAGGAAGAGACTCTGCTCACC R: TCTTTAAATCCACACTGGGTGATAC 370 Third intron
R: GAATGGAAGTTTGACGTTGGA
fkbp2 6565695 - 6568855 KJ434934 F: CGAGAAGAGGAAGCTCGTCA F: TTCCCCAAGTTCTGACTTTGAG 334 Intron
R: TTGGATGGAGCAAATCTACTGA
ncbp2 6569593 - 6572048 KJ434931 F: GCGTTGATCAGCGACTCCTA R: CCGTGTTTGCTAACGGCT 352 First intron
R: GCAATGAGTCCGAACACAAA

SNP, single-nucleotide polymorphism; LG, linkage group; UTR, untranslated region.

(Figure 1), except for Sma-USC225, whose estimated position re-
quired several double recombinants in a small region to explain our
observations. After excluding this locus, single and nonrecombinant
gametes were found in similar proportions in both families (50% and
46% averaged over families, respectively). Double recombinants
were detected only in family DF where many more markers were
available (Figure 3). As previously reported (Martinez et al. 2009),
only those markers segregating in the mother were associated with
the sex of progenies, confirming a ZZ/ZW system. Also, the region
whose genes have alleles most strongly associated with sex was lo-
cated at the proximal region of LG5 that includes the SmaUSC-E30
marker (in the fxrl gene) but also the closely linked sox2, atpl1b,
fkbp2, and dlgl markers from this study.

The most compatible region between the phenotypic sex and
the genetic constitution of the Z (in males) and W (in females)
chromosomes coming from the mother was close to SmaUSC-E30 in
the selected interval (between SmaUSC-E30 and SmaSNP_31), but it
cannot be discarded that it is located between SmaUSC-E30 and
SmaUSC-E79. In fact, using all segregation data in DF family and
assuming full penetrance and a ZZ/ZW system, the SDg was mapped
out of the screened interval at 15.8 and 14.3 cM in the female and the
consensus maps, respectively, between SmaUSC-E30 and Sma-E79
(Figure 1). This estimation, however, should be taken with caution
because of the assumptions, and, additionally, because there are few
genetic markers between SmaUSC-E30 and Sma-E79 that could in-
troduce a bias for mapping.

Several discordances were detected between phenotypic and ge-
netic sex strongly suggesting other genetic or environmental factors
involved in SD in turbot. Most discrepancies are related to males with
female genotypes including two offspring in DF family (M4 and M30)
and in five QF6 family (M14, M24, M25, M31, and M42; Figure S1),
which suggests incomplete penetrance of the female genotype.

Genetic diversity and differentiation along LG5

We evaluated genetic diversity on LG5 in a wild population of 48
males and 48 females, using 28 markers covering 71.2 cM between
Sma-E79 and Sma-USC10 (Figure 1). Two markers, fkbp2 and Sma-
SNP46, were discarded because of very low diversity (He < 0.01) and
one (ScmMI1) because of doubtful genotyping, leaving a density of one
marker per 2.8 ¢tM in LG5, and one per 0.4 cM in the SD region
between SmaUSC-E30 and SmaSNP_31 (Figure 1). Neither H, nor A
differed between males and females (Mann-Whitney test P = 0.900
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and 0.803, respectively; Figure 4, A and B). The average genetic di-
versity, however, was significantly less in the proximal than the distal
region for all the markers (H.: 0473 vs. 0.689; A: 4.000 vs. 8.182
Mann-Whitney tests: P = 0.002 and 0, respectively) (Figure 4, A
and B), or when only microsatellites were considered (proximal vs.
distal regions: H, 0.567 vs. 0.723, P = 0.004; A: 5.826 vs. 8.708,
P =0.005).

If a differentiated nonrecombinant sex-associated region exists,
genetic divergence between males and females is expected, and the
heterogametic sex should show greater frequencies of heterozygotes,
so this is predicted for females if the turbot has a ZZ/ZW system. If,
however, the W chromosome is genetically degenerated, with a high
frequency of null alleles, apparently homozygous females will be
found. Our analysis of Fig showed only weak deviations from Hardy-
Weinberg genotype proportions (P < 0.05) in the distal LG5 region
(YSKr54 and Sma-USC198) (Figure 4C), none of them significant
after Bonferroni correction. No deviations were detected within the
SD region between SmaUSC-E30 and SmaSNP_31. Six significant
(P < 0.05) Fgr values were detected between males and females, but
none remained after Bonferroni correction, even in the main SD
region, including the greatest sex-associated marker, SmaUSC-E30
(P = 0.127) (Figure 4D).

The analysis of LG5 genetic associations with sex in the turbot wild
population rendered a picture concordant with the Fgr values (see
Table S3), with few significant results, and none after Bonferroni
correction. This finding contrasts with the significant associations
within families for a large set of markers around the main SD region
(P = 0 in family DF either at genotype or allele level, and in QF6 at the
genotypic level).

Evolution of the SD region from a closely

related species

Several microsatellites from the turbot sex-associated genomic regions
cross-amplified in brill (S. rhombus). Four such LG5 microsatellites
were selected, two in the main SD region (SmaUSC-E30 and Sma-
USC270) and other two in the distal one (YSKr50 and YSKr54) close
to dmrta2 and ambh, two genes related to gonad development. Five
markers, covering 23.4 cM (Sma-USC117, sox9, YSKr165, YSKr107,
and Sma-USC231), also were selected from LG21. No LG5 markers
but three LG21 microsatellites (YSKr165, sox9, and Sma-USC231)
showed significant associations with sex in the brill population (P <
0.05). The greatest associations (P = 0.001 and 0.004 at allele and
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genotype level, respectively) was found at sox9, and differentiation
between males and females was also detected (Fgr = 0.0561, P <
0.01). Also, a highly significant genotypic disequilibrium (P = 0)
was observed between most LG21 marker pairs in males (P = 0: seven
tests; 0.05 < P < 0.01: one test; P > 0.05: 1 test), but none in females
(all tests P > 0.05).

DISCUSSION

Genetic architecture of SD in turbot
Fish often show very small differentiated SD regions, and SD is often
affected by both genetic and environmental factors (Penman and
Piferrer 2008; Kikuchi and Hamaguchi 2013). In Fugu rubripes, for
instance, only a single nucleotide in the receptor II of the anti-
Mullerian hormone (amhrIl) differentiates males and females, and
in several species the differentiated SD region is less than a few
kilobases (Piferrer et al. 2012). To date, five different master genes
have been reported in fish, including rainbow trout (sdY; Yano
et al. 2013), fugu (amhrIl; Kamiya et al. 2012), and Patagonian
pejerrey (amhY; Hattori et al. 2012), which are not close relatives
but belong to different orders, and also different systems are found
in closely related species like Oryzias latipes (dmY; Matsuda et al.
2002) and O. luzonensis (gsdfI; Myosho et al. 2012). On the other
hand, the same SDg has been identified in two different Oryzias
species (Matsuda et al. 2003), and another gene appears to be a SD
gene common to most salmonids (sdY), suggesting SD gene jump-
ing via mobile elements because they are located in nonhomolo-
gous genomic regions (Yano et al. 2013). This list may soon be
enlarged, however, because a broad diversity of nonhomologous
SD genomic regions has been reported within the most studied
fish groups, including the Oryzias (medaka) genus (Tanaka et al.
2007), the Gasterosteidae (stickleback) family (Ross et al. 2009),
the cichlid fish tilapia, in the tribe Tilapini (Cnaani et al. 2008),
the Salmoniformes (salmonids) order (Phillips et al. 2001), and the
Poeciliidae (guppy and platypfish) family (Tripathi et al. 2009).
Within flatfish, sex-associated markers have been documented in
species of the family Pleuronectidae (Hippoglossus hippoglossus,
Palaiokostas et al. 2013; Verasper variegatus, Ma et al. 2010) and
Cynoglossidae (Cynoglossus semilaevis; Chen et al. 2014), in addi-
tion to turbot (Scophthalmidae). None of the other flatfish sex-
associated LGs matched those in turbot using comparative mapping
with model genomes as a bridge (turbot LG5 is homologous to the
stickleback LGVIIL, medaka LG4, fugu LG20, and Tetraodon LGI,
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Figure 2 Two-color fluorescence
in situ hybridization (FISH) using
bacterial artificial chromosome
(BAC) clones at the main sex de-
termination region of turbot (S.
maximus). The fkbp2 and dlg1-
bearing BAC clone (Sma51C11)
and the ncbp2-bearing BAC
clone (Sma58H5) were labeled
with digoxigenin (red) and bio-
tin (green), respectively. (A)
Sma51C11; (B) Sma58H5; and
(C) double-label BAC-FISH with
Sma51C11 and Sma58H5.

whereas turbot LG21 is homologous to stickleback LGV and medaka
LG19; Bouza et al. 2012) suggesting that the turbot SDg evolved in-
dependently. Remarkably, the sex-associated markers of some flatfish
species from different families (e.g., C. semilaevis and V. variegatus)
match the same orthologous chromosomes in model teleosts syntenic
to turbot autosomal LG12 (Bouza et al. 2012). Recently, dmrt] has
been reported as the putative SD gene in C. semilaevis, which has
a ZZ/ZW system and apparently a dosage compensation mechanism
similar to birds (Chen et al. 2014). This gene at the top of the male
differentiation cascade has been recurrently recruited as SD switching
gene in different vertebrate groups (Mawaribuchi et al. 2012). Certain
genes appear to be more prone to be selected when SD systems evolve,
as previously suggested (Graves and Peichel 2010).

In this study, six annotated genes were consistently identified in
the turbot transcriptomic database (E-value < 10~>°) and mapped in
the main SD region within a 3.0 cM-interval between the markers
SmaUSC-E30 and SmaSNP_31, which defined a syntenic region to
LGVIII in stickleback (Bouza et al. 2012). The gene order in the turbot
consensus map was very similar to that in the four Acanthopterygii
model fish genomes (see Table S4). Among the six candidate genes
that map within the SDg region, sox2 has been previously related to
gonad differentiation (Cnaani et al. 2007; Mazzuchelli et al. 2011) and
associated GO terms suggest that dnajc19 could also be involved
(GO:0000003: reproduction; GO:0022414: reproductive process;
GO0:0048806: genitalia development). The lack of association with
sex in the natural population suggests, however, that they are not the
master SDg.

Although the identification of the SDg failed in turbot, some
relevant candidate genes were discarded as SDg, and the increase of
marker density at the SD region provided more detailed information
on the genomic region where the SDg is located and on the genetic
basis of SD in turbot. New segregation data confirmed a ZZ/ZW
system with a much greater number of markers than in previous
reports (Martinez et al. 2009) and also the existence of other minor
genetic or environmental factors responsible of the few discordances
observed between genetic markers and phenotypic sex. Interestingly,
the six discordances observed (3.9%) corresponded to males with
a female genotype in both families analyzed, which could be related
to incomplete dominance of a new ZZ/ZW SD system (see Origin and
evolution of SD in turbot). The small mapping region screened re-
garding family sample sizes together with the lack of full congruence
between phenotypes and genotypes, however, makes it difficult to
precise the SDg location using our segregation approach.
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Available data support that SD behaves like a complex trait in
turbot, as shown in other fish. Classical quantitative genetic ap-
proaches demonstrated a polygenic SD system in European sea bass
(Dicentrarchus labrax) and zebrafish (Danio rerio) (Vandeputte et al.
2007; Liew et al. 2012), and sex ratio heritability was estimated in Nile
tilapia (Lozano et al. 2013). Also, genomic screening using genetic
maps has revealed multiple genetic factors involved in SD in fish other
than turbot (Bradley et al. 2011; Eshel et al. 2012; Luhmann et al.
2012). The quantitative nature of SD in fish could explain the turnover
of SD systems, because genetic variation may be available in popula-
tions at loci involved in gonad differentiation, and this could allow
turnover scenarios such as ones that have been modeled (van Doorn
and Kirkpatrick 2010; Blaser et al. 2011).

Origin and evolution of SD in turbot

In turbot, our marker set did not detect recombination suppression in
the main SD region. Furthermore, the absence of genetic differenti-
ation (Fst) between males and females or heterozygote excess in
females at genes in the LG5 SD region suggests that the turbot either
has no differentiated ZZ/ZW region on the chromosome pair, or that
the region stopped recombining very recently. As in many other fish
species (Penman and Piferrer 2008), WW individuals in turbot are
viable and are used by breeders to obtain all-female populations
(D. Chavarrias, personal communication). Another recurrent event dur-
ing the evolution of SD chromosome pairs is the accumulation of
repetitive DNA and the degeneration of the SD gene-bearing chro-
mosome (W or Y) by deleterious alleles (Schartl 2004; Volff et al.
2007). Accumulation or repetitive elements has been observed in most
fish species where a fine analysis of the SD region was carried out
(Nanda et al. 1992; Peichel et al. 2004; Nagahama 2005), although
deleterious mutation has been more rarely reported (Martinez et al.
2008). In the turbot LG5, we found no null alleles at microsatellite loci
that might suggest degeneration of the W chromosome. However,
with our much greater number of markers than in previous studies
(Martinez et al. 2009), we found significantly reduced genetic diversity
in the proximal region of this chromosome that may be related to
a recent evolutionary origin. Furthermore, in previous comparative
mapping (Martinez et al. 2009; Bouza et al. 2012), only a small frac-
tion of syntenic markers to stickleback LGVIII (two of eight, 25%) and
even lower to other model Acantoptherygii (12.5%, Tetraodon and
Fugu) were located in the LG5 proximal region (60.7% of the whole
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Figure 3 Comparison of re-
combination frequency (males
vs. females) along turbot (S. max-
imus) linkage group 5. Above
and underlined in each cell recom-
bination frequency in females and
below in males.

LG5), suggesting a recent origin (or a greater evolutionary rate) for the
proximal region where the SD turbot region is located.

All our data support a SD region with low genetic differentiation
and of recent origin in turbot. To test this hypothesis, we cross-
amplified genetic markers from the most relevant sex-associated
regions of turbot in a closely related species, the brill. LG5 and LG21
were selected for this study because sex-related QTL and relevant
candidate genes (LG5: sox2, dnajcl9, dmrta2, and amh; LG21: sox9 and
sox17; Vinas et al. 2012; this study) were detected in these LGs, and
additionally recombination was nearly suppressed in males at LG21
(Bouza et al. 2012). Strong associations with sex were observed with
several LG21 markers, especially sox9, in a natural population of brill,
but not for those on LG5. Also, highly significant linkage disequilibrium
(P = 0) was detected between most LG21 markers in the brill males, but
not in females, suggesting (i) lower or suppressed recombination in
males across a large region that corresponds to 23.4 ¢M in the homol-
ogous turbot LG (58.7% LG21 length), and, furthermore (ii) an evolved
XX/XY system in brill. It is interesting to note that hybrids between
turbot and brill produce mostly monosex progenies whose sex depends
on the sex of the turbot parent (Purdom 1976; Purdom and Thacker
1980). Although our data are preliminary, this could be related to
opposite SD mechanisms and with the dominance of the recent turbot
ZZ/ZW system over the older XX/XY in brill. Similar transitions either
from ZZ/ZW to XX/XY or vice versa have been described in different
fish groups (Cnaani et al. 2008; Ross et al. 2009; Ser et al. 2010).

Our segregation and association analysis has provided new
information on the genetic basis and evolution of the SD system
in turbot. However, this approach has shown limitations for the
identification of the SDg, likely because of the small differentiated
SD region and also because SD seems to behave like a complex trait
in turbot. Future research should be done to refine the analysis of the
SD region using the available turbot genome (Figueras et al. un-
published data), taking advantage of the ZZ and WW individuals
obtained through hormone sex reversal parents. Additionally, compar-
ative genomics with the new information on flatfish will provide a com-
prehensive vision of the evolution of SD in this relevant fish group.
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