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Abstract

Organic chemists and metabolic engineers use largely orthogonal technologies to access small 

molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and 

engineered organisms for chemical production grows, it is becoming increasingly evident that 

future efforts for chemical manufacture will benefit from the integration and unified expansion of 

these two fields. This review will discuss approaches that combine chemical and biological 

synthesis for small molecule production. We highlight recent advances in combining enzymatic 

and non-enzymatic catalysis in vitro, discuss the application of design principles from organic 

chemistry for engineering non-biological reactivity into enzymes, and describe the development of 

biocompatible chemistry that can be interfaced with microbial metabolism.

Introduction

Both organic chemists and metabolic engineers strive to efficiently access small molecule 

products that are essential components of our everyday lives. However, these two scientific 

disciplines rely on largely independent technologies to achieve this goal [1–5]. Over the 

course of almost two centuries, synthetic organic chemists have developed a vast array of 

reagents, catalysts, reaction conditions, and solvents to facilitate the conversion of one 

compound into another. By executing a series of these transformations in which the product 

of one reaction serves as the starting material for the subsequent reaction, chemists access 

final products of interest in a controlled, multi-step fashion. This stands in contrast to how 

organisms have evolved to synthesize small molecules. In a cellular setting, naturally 

occurring protein-based catalysts, enzymes, chemically modify small molecule metabolites 

in one reaction vessel (the cell) under highly constrained reaction conditions (ambient 

temperature in an aqueous environment). Metabolic engineers work within these in vivo 

parameters, using modern molecular biology techniques to both adjust and construct 

pathways within microorganisms to maximize production of a small molecule product of 

interest [6–8].
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As the field of metabolic engineering continues to make rapid advances, the question arises 

as to which approach may be better suited for the production of a given target molecule. 

Perhaps the most important consideration is whether or not the synthetic tools offered by 

each approach possess the reactivity and selectivity needed to access the desired product. In 

the biological realm, enzymes offer unique advantages due to their exquisite substrate 

selectivity, high catalytic efficiency, and unparalleled levels of chemo-, regio-, and 

stereocontrol. Approaches like directed evolution enable access to enzymes tailored to 

accept non-natural substrates [9–11]. Additionally, it is now possible to transfer multiple 

enzymes, and even whole metabolic pathways, into host organisms for chemical production 

[12–14]. However, even with these advances, biological catalysts still offer a relatively 

limited reaction repertoire in comparison to synthetic organic chemistry. Having to employ 

further modification of metabolic engineering products using separate chemical synthesis 

steps to reach the final target is fairly common, especially in cases when the desired small 

molecule is not of natural origin [14]. While advances in enzyme engineering will 

undoubtedly expand the breadth of organisms’ synthetic capabilities, it seems entirely 

possible that they will never be able to match those of the organic chemist.

Beyond an initial assessment of feasibility, judging the success of a synthetic effort must 

also include the following factors: the overall yield of the product, the cost of its production, 

the environmental impact of the process, and its simplicity. The Nobel prize-winning 

chemist Sir John Cornforth described the ideal synthesis as “something to be carried out in a 

disused bathtub…, the product being collected continuously through the drain hole in 100% 

purity and yield” [15]. By avoiding multi-step reaction sequences and reducing 

environmental impact (e.g. using renewable feedstocks, minimizing hazardous waste), 

fermentation processes are quite attractive relative to traditional organic synthesis when 

applying these criteria.

Since the strengths and weaknesses of organic chemistry and metabolic engineering are 

largely complementary, the question should not be which approach is superior, but how can 

we realize opportunities to combine the beneficial aspects of each field (Figure 1) [16]. This 

review will discuss recent advances in interfaced organic and biological synthesis, focusing 

on examples that truly merge tools and design principles from synthetic chemistry with 

enzymes or living organisms for the purpose of small molecule production. We will not 

include semi-synthesis, sequential “one-flask” chemocatalytic-biocatalytic cascades, and 

bioorthogonal chemistry. We will include methodology that involves simultaneous use of 

non-enzymatic and enzymatic catalysis, enzymes engineered to display non-biological 

reactivity, and biocompatible reactions that can interface with the metabolism of living 

organisms. We will also highlight key experiments that seeded interest in each area and 

outline future challenges for this developing area of research.

Combining non-enzymatic and enzymatic catalysts in vitro

Conceptually, perhaps the simplest way to unite organic and biological chemistry is to 

combine synthetic tools from both approaches in vitro. This strategy is advantageous when 

the merging of enzymatic and non-enzymatic chemistry enables a synthetic transformation 

to proceed with a selectivity or efficiency not available for the corresponding sequential 
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process. This phenomenon, known as cooperativity, was first achieved in the early 1970’s 

with Hafner and Wellner’s development of an amino acid stereoinversion reaction that 

utilized an amino acid oxidase enzyme with the non-enzymatic reagent sodium borohydride 

[17]. The combination of enzymatic and non-enzymatic catalysis has been particularly 

useful for dynamic kinetic resolutions, processes that combine an enantioselective enzymatic 

catalyst with a non-enzymatic reagent or catalyst that promotes the interconversion of 

starting material enantiomers [18–20].

Recently the labs of Hartwig and Zhao reported an advance in tandem enzymatic/non-

enzymatic catalysis: the first demonstration of cooperative catalysis involving an 

organometallic catalyst and a metalloenzyme (Figure 2A) [21••]. This transformation 

combined a ruthenium-catalyzed olefin cross-metathesis reaction with a cytochrome P450-

catalyzed epoxidation. They envisioned cooperativity could arise from the selectivity of the 

P450 for only one alkene substrate, which would be generated via cross-metathesis as part of 

an equilibrating product mixture and continually replenished by the activity of the 

metathesis catalyst. In practice, this tandem one-pot reaction provided higher yields than 

would be obtainable using the corresponding two-step sequence. Conceptually this work 

represents a significant advance and should inspire efforts to incorporate a more diverse set 

of enzymatic and non-enzymatic reactions into tandem processes.

Despite the promise of this approach, cooperative transformations combining chemical and 

biological catalysts have utilized a relatively small number of the reaction manifolds 

available to synthetic chemists. This is likely due to an inherent challenge faced in reaction 

development: mutual deactivation of the enzyme and the chemical catalyst when utilized 

together [22,23]. In the Hartwig and Zhao work, deactivation of the catalyst and enzyme was 

minimized by the use of a biphasic reaction system, but could not be completely 

circumvented. In the past year, two reports have offered alternative approaches to solving 

the deactivation problem, both of which rely on embedding a non-enzymatic transition metal 

catalyst in an environment that mimics an enzyme active site.

Bergman, Raymond, Toste, and co-workers utilized encapsulation by a supramolecular 

cluster to enable the simultaneous use of organometallic and enzymatic catalysis (Figure 2B) 

[24••]. This strategy stems from Breslow’s construction of “artificial enzymes” via 

encapsulation of a transition metal within a cyclodextrin [25]. In the context of individual 

reactions, this type of encapsulation design was known to improve lifetimes of 

organometallic catalysts, enhance their solubility in aqueous media, and prevent sensitive 

complexes from interacting with other reaction components [26,27]. Bergman, Raymond, 

Toste, and co-workers hypothesized that catalyst encapsulation could enable the use of an 

organometallic complex in combination with an enzyme. To test this idea, they designed 

tandem reaction sequences that coupled an enzymatic hydrolysis reaction with a cyclization 

catalyzed by a gold(I) species encapsulated within a tetrahedral Ga4L6 cluster (L= N, N′-

bis(2,3-dihydroxybenzoyl)-1,5-diaminonapthalene). Using this strategy, increased reactivity 

and selectivity was achieved compared to reactions with the gold(I) catalyst alone. They also 

showed that the rate of the enzymatic reaction was dramatically reduced in the absence of 

the Ga4L6 cluster, indicating that the free gold(I) catalyst was detrimental to enzyme 

function and the host complex played a protective role in the tandem process [28]. Overall, 
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this study demonstrated that supramolecular encapsulation is a viable strategy for combining 

an otherwise incompatible transition metal-catalyzed reaction with an enzyme.

The work of Hollman, Turner, Ward, and co-workers offers a complementary approach for 

facilitating the simultaneous use of non-enzymatic and enzymatic reactivity [29••]. By 

incorporating a biotin-conjugated iridium complex into the framework of the protein 

streptavidin, they generated an artificial transfer hydrogenase (ATHase) possessing 

reactivity associated with non-enzymatic, transition metal catalysts (Figure 2C). The 

ATHase could be used in tandem reactions employing a variety of enzymes, including a 

stereoselective deracemization of cyclic amines that utilized an engineered monoamine 

oxidase. In this reaction, the environment of the protein scaffold was critical for protecting 

the monoamine oxidase from deactivation; no enzymatic activity was observed in the 

presence of the unbound iridium complex. Another cascade process utilizing the ATHase 

was a coupled colorimetric assay that provided a direct readout of catalyst activity and was 

used to identify an improved ATHase variant. Coupled assays of this type could streamline 

efforts to engineer this class of organometallic hybrid catalysts via directed evolution.

These recent examples represent important advances in both the design and implementation 

of tandem enzymatic/non-enzymatic catalysis that should have a synergistic effect on future 

attempts to employ this approach in synthesis. Improved strategies for sequestering the two 

catalyst types will allow more flexibility in the types of reactivity incorporated into 

cascades. This will in turn enable the design of increasingly elegant and efficient 

cooperative reaction sequences that take full advantage of the unique aspects of organic and 

biological modes of catalysis.

Engineering enzymes to display non-biological reactivity in vitro and in 

vivo

Over the past decade, powerful advances in protein engineering technologies have fueled 

interest in extending the range of reactions amenable to biocatalysts to include those that 

have no natural antecedents [30,31]. As the development of ADHase illustrates, 

incorporating transition metals and transition metal complexes is a viable strategy for 

introducing non-enzymatic reactivity into protein scaffolds. This approach, which was 

originally pioneered by Whitesides [32], has been applied to a variety of protein scaffolds 

and transition metal complexes [33,34]. In many cases, the reactivity and selectivity of these 

hybrid catalysts do not surpass the results achieved by organic chemists. This may change 

with increasing efforts to engineer the protein scaffold for participation in the reaction 

mechanism [35–38].

An alternative approach to generating non-biological reactivity using enzyme scaffolds 

utilizes design principles and reaction manifolds from organic chemistry to guide 

reengineering of natural metalloenzyme function. Several recent papers from the Arnold 

group demonstrating the use of engineered P450BM3 mutants for unnatural carbene and 

nitrene insertion reactions illustrate the potential of this strategy [39–42]. In each case, the 

design of the enzymatic transformation was inspired by the reactivity of iron porphyrins and 

related organometallic catalysts used in organic synthesis.
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In their first report [39••], Arnold and co-workers hypothesized that cytochrome P450 

enzymes, which catalyze a variety of reactions involving oxene transfer, might also be 

capable of generating and promoting transfer of carbene intermediates in the presence of 

suitable reagents (Figure 3A). After demonstrating that wild type P450BM3 could promote 

cyclopropanation of styrene in the presence of ethyl diazoacetate under anaerobic 

conditions, they screened a library of P450BM3 mutants to evaluate whether engineering the 

protein scaffold could impact the reactivity and selectivity. Mutations that increased 

cyclopropanation activity could be combined to generate P450BM3 variants exhibiting not 

only catalytic activity comparable to nativeP450-catalysed hydroxylation reactions, but also 

enhanced diastereo- and enantioselectivity. The Arnold group applied related logic to 

engineer P450s that promote carbene insertions into N–H bonds and to develop a C-H 

amination reaction using sulfonyl azide substrates [41•,42]. Most recently, this general 

approach has been extended beyond P450s with the report of C–N bond-forming reactions 

promoted by wild-type and engineered variants of the non-heme iron(II)-dependent 

halogenase SyrB2 in the presence of both azide and nitrite anions [43•].

Arnold and co-workers have also demonstrated that the P450BM3-mediated 

cyclopropanation reaction can be utilized in vivo for whole-cell biocatalysis (Figure 3B) 

[40••]. This advance was facilitated by the discovery that a simple C400S axial ligand 

mutation in the catalytic heme domain of a P450BM3 variant could raise the resting-state 

reduction potential of the enzyme, obviating the need for exogenous reducing agents and 

allowing reduction by NADH in vivo. These C440S mutants were named ‘P411BM3’s after 

the characteristic Fe(II)-CO band in their UV-visible spectra at 411 nm. In comparison to the 

purified enzymes, P411BM3 variants displayed increased activity in the whole-cell format. 

Most impressively, the whole-cell system was capable of generating cis-ethyl 2-

phenylcyclopropane-1-carboxylate from ethyl diazoacetate and styrene in titres of 27 g L−1, 

78% isolated yield (total turnovers (TTN) = 4.88×103), and in 99% ee. The success of this 

reaction on a large scale suggests that enzymes with non-biological reactivity may be 

powerful new tools for small molecule production.

Integrating organic chemistry with cellular metabolism

While the use of biocatalysis has become increasingly important in synthetic chemistry, the 

complementary possibility of incorporating non-enzymatic reagents and catalysts from 

organic chemistry into metabolic engineering efforts has been comparatively underexplored. 

To the best of our knowledge, the use of non-enzymatic chemistry to influence microbial 

metabolism originated with Neuberg’s bisulfite-steered glycerol fermentations during the 

latter stages of the First World War [44,45]. Substantial overproduction of glycerol from 

glucose in S. cerevisiae could be achieved through the addition of sodium bisulfite to the 

fermentation. It was later found that the bisulfite anion formed a stable adduct with the 

metabolite acetaldehyde. Formation of this type of adduct is used in organic synthesis as a 

strategy for protecting aldehydes [46]. The consequence of introducing this reactivity into 

the fermentation was inhibition of acetaldehyde reduction to ethanol (Figure 4A). This 

forced accumulating NADH to be re-oxidized to NAD+ via an alternate pathway that 

generated glycerol as the primary fermentation product. This technology contributed 

significantly to the German war effort by allowing the industrial manufacture of glycerol 
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from sugar for use in the production of explosives. Since this achievement there have been 

only sporadic examples of systems that directly combine reagents from synthetic organic 

chemistry with metabolism. Mountfort and coworkers reported the hydrogenation of 

ethylene using hydrogen gas produced by the syntroph Syntrophomonas wolfei and super-

stoichiometric amounts of a heterogeneous palladium catalyst, a transformation that 

disrupted the metabolic interaction between S. wolfei and the methanogen Methanospirillum 

hungatei [47]. Other researchers have used transition metal catalysts to hydrogenate 

membrane lipids in the cyanobacterium Synechocystis sp. PCC 6803, facilitating studies of 

the biological response to changes in membrane fluidity [48].

We believe that it is time to revisit the idea of merging reactivity from organic synthesis 

with cellular metabolism. Advances in protein and metabolic engineering have greatly 

expanded the types of reactions and pathways that can be introduced into living organisms. 

At the same time, organic chemists are pioneering new approaches for accelerating catalyst 

and reaction development [49,50]. Finally, there has been a dramatic increase in the 

diversity of reaction types employed in bioorthogonal chemistry for applications like 

labeling and imaging of macromolecules [51]. With this progress as a backdrop, we have 

begun to develop biocompatible chemistry: non-enzymatic reactions that influence 

metabolism by chemically modifying small molecules in the presence of living organisms. 

This approach is distinct from bioorthogonal chemistry, which utilizes non-enzymatic 

reactions designed to neither interact nor interfere with biological systems [52–54].

There are significant technical challenges associated with the implementation of 

biocompatible chemistry, most notably the perceived mismatch between the reaction 

conditions necessary for synthetic organic chemistry (organic solvents, extreme 

temperatures and pH) and the growth conditions necessary to support living organisms 

(aqueous media, ambient temperature, neutral pH). Other challenges include the complexity 

of the intra- and extracellular environments, the limited cell-permeability of non-biological 

reagents, and the low concentrations of cellular metabolites. Despite the many obstacles 

associated with their development, biocompatible reactions would offer scientists a unique 

toolkit for manipulating and augmenting biological functions that would complement 

existing approaches.

In the context of small molecule production, biocompatible chemical transformations could 

be combined with native or engineered metabolism in vivo. These hybrid pathways could 

harness the diverse reactivity associated with non-enzymatic reactions, providing access to 

chemical structures that could not be produced through the use of enzymatic chemistry 

alone. The metabolism of microbes could be employed to generate unstable or toxic 

chemical reagents directly in reaction mixtures, potentially obviating the need to chemically 

synthesize, transport, and store large quantities of these materials. Perhaps most importantly, 

biocompatible reactions would provide a means of manipulating metabolite structures and 

concentrations in vivo that would operate independently from the central dogma. As 

metabolites mediate many cellular processes, changing their chemical structures could serve 

as way to influence biological function. For metabolic engineering, this could mean new 

approaches for influencing pathway flux and regulation that would not require genetic 

manipulation.
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A recent study from our laboratory has demonstrated the ability of biocompatible reactions 

to control biological function [55••]. We utilized non-enzymatic transition metal-catalyzed 

reactions to support the growth of auxotrophic microorganisms via the in vivo generation of 

essential nutrients from non-utilizable precursors (Figure 4B). Two different transformations 

were employed to rescue two distinct auxotrophies: a [Cp*Ru(cod)Cl]-catalyzed 

deprotection reaction that generated para-aminobenzoic acid (PABA) and an iron-catalyzed 

arene hydroxylation that formed para-hydroxybenzoic acid. In both cases, growth of the 

auxotroph was dependent on the success of the non-enzymatic reaction. While the 

efficiencies of both transformations were low, this work illustrates the dramatic influence 

that even a small change in metabolite levels can have on living organisms.

Overall, this study represents an initial step towards integrating reactions from organic 

chemistry with microbial metabolism; additional work will be required to overcome the 

substantial obstacles associated with this approach. Despite these challenges, we believe 

biocompatible chemistry will offer unique possibilities for small molecule production in the 

future.

Conclusions

The fields of organic chemistry and metabolic engineering have traditionally represented 

two independent solutions to the problem of small molecule synthesis. As recent work 

illustrates, the potential benefits of combining tools from both approaches are beginning to 

be realized. We believe that the time has come to explore in earnest the opportunities that 

exist at the intersection of these two areas of research, and we have chosen to discuss 

advances that we hope will inspire future research. We predict that more new strategies for 

small molecule production will emerge from continued research at the organic synthesis/

biological synthesis interface.
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Highlights

• Efforts to combine organic and biological synthesis are increasing.

• Sequestering non-enzymatic and enzyme catalysts can overcome 

incompatibility.

• Organic chemistry inspires engineering of non-biological reactivity into 

enzymes.

• Non-enzymatic reactions can be integrated with cellular metabolism.
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Figure 1. 
Opportunities for merging chemical and biological synthesis.
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Figure 2. 
Approaches for combining enzymatic and non-enzymatic catalysis in vitro. A. A cooperative 

cross metathesis-epoxidation reaction using a ruthenium(I) catalyst and a P450BM3 enzyme. 

B. A tandem hydrolysis-cyclization sequence using a a lipase/esterase enzyme and a 

encapsulated gold(I)-catalyst. C. A dynamic kinetic resolution of cyclic amines using an 

engineered monoamine oxidase and an artificial transfer hydrogenase (ATHase) consisting 

of biotin-conjugated iridium-catalyst bound to streptavidin.
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Figure 3. 
Engineering enzymes to display non-biological reactivity using organic chemistry as 

inspiration. A. The mechanistic similarities between natural oxene transfer reactions of 

cytochrome P450 enzymes and carbene transfer reactions. B. A simple axial ligand mutation 

facilitated catalysis of cyclopropanation by P411BM3 in a whole-cell format.
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Figure 4. 
Integrating non-enzymatic chemistry with cellular metabolism. A. Neuberg’s bisulfite-

steered glycerol fermentations. The chemical reagent sodium bisulfite was used to redirect 

the natural fermentation in S. cereviseae to form glycerol. NADH = nicotinamide adenine 

dinucleotide. B. Auxotroph rescue with non-enzymatic chemistry. A Ru-catalyzed 

deprotection reaction was used to support growth of an E. coli PABA auxotroph. PABA = 

para-aminobenzoic acid.
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