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Ibrutinib, which irreversibly inhibits Bruton tyrosine kinase, was evaluated for antitu-
mor activity in a panel of non–small cell lung cancer (NSCLC) cell lines and found to 
selectively inhibit growth of NSCLC cells carrying mutations in the epidermal growth 
factor receptor (EGFR) gene, including T790M mutant and erlotinib-resistant H1975 
cells. Ibrutinib induced dose-dependent inhibition of phosphor-EGFR at both Y1068 
and Y1173 sites, suggesting ibrutinib functions as an EGFR inhibitor. Survival was 
analyzed by Kaplan–Meier estimation and log-rank test. All statistical tests were 
two-sided. In vivo study showed that ibrutinib statistically significantly suppressed 
H1975 tumor growth and prolonged survival of the tumor bearing mice (n = 5 per 
group). The mean survival times for solvent- and erlotinib-treated mice were both 
17.8 days (95% confidence interval [CI] = 14.3 to 21.3 days), while the mean survival 
time for ibrutinib-treated mice was 29.8 days (95% CI = 26.0 to 33.6 days, P = .008). 
Our results indicate that ibrutinib could be a candidate drug for treatment of EGFR-
mutant NSCLC, including erlotinib-resistant tumors.
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Ibrutinib has been reported to selectively 
and irreversibly inhibit Bruton tyrosine 
kinase (BTK) (1,2), which is specifically 
required for the B-cell antigen recep-
tor signaling pathway (3). Previous stud-
ies revealed that ibrutinib specifically 
inhibited the proliferation of B-cell lym-
phoma with active B-cell antigen recep-
tor signaling (3) and multiple myeloma 
cells expressing BTK (4). Oral administra-
tion of ibrutinib led to promising in vivo 
activity against spontaneous B-cell non-
Hodgkin lymphoma in dogs and experi-
mental rheumatoid arthritis in mice (1,2). 
Ibrutinib also inhibited growth of chronic 
lymphocytic leukemia and multiple mye-
loma cells inoculated into immune defec-
tive mice (4,5). Clinical trials have revealed 
that ibrutinib is well tolerated and elicits 
substantial activity in relapsed or refrac-
tory B-cell malignancies, with an objective 

response rate of 60–70% and a complete 
response of 16–20% (6–8). Ibrutinib was 
recently approved by the US Food and 
Drug Administration for treatment of 
mantle cell lymphoma.

We evaluated antitumor activity of ibru-
tinib in a panel of non–small cell lung cancer 
(NSCLC) cell lines and in six- to eight-
week-old female nude mice with xenograft 
tumors derived from H1975 cells. Further 
details are available in the Supplementary 
Methods (available online). Animal experi-
ments were carried out in accordance with 
Guidelines for the Care and Use of Laboratory 
Animals (NIH publication number 85-23) 
and the institutional guidelines of the 
M.  D. Anderson Cancer Center. Statistical 
significance of the differences between 
treated samples was determined by the two-
sided Student t test and one-way analysis 
of variance (ANOVA). Differences were 

considered statistically significant at P less 
than .05. The mean survival time and accu-
mulative survival curve were determined by 
Kaplan–Meier estimation. The mean sur-
vival times were compared by log-rank test. 
All statistical tests were two-sided.

To test whether ibrutinib can be used 
for treatment of solid tumors, we evalu-
ated its antitumor activities in a panel of 
lung cancer cell lines by using a cell viabil-
ity assay (9) three days after treatment with 
0.01 to 30 μM ibrutinib. For the 39 non–
small cell lung cancer (NSCLC) cell lines 
tested, the 50% inhibitory concentration 
[IC50] of ibrutinib ranged from 0.002 to 
30 μM. Among the 39 cell lines tested, 36 
had IC50 values between 2 and 30 μM. For 
the remaining three cell lines, HCC827, 
H1975, and H292, the IC50 were between 
0.002 and 0.195 μM (Figure 1A), all within 
the clinically achievable concentrations of 
ibrutinib in the doses used for treatment of 
lymphoma (6,7). HCC827 and H1975 cells 
are known to harbor epidermal growth fac-
tor receptor (EGFR) mutations, whereas 
the H292 cell line has wild-type EGFR. 
Our subsequent analysis showed that 
EGFR was constitutively active in H292 
cells, and that H292 cells were also suscep-
tible to the EGFR inhibitor erlotinib (10). 
These results suggest that ibrutinib is spe-
cific for EGFR-mutant or -constitutively 
active NSCLC cells.

We next compared erlotinib’s and ibru-
tinib’s antitumor activities in nine NSCLC 
cell lines, six of which have mutations or 
deletions in the EGFR gene. Ibrutinib 
induced an antitumor spectrum similar 
to erlotinib in those cell lines, except for 
the H1975 cells, which harbor a T790M 
mutation in EGFR and were resistant 
to erlotinib but susceptible to ibrutinib 
(Supplementary Table 1, available online). 
The H1650 cells, which harbor EGFR 
mutation and PTEN loss (11), were resist-
ant to erlotinib, ibrutinib, and afatinib 
(IC50  =  2.63  μM), a second generation 
of EGFR inhibitors that are approved for 
treatment of EGFR-mutant lung cancer 
(12). We also compared dose response of 
ibrutinib and afatinib in H1975 cells. The 
results showed that ibrutinib induced simi-
lar antitumor activity as afatinib in this cell 
line (Figure 1B).
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To test whether ibrutinib can elicit in 
vivo antitumor activity in EGFR-mutant 
tumors, we established xenograft tumors 
from H1975 cells in nude mice and treated 
mice daily with ibrutinib (25 mg/kg), erlo-
tinib (50 mg/kg), or solvent when tumors 
reached 4 to 5 mm in diameters. The result 
showed that treatment with ibrutinib, but 
not erlotinib, statistically significantly sup-
pressed H1975 tumor growth and pro-
longed survival of the tumor-bearing mice 
(Figure 1, C and D). While the mean sur-
vival times for solvent- and erlotinib-treated 
mice were both 17.8 days (95% confidence 
interval [CI] = 14.3 to 21.3 days), the mean 
survival time for ibrutinib-treated mice 
was 29.8 days (95% CI = 26.0 to 33.6 days, 
P = .008), demonstrating in vivo efficacy of 
ibrutinib in EGFR-mutant cancer.

We determined whether antitumor 
activity of ibrutinib in NSCLC cells was 
mediated by inhibition of BTK or by direct 
effect on EGFR. The expression of BTK 
was not detectable in any of the cell lines 

tested (Supplementary Figure  1, available 
online), indicating that ibrutinib-induced 
antitumor activity in these cells is not 
mediated by BTK. In contrast, treatment 
of H1975 and H3255 cells with erlotinib 
and ibrutinib led to a similar dose-depend-
ent inhibition of phosphor-EGFR at the 
Y1068 site in H3255 cells. However, only 
ibrutinib inhibited pY1068 in H1975 cells 
(Figure  2A). The basal EGFR phospho-
rylation at Y1173 was only detectable in 
HCC827. Like erlotinib, ibrutinib-induced 
dose-dependent inhibition of EGFR Y1173 
phosphorylation in HCC827 cells and con-
stitutive Y1068 phosphorylation in H292 
cells, although at relatively higher doses 
compared with those observed in EGFR-
mutant cells. Similar results were observed 
for EGF-stimulated Y1068 phosphoryla-
tion in A549 cells (Figure  2B), suggesting 
that at a higher dose, ibrutinib was able 
to suppress wild-type EGFR activity, con-
sistent with other studies on ibrutinib’s 
effect on EGFR (1,2). Ibrutinib-induced 

inhibition of EGFR phosphorylation 
occurred as early as 30 min after the treat-
ment (Figure 2C). We also tested whether 
ibrutinib-induced growth suppression or 
apoptosis in HCC827 cells. Flow cyto-
metric analysis on apoptotic cells and 
western blot analyses of poly(ADP-ribose) 
polymerase (PARP1) and caspase-3 cleav-
age showed that ibrutinib induced dose-
dependent increase of apoptotic cells 
(42% of apoptotic cells at 72 hours after 
treatment with 1  μM ibrutinib vs <10% 
of apoptotic cells in the control group) 
and cleavage of PARP1 and caspase-3 in 
HCC827 cells (Figure 2D), demonstrating 
that apoptosis is the major model of action 
in HCC827 cells.

EGFR mutations are frequently detected 
in lung adenocarcinoma patients, especially 
those who have no smoking history (13,14). 
The high susceptibilities of EGFR-mutant 
lung cancer cells to gefitinib and erlotinib 
(13,15,16) have made these two agents the 
first choice for treatment of EGFR-mutant 
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Figure 1.  Antitumor activities of ibrutinib in non–small cell lung cancer 
(NSCLC) cell lines. A) Calculated 50% inhibitory concentration (IC50) on 
a logarithmic scale for 39 NSCLC cell lines. B) Dose–response curves 
of erlotinib, afatinib, and ibrutinib for the H1975 cell line, which has a 
T790M mutation. The data are means with standard deviations for 
two assays done in quadruplicate. The viability of control cells treated 
with dimethyl sulfoxide was assigned a value of 100. C) In vivo growth 
of H1795 tumors. The mice were treated as indicated. The values are 

means ±SD of data from five mice per group. * indicates P = .03 when 
compared with the control group, using a two-sided Student t test. D) 
Kaplan–Meier Survival Curve of the mice shown in (C). The mean sur-
vival times for solvent- and erlotinib-treated mice were both 17.8 days 
(95% confidence interval [CI]  =  14.3 to 21.3 days). The mean survival 
time for ibrutinib-treated mice was 29.8 days (95% CI = 26.0 to 33.6 days; 
P = .008 when compared with solvent- or erlotinib-treated mice by log-
rank test). All statistical tests were two-sided.
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cancers. Unfortunately, despite dramatic 
responses of EGFR-mutant lung cancer 
patients to gefitinib or erlotinib, acquired 
resistance occurs at a median of 10 to 
13  months after the treatment initiation 
(17,18). While a variety of mechanisms have 
been identified for the acquired resistance, 
including a second T790M mutation at exon 
20 of the EGFR gene (19, 20), amplification 
of MET gene (21–23), mutations of the KRas 
gene (24), and activation of AXL or c-Src 
kinases (25–27), the most common cause of 
the resistance in clinics is the T790M muta-
tion in the EGFR, which is found in about 
50% of those patients (19,21,28). Effort has 
been made to develop EGFR kinase inhibi-
tors that are effective for EGFR T790M 
mutants (29–31), including development 
and approval of afatinib for clinical applica-
tion (12) and clinical trials on some novel 
anti-EGFR agents (32). Ibrutinib’s selective 
inhibition of EGFR-mutant NSCLC cells, 
including the T790M mutant cell line H1975 
and its excellent safety profile in patients, indi-
cate that this agent could be a good candidate 
for treatment of EGFR-mutant NSCLC.

Nevertheless, this study had some limi-
tations, because ibrutinib’s inhibitory effect 
on EGFR was determined on cultured cell 
lines, not on recombinant EGFR proteins. 
The differential effects of ibrutinit on 
wild-type and mutant EGFRs remain to 
be determined. Moreover, the in vivo study 
was performed with subcutaneous tumors 
instead of tumors in orthotopic microen-
vironments. Because skin rash, a common 
dose-limiting side effect for EGFR inhibi-
tors (12,33), was observed much less fre-
quently in patients treated with ibrutinib 
(6–8), it also raises an intriguing question 
on whether ibrutinib can be used as an 
EGFR inhibitor to treat cancers in clinics.
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