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Original article

The role of vitamin D in the etiology of hypertension and 
cardiovascular disease has been increasingly recognized. 
Experimental studies have suggested multiple mechanisms 
through which vitamin D may lower blood pressure (BP).1–5 
Prospective observational studies showed inverse associa-
tion between circulating biomarker of vitamin D status and 
longitudinal change of BP6 or risk of developing hyperten-
sion.7 Small, short-term intervention studies reported that 
vitamin D supplements lowered BP in selected patients,8,9 
although the largest trial of vitamin D, the Women’s Health 
Initiative, found no effect of randomized calcium (1,000 mg/
day) plus vitamin D (400 IU/day) supplement on BP change 
and incident hypertension among 36,282 postmenopausal 
women over 7 years of treatment.10

Genetic variations may modify the effect of vitamin D 
on BP. Genes responsible for vitamin D synthesis and deg-
radation may determine circulating vitamin D metabolites 
concentration.11 Genes coding for vitamin D binding pro-
tein, which binds to vitamin D metabolites and facilitates 
their transport,12 might affect vitamin D availability. Genes 
coding for vitamin D receptor (VDR), a nuclear receptor 
responsive to 1,25(OH)2-vitamin D,13 along with its coacti-
vators and corepressors, could influence the ligand/receptor 
complex and subsequent target tissue responses. Of note, 
single nucleotide polymorphisms (SNPs) on the VDR gene, 
including rs154441014–16 and rs10735810,16 have been shown 
to associate with BP level or risk of hypertension in prior 
studies. Recently, a cluster of genes involved in vitamin D 
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background
Vitamin D is involved in blood pressure (BP) regulation. Genetic varia-
tions may influence the effect of vitamin D on BP, but data from epide-
miologic studies remain inconsistent.

methods
We conducted a comprehensive genetic association study in the 
Women’s Genome Health Study (WGHS) with genome-wide geno-
type data among 23,294 women of European ancestry and in the 
International Consortium of Blood Pressure (ICBP) with genome-
wide meta-analysis results from 69,395 men and women of European 
ancestry.

results
First, we found none of 5 selected vitamin D–related candidate single 
nucleotide polymorphisms (SNPs) was associated with systolic BP (SBP) 
or diastolic BP (DBP). Second, in 61 candidate SNPs involved in vitamin 
D metabolism and signaling, rs1507023 (in RBFOX1) and rs2296241 
(in CYP24A1) showed significant associations with SBP, DBP, mean 
arterial pressure, or pulse pressure in the WGHS before, but not after, 

multiple testing corrections. Nominally significant associations in the 
ICBP were also not significant after corrections. Third, among 24 can-
didate genes across vitamin D pathway, associations with BP traits that 
meet gene-wide significance level were found for NCOA3 (rs2235734), 
RXRA (rs875444), DHCR7 (rs1790370), VDR (rs2544037), and NCOR2 
(rs1243733, rs1147289) in the WGHS and NCOR1, TP53BP1, and TYRP1 
in the ICBP. However, none of these associations reached significance 
threshold in both studies.

conclusions
Our study did not replicate previously observed associations of vitamin 
D–related SNPs with BP. There was suggestive evidence for associations 
in other vitamin D pathway genes; however, these associations either 
did not reach the significance threshold or were not replicated.
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metabolism, transport, and function has been investigated 
for development of cancer17,18 and autoimmune disease;19,20 
associations were found in genes other than VDR, support-
ing the hypothesis that genetic variants in vitamin D pathway 
beyond VDR may modify the effect of vitamin D. A compa-
rable study for hypertension has not been reported.

To further address the role of vitamin D in BP regula-
tion and hypertension development, we conducted a com-
prehensive association study to investigate genetic variants 
in an expanded vitamin D pathway, including a total of 24 
genes, in relation to BP. We conducted parallel analyses to 
maximize use of data in two independent study samples: the 
Women’s Genome Health Study (WGHS), which includes a 
homogeneous sample of 23,294 women of European ancestry 
with genome-wide genotyped data,20,21 and the International 
Consortium for Blood Pressure (ICBP) genome-wide asso-
ciation studies (GWASs), which includes 69,395 men and 
women of European ancestry from 29 studies for a genome-
wide meta-analysis on approximately 2.6 million HapMap 
SNPs in association with BP.22

METHODS

Study population of the WGHS

The primary study population is from the Women’s Health 
Study (WHS), a randomized trial evaluating the risks and 
benefits of low-dose aspirin and vitamin E in primary pre-
vention of cardiovascular disease and cancer among 39,876 
US female health professionals aged 45 years and older.23,24 
Overall, 28,345 (70.6%) WHS participants provided base-
line blood sample. The WGHS is the subset of 23,294 WHS 
participants of European ancestry with completed genome-
wide genotyping on more than 360,000 SNPs, which can be 
linked to the extensive epidemiologic databank of the parent 
WHS.21

Determination of BP in the WGHS

In the WHS, baseline systolic BP (SBP) and diastolic BP 
(DBP) were self-reported in categories (9 for SBP from <110 
to ≥180 mm Hg; 7 for DBP from <65 to ≥105 mm Hg). The 
midpoint of each category was used for analysis. If a par-
ticipant reported taking antihypertensive medications, 10 
and 5 mm Hg were added to self-reported SBP and DBP, 
respectively, to control for the BP-lowering effect of medica-
tions.25 In health professionals, self-reported BP was highly 
correlated with measured BP26 and highly accurate when 
compared with chart review.27 The genome-wide significant 
associations discovered in the ICBP have been successfully 
replicated in the WGHS, which also indirectly supported the 
validity of BP phenotype in the WGHS.22

Genotyping in the WGHS

Detailed methods of genotyping in the WGHS have 
been previously described.21 In brief, genotyping was per-
formed using the Illumina’s Infinium II assay28 applied to 
the HumanHap300 Duo + platform (Illumina, San Diego, 
CA), including a genome-wide set of haplotype-tagging SNP 

markers suitable for populations with European ancestry 
and custom content to enhance coverage of genomic regions 
of significance in cardiovascular disease.29 In the experimen-
tal data, all samples were required to have successful geno-
typing for at least 98% of the SNPs; SNPs were retained with 
minor allele frequency >1%, successful genotyping in at least 
90% of the subjects, and deviations from Hardy–Weinberg 
equilibrium using an exact test not exceeding P = 1.0 × 10–6 
in significance. Finally, a subset of 23,294 participants of self-
reported European ancestry verified by a multidimensional 
scaling procedure in PLINK (http://pngu.mgh.harvard.edu/
purcell/plink) had 339,000 genotyped SNPs remaining in the 
final data after applying quality control filters, and up to a 
total of 2.6 million SNPs were imputed with MaCH v. 1.0.16 
(http://www.sph.umich.edu/csg/abecasis/mach/) using the 
reference panel from the HapMap2 CEU population.30 Only 
genotyped SNPs and imputed SNPs with good quality (R2 > 
0.3) were used for analysis.

Available data in the ICBP

The discovery analyses of ICBP-GWAS included 69,395 
individuals of European ancestry.22 In all studies included in 
the discovery analysis, BP, height, and weight were directly 
measured, and sex and age were recorded. All studies per-
formed genotyping using commercially available arrays with 
>300,000 SNPs and used hidden Markov model approaches31 
and HapMap reference panels30 to impute genotypes at 
unmeasured SNPs and excluded SNPs so that a common set 
of approximately 2.6 million HapMap SNPs were available 
across the discovery samples. In each study, quality control 
procedures excluded individual problematic samples and 
SNPs. After the meta-analysis, the top signals were repli-
cated in up to 133,661 additional individuals of European 
descent. The WGHS was not included in the ICBP discovery 
analysis but included in the replication analysis. The publicly 
available data from the ICBP include P values but not effect 
estimates for SNP associations with SBP and DBP.

Statistical analysis

Analyses of this study were conducted in 3 steps, using both 
WGHS and ICBP data. In the WGHS, descriptive statistics were 
conducted using SAS version 9.2 (SAS Institute, Cary, NC), 
and genetic association study was conducted using PLINK. BP 
phenotypes included SBP, DBP, mean arterial pressure (MAP, 
one-third of SBP plus two-thirds of DBP), and pulse pressure 
(the difference between SBP and DBP). An additive genetic 
effect model in linear regression was implemented assuming 
an additive relationship between the number of the minor 
allele of each SNP (0, 1, or 2; the most likely genotype was used 
for imputed SNPs) and BP phenotypes. Models were adjusted 
for age at randomization and population stratification. In the 
ICBP, genome-wide meta-analysis P values of the genotyped 
and imputed SNPs in association with SBP and DBP after cor-
rection for genomic control were evaluated.

First, we selected 5 putative functional SNPs in the vita-
min D pathway genes, including those that have previ-
ously shown significant associations with BP14–16 or other 
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disorders with material BP change such as obesity and insu-
lin resistance,32,33 and evaluated their associations with BP 
phenotypes in the WGHS and ICBP. Multiple testing was 
accounted for by using Bonferroni correction, and thus asso-
ciations were considered significant if P < 0.01 (0.05/5). We 
also constructed a risk score based on these SNPs, calculated 
as a total count of the risk alleles with a range from 0 to 10.

Second, we expanded analysis to include 61 SNPs show-
ing associations with vitamin D synthesis, metabolism, 
transportation, or VDR complex, including 13 SNPs that 
previous GWASs identified as determinants of circulating 
vitamin D metabolites. In the WGHS, permutation proce-
dures were performed within the entire set of SNPs, and an 
empirical P value <0.05 was considered significant. In the 
ICBP, the genome-wide meta-analysis P values were evalu-
ated, and a Bonferroni correction for the number of effective 
SNPs (n = 47.5) based on linkage disequilibrium in HapMap 
2 was used to control for multiple testing, with a significance 
threshold of P < 0.001 (0.05/47.5).

Third, we a priori identified 24 candidate genes across 
the vitamin D pathway and included SNPs within 50 Kbp 
before the transcription start site to 10 Kbp beyond the end 
of transcription in each gene for analyses. In the WGHS, we 
performed permutations in each gene to control for multi-
ple testing. In the ICBP, we performed a versatile gene-based 
association study34 test. We also applied Bonferroni correc-
tion for the number of genes tested; thus a gene-based empir-
ical P value <0.002 (0.05/24) was considered significant.

Finally, we searched the database from the Pritchard 
Lab eQTL resources (http://eqtl.uchicago.edu) for putative 
expression quantitative trait loci among the SNPs associated 
with BP traits in either WGHS or ICBP and their close prox-
ies (r2 > 0.8). We also used a gene-set enrichment analysis 
program, MAGENTA (http://www.broadinstitute.org/mpg/
magenta), to investigate pathways enriched for SNPs in the 
24 vitamin D–related genes. None of the expression quanti-
tative trait loci or pathways identified from these analyses is 
directly involved in BP regulation, and therefore the results 
are not shown.

RESULTS

Analyses in the WGHS included a total of 23,294 women 
who had both BP data and genome-wide genotyping infor-
mation (Supplementary Table S1). All women had confirmed 
European ancestry with mean ± SD age of 54.7 ± 7.1 years. 
The mean ± SD of SBP and DBP were 123.5 ± 20.5 mm Hg 
and 76.4 ± 13.2 mm Hg, respectively. Analyses in the ICBP 
included 69,395 men and women of European ancestry that 
were previously described.22

Candidate SNPs analyses

In the focused set of 5 SNPs selected based on previous 
associations with BP-related outcomes, none was associated 
with SBP or DBP in the WGHS and ICBP (Table 1). The risk 
score constructed from the 5 SNPs was also not associated 
with SBP (β = −0.017; SE = 0.09 mm Hg/allele; P = 0.85) or 
DBP (β = −0.027; SE = 0.06 mm Hg/allele; P = 0.65) in the 

WGHS. In the expanded set of 61 SNPs that were involved 
in vitamin D metabolism and signaling pathway, rs1507023 
(in RBFOX1) was associated with SBP and pulse pressure 
and rs2296241 (in CYP24A1) was associated with SBP, 
DBP, and MAP at nominal P < 0.05 in the WGHS (Table 2; 
Supplementary Table S2). However, these associations were 
no longer significant at empirical P < 0.05 level after mul-
tiple hypotheses correction by permutation and were also 
not replicated in the ICBP (all genome-wide meta-analysis 
P > 0.05). Similarly, the nominally significant associations of 
rs2853564, rs1507023, rs9937918, and rs6013897 with SBP 
and/or DBP observed in the ICBP were no longer significant 
after Bonferroni correction and were not replicated in the 
WGHS (Table 2; Supplementary Table S2)

Candidate genes analysis

We examined the associations of genotyped and imputed 
SNPs in 24 genes on vitamin D pathway with BP phenotype. 
In the WGHS, after correcting for multiple comparisons by 
permutation on a gene-wide basis, rs875444 in RXRA was 
associated with pulse pressure (P  =  0.00007; gene-based 
P  =  0.02), rs2544037 in VDR was associated with DBP 
(P  =  0.0003; gene-based P  =  0.02) and MAP (P  =  0.0008; 
gene-based P = 0.04), rs1790370 in DHCR7 was associated 
with DBP (P  =  0.001; gene-based P  =  0.02), rs2235734 in 
NCOA3 was associated with SBP (P  =  0.001; gene-based 
P  =  0.03), rs1147289 in NCOR2 was associated with DBP 
(P = 0.0001; gene-based P = 0.01) and rs1243733 in NCOR2 
was associated with SBP (P =0.0003; gene-based P = 0.02) 
and MAP (P  =  0.00007; gene-based P  =  0.007) (Table  3; 
Supplementary Table S3). However, none of these associa-
tions reached significance threshold after further correcting 
for the number of genes tested, and the associations with SBP 
and DBP were not replicated in the ICBP (all meta-analysis  
P > 0.05) (Table 3; Supplementary Table S3).

In the ICBP, 3 genes, including NCOR1 (gene-based 
P = 0.02 for DBP), TP53BP1 (P = 0.02 for SBP and 0.03 for 
DBP), and TYRP1 (P  =  0.0008 for SBP), showed associa-
tions at gene-based P < 0.05 (Table 4; Supplementary Table 
S3). After further correcting for the number of genes tested, 
only the association of TYRP1 with SBP reached signifi-
cance threshold. Of the most significant SNP in each gene 
(rs12899865 in TP53BP1 and rs10960738 in TYRP1 for SBP; 
rs2157990 in NCOR1 and rs16957715 in TP53BP1 for DBP), 
none was associated with BP in the WGHS (all nominal  
P > 0.05) (Table 4).

DISCUSSION

To our knowledge, this is the first comprehensive study of 
common genetic variations across 24 genes in an extended 
vitamin D metabolism and signaling pathway in relation to 
BP. We did not replicate previously observed associations of 
candidate SNPs with BP in large samples of white popula-
tion. There is suggestive evidence for associations in 8 genes 
(NCOR1, TP53BP1, TYRP1, NCOA3, NCOR2, DHCR7, VDR, 
RXRA), but these associations did not reach Bonferroni cor-
rected significance threshold and/or were not replicated.

http://eqtl.uchicago.edu
http://www.broadinstitute.org/mpg/magenta
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Many lines of evidence suggest that vitamin D is involved 
in the regulation of BP.7–9 The postulated mechanisms 
include downregulation of the renin-angiotensin system,1 
facilitation of calcium homeostasis,2 improvement in vascu-
lar smooth muscle cell3 and endothelial cell4 function, and 
modulation of inflammation.5 However, the role of genetic 
variations in the observed association between vitamin D 
and BP remain largely unknown. To our knowledge, VDR 
is the only vitamin D–related gene that had been directly 
linked with BP. In VDR knockout mice, renin expression 
in the kidney was increased and BP elevated.22 In human 
studies, findings are inconsistent. One study in Korea 
found that carriers of the B allele of VDR BsmI polymor-
phism (rs1544410) had a SBP 2.7–3.7 mm Hg higher, a DBP 
1.9–2.5 mm Hg higher, and odds of hypertension 2-folds 
higher than the bb genotype carriers (all P  <  0.05).14 One 
study we conducted in a male cohort showed that carriers 
of rs1544410 B allele had a hazard ratio (HR) of 1.25 (95% 
confidence interval (CI)  =  1.04–1.51) for incident hyper-
tension compared with carriers of the bb genotype.16 We 
also found that the ff genotype of VDR FokI polymorphism 

(rs10735810) was associated with an increased risk of hyper-
tension (HR = 1.32; 95% CI = 1.03–1.70) compared with the 
FF and Ff genotypes combined.16 In the third study, however, 
the B allele of VDR rs1544410 was significantly associated 
with lower SBP in white men (regression coefficient β per 
copy of B = −4.15; P < 0.001) but was unassociated with SBP 
or DBP in white women.15

Our study did not find evidence to support these previous 
findings for VDR rs1544410 and rs10735810 in very large 
study samples including the WGHS and the ICBP. The lack 
of replication may be explained by the small sample size, 
small number of SNPs examined, unique population charac-
teristics, confounding by environmental factors, or potential 
publication bias in previous studies. For example, in the 3 
studies that had shown associations between VDR rs1544410, 
rs10735810, and BP, one was conducted among 933 Asian 
men and women lead workers,14 one was conducted among 
590 healthy white men and women in Spain,15 and the lat-
est was conducted among 1,211 US male physicians.16 In 
addition to VDR rs1544410 and rs10735810, 3 other SNPs 
on vitamin D–related genes also showed associations with 

Table 1. Association of a focused set of candidate single nucleotide polymorphisms with blood pressure phenotypes

Index SNP Chr Position Genes

WGHS ICBP

A1/A2 A1F Genotype BP phenotype Beta (SE) P valuea P value

rs17467825 4 72824381 GC G/A 0.28 Imputed SBP −0.11 (0.21) 0.61 0.45

DBP −0.11 (0.14) 0.42 0.60

MAP −0.13 (0.16) 0.41

PP −0.07 (0.12) 0.56

rs12785878 11 70845097 DHCR7 G/T 0.25 Imputed SBP 0.068 (0.21) 0.75 0.70

DBP −0.081 (0.14) 0.56 0.12

MAP −0.029 (0.16) 0.86

PP 0.14 (0.12) 0.25

rs1544410 12 46526102 VDR T/C 0.41 Imputed SBP 0.052 (0.19) 0.78 0.50

DBP −0.037 (0.12) 0.77 0.89

MAP −0.0025 (0.14) 0.99

PP 0.091 (0.11) 0.41

rs10735810 12 46559161 VDR A/G 0.38 Genotyped SBP 0.055 (0.19) 0.77 NA

DBP 0.00096 (0.13) 0.99 NA

MAP −0.0059 (0.14) 0.97

PP 0.054 (0.11) 0.63

rs11568820 12 46588812 VDR T/C 0.20 Imputed SBP 0.067 (0.23) 0.77 0.34

DBP 0.0034 (0.15) 0.98 0.97

MAP 0.022 (0.18) 0.90

PP −0.018 (0.13) 0.90

Candidate SNPs selected for analysis have previously shown significant associations with blood pressure (BP) or other disorders with mate-
rial BP change. In the Women’s Genome Health Study (WGHS), analysis was adjusted for age at randomization and population stratification; 
data presented are effect size beta (SE) in millimeters of mercury per coded allele; all imputation r2 > 0.80. In the International Consortium of 
Blood Pressure (ICBP), P for single nucleotide polymorphisms (SNPs) presented are genome-wide meta-analysis P values after correction for 
genomic control. 

Abbreviations: A1, coded allele; A2, noncoded allele; A1F, coded allele frequency; Chr, chromosome; DBP, diastolic blood pressure; MAP, 
mean arterial pressure; NA, not available; PP, pulse pressure; SBP, systolic blood pressure.

aNominal P value.
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Table 2. Association of expanded set of candidate single nucleotide polymorphisms with blood pressure phenotypes

Index SNP Chr Position Genes

WGHS ICBP

A1/A2 A1F Genotype

BP  

phenotype Beta (SE) P valuea

Empirical  

P valueb P value

Nominal significant associations in the WGHS

rs1507023 16 7528435 RBFOX1 G/A 0.13 Genotyped SBP 0.55 (0.28) 0.05 0.90 0.14

PP 0.43 (0.16) 0.0078 0.31

rs2296241 20 52219626 CYP24A1 G/A 0.47 Imputed SBP 0.42 (0.19) 0.023 0.67 0.08

DBP 0.28 (0.12) 0.024 0.68 0.11

MAP 0.32 (0.14) 0.022 0.64

Nominal significant associations in the ICBP

rs2853564 12 46564753 VDR G/A 0.40 Genotyped SBP −0.069 (0.19) 0.72 1.00 0.045

rs1507023 16 7528435 RBFOX1 G/A 0.13 Genotyped DBP 0.23 (0.18) 0.21 1.00 0.04

rs9937918 16 56159292 GPR114 A/G 0.27 Genotyped SBP 0.22 (0.21) 0.30 1.00 0.02

DBP 0.12 (0.14) 0.40 1.00 0.049

rs6013897 20 52175886 CYP24A1 A/T 0.21 Imputed SBP 0.023 (0.23) 0.92 1.00 0.045

DBP −0.0081 (0.15) 0.96 1.00 0.02

Candidate single nucleotide polymorphisms (SNPs) included those that have previously shown significant associations with blood pressure 
(BP)–related outcomes, vitamin D metabolism, or vitamin D receptor signaling. Table only shows SNPs that had significant association with any 
BP phenotype at nominal P < 0.05 in the Women’s Genome Health Study (WGHS) or International Consortium of Blood Pressure (ICBP). In the 
WGHS, analysis was adjusted for age at randomization and population stratification; data presented are effect size beta (SE) in millimeters of 
mercury per coded allele; all imputation r2 > 0.80. In the ICBP, P for SNP presented are genome-wide meta-analysis P values after correction 
for genomic control.

Abbreviations: A1, coded allele; A2, noncoded allele; A1F, coded allele frequency; Chr, chromosome; DBP, diastolic blood pressure; MAP, 
mean arterial pressure; NA, not available; PP, pulse pressure; SBP, systolic blood pressure.

aNominal P value.
bEmpirical P value after correction for multiple testing.

Table 3. Association of vitamin D pathway genes with blood pressure observed in the Women’s Genome Health Study

Gene Chr. rs No. Position

WGHS ICBP

Genotype A1/A2 A1F

BP  

phenotype Beta (SE) P valuea

Empirical P 

valueb P value

RXRA 9 rs875444 136435125 Genotyped G/A 0.41 PP −0.44 (0.11) 0.00007 0.002

DHCR7 11 rs1790370 70802569 Imputed A/G 0.18 DBP −0.51 (0.15) 0.001 0.02 0.77

VDR 12 rs2544037 46501447 Genotyped G/A 0.42 DBP −0.44 (0.12) 0.0003 0.02 0.13

MAP −0.48 (0.14) 0.0008 0.04

NCOR2 12 rs1243733 123522505 Imputed T/C 0.095 SBP 1.16 (0.32) 0.0003 0.02 0.22

MAP 0.95 (0.24) 0.00007 0.007

rs1147289 123536019 Genotyped A/G 0.14 DBP 0.67 (0.18) 0.0001 0.01 0.20

NCOA3 20 rs2235734 45725556 Genotyped C/A 0.35 SBP −0.64 (0.19) 0.001 0.03 0.24

Table shows the best single nucleotide polymorphisms (SNPs) in each gene that had association with blood pressure (BP) phenotypes in the 
Women’s Genome Health Study (WGHS) at empirical P value <0.05 by using gene-based permutation and their replication in the International 
Consortium of Blood Pressure (ICBP). In the WGHS, analysis was adjusted for age at randomization and population stratification; data pre-
sented are effect size beta (SE) in millimeters of mercury per coded allele; all imputation r2 > 0.80. In the ICBP, P for SNP presented are genome-
wide meta-analysis P values after correction for genomic control.

Abbreviations: A1, coded allele; A2, noncoded allele; A1F, coded allele frequency; Chr., chromosome; DBP, diastolic BP; MAP, mean arterial 
pressure; PP, pulse pressure; SBP, systolic BP.

aNominal P value.
bEmpirical P value after correction for multiple testing by using gene-based permutation.
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BP-related traits in prior studies, including rs1746782 in GC 
with percentage of fat mass33 and rs1156882 in VDR and 
rs1278587 in DHCR7 with index of insulin resistance or obe-
sity.32 Associations of these SNPs with BP were not directly 
examined in previous studies. In our study, these SNPs were 
not associated with BP in either the WGHS or the ICBP.

On the other hand, our expanded candidate SNP analy-
sis found suggestive evidence for associations of rs2853564 
in VDR, rs6013897 and rs2296241 in CYP24A1 (encoding 
vitamin D 24-hydroxylase, the major enzyme of 1,25(OH)2-
vitamin D degradation), rs1507023 in RBFOX1, and 
rs9937918 in GPR114 (both GWAS-discovered determi-
nants of circulating 25(OH)-vitamin D) with BP traits. In 
candidate gene analysis, we found marginally significant 
associations for VDR along with NCOA3, NCOR2, NCOR1, 
RXRA (encoding nuclear receptor coactivator 3, corepres-
sor 2, corepressor 1, and retinoid X receptor alpha, respec-
tively, which all interact with VDR), DHCR7, TP53BP1, and 
TYRP1 (encoding 7-dehydrocholesterol reductase, tumor 
suppressor p53-binding protein 1, and tyrosinase-related 
protein 1, respectively, which all modify vitamin D syn-
thesis). However, only the association of TYRP1 with SBP 
found in the ICBP reached significance thresholds after 
ultimate multiple testing correction. Furthermore, none of 
the associations observed in one study was replicated in the 
other study. Supplemental analyses provided no direct sup-
port to functional effect of the observed associations on BP 
regulation. Future studies will be needed to further explore 
whether the expression quantitative trait loci and enriched 
pathways identified in our analyses represent novel biologi-
cal mechanisms underlying the association between vitamin 
D and BP.

Strengths of this study include its comprehensive analy-
sis approach and an efficient use of multiple data resources, 
including one of the largest samples with individual-level 
GWAS data along with by far the largest international 

consortium on BP phenotype. One limitation of this study 
is that the genotyped and imputed SNPs may not cover all 
variations (e.g., rare variants) on the entire gene region. We 
have plans for future analyses using 1,000 genome imputed 
data or exome data when they become available. Second, 
many SNPs that had moderate associations with BP may not 
reach the predetermined significance threshold because of 
the stringency of Bonferroni correction for multiple com-
parisons. Third, some prior studies including the ICBP did 
not report beta coefficients for associations with BP. This 
limited scope of publicly available data restricted our abil-
ity to construct a weighted genetic risk score and apply the 
same analytic approach in the ICBP and WGHS. Fourth, 
the use of self-reported BP in categories as phenotype in the 
WGHS would presumably limit our power to detect weak 
effects and replicate the findings from the ICBP and there-
fore may underestimate the strength of existing associations. 
Finally, participants of our study were of European descent; 
the findings from this study are not generalizable to other 
ethnic populations.

To date, at least 6 GWASs of BP have undertaken a com-
prehensive scan in individuals of European ancestry and 
identified several susceptibility loci across the genome.22,35–39 
None of these detected regions harbor vitamin D pathway 
genes that were evaluated in our study. Although the effects 
of individual SNPs in the vitamin D pathway are possibly 
weak, the consistent associations between vitamin D status 
and BP and risk of hypertension warrant a closer investi-
gation into whether combined effect of multiple SNPs in 1 
gene or all genes in the entire pathway may contribute to the 
observed associations. Our study specifically evaluated genes 
in the expanded vitamin D pathway but found no strong or 
consistent associations with BP. For the SNPs that showed 
suggestive evidence for associations, the associations did not 
reach the significance threshold or were not replicated. In 
addition, the estimated effect size is moderate and may not 

Table 4. Association of vitamin D pathway genes with blood pressure observed in the International Consortium of Blood Pressure

Gene Chr.

ICBP WGHS

BP 

phenotype

Gene-based 

P value a Best SNP Position

P value for 

SNP Genotype A1/A2 A1F Beta (SE) P valueb

NCOR1 17

DBP 0.017 rs2157990 15902718 0.005 Imputed T/A 0.43 −0.17 (0.19) 0.36

TP53BP1 15

SBP 0.018 rs12899865 41528309 0.0004 Imputed A/G 0.18 −0.027 (0.24) 0.91

DBP 0.031 rs16957715 41496029 0.005 Imputed G/T 0.19 −0.027 (0.23) 0.91

TYRP1 9

SBP 0.00083 rs10960738 12638831 9.87 × 10–5 Imputed C/A 0.31 0.11 (0.20) 0.59

Table shows the genes that had association with systolic blood pressure (SBP) or diastolic blood pressure (DBP) in the International 
Consortium of Blood Pressure (ICBP) at gene-based P value <0.05 and their replication in the Women’s Genome Health Study (WGHS). In the 
ICBP, P for single nucleotide polymorphisms (SNPs) presented are genome-wide meta-analysis P values after correction for genomic control. In 
the WGHS, analysis was adjusted for age at randomization and population stratification; data presented are effect size beta (SE) in millimeters 
of mercury per coded allele; all imputation r2 > 0.80.

Abbreviations: A1, coded allele; A2, noncoded allele; A1F, coded allele frequency; BP, blood pressure; Chr., chromosome.
aCorrections for multiple testing were performed by using a versatile gene-based association study.
bNominal P value.
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be clinically relevant. These findings suggest that common 
genetic variation in the vitamin D pathway may not substan-
tially influence the association between vitamin D and BP. 
However, it remains to be seen whether gene–gene or gene–
environment interactions play a more prominent role in the 
link between vitamin D and BP.

SUPPLEMENTARY MATERIAL

Supplementary materials are available at American Journal 
of Hypertension (http://ajh.oxfordjournals.org).
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